1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Overview — Python 3.24.1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="_static/css/slepc.css?v=d285b177" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="_static/documentation_options.js?v=d1c46438"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'overview';</script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Tutorial" href="tutorial.html" />
<link rel="prev" title="SLEPc for Python" href="index.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="3.24" />
<meta name="docbuild:last-update" content="2025-11-07T09:28:35+0100 (v3.24.1)"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="index.html">
<p class="title logo__title">Python 3.24.1 documentation</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="#">
Overview
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="tutorial.html">
Tutorial
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="install.html">
Installation
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="citing.html">
Citations
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="reference.html">
Reference
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button"
data-bs-toggle="dropdown" aria-expanded="false"
aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="demo/demo.html">
slepc4py demos
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="#">
Overview
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="tutorial.html">
Tutorial
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="install.html">
Installation
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="citing.html">
Citations
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="reference.html">
Reference
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="demo/demo.html">
slepc4py demos
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"></div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
<div class="sidebar-primary-item">
<div id="ethical-ad-placement"
class="flat"
data-ea-publisher="readthedocs"
data-ea-type="readthedocs-sidebar"
data-ea-manual="true">
</div></div>
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Overview</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="overview">
<h1>Overview<a class="headerlink" href="#overview" title="Link to this heading">#</a></h1>
<p><em>SLEPc for Python</em> (slepc4py) is a Python package that provides
convenient access to the functionality of SLEPc.</p>
<p>SLEPc <a class="footnote-reference brackets" href="#id3" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a>, <a class="footnote-reference brackets" href="#id4" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a> implements algorithms and tools for the numerical
solution of large, sparse eigenvalue problems on parallel
computers. It can be used for linear eigenvalue problems in either
standard or generalized form, with real or complex arithmetic.
It can also be used for computing a partial SVD of a large, sparse,
rectangular matrix, and to solve nonlinear eigenvalue problems
(polynomial or general). Additionally, SLEPc provides solvers for
the computation of the action of a matrix function on a vector.</p>
<p>SLEPc is intended for computing a subset of the spectrum of a matrix
(or matrix pair). One can for instance approximate the largest
magnitude eigenvalues, or the smallest ones, or even those eigenvalues
located near a given region of the complex plane. Interior eigenvalues
are harder to compute, so SLEPc provides different methodologies. One
such method is to use a spectral transformation. Cheaper alternatives
are also available.</p>
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="id3" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">1</a><span class="fn-bracket">]</span></span>
<p>J. E. Roman, C. Campos, L. Dalcin, E. Romero, A. Tomas.
SLEPc Users Manual. DSIC-II/24/02 - Revision 3.24.
D. Sistemas Informaticos y Computacion, Universitat Politecnica de
Valencia. 2025.</p>
</aside>
<aside class="footnote brackets" id="id4" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">2</a><span class="fn-bracket">]</span></span>
<p>Vicente Hernandez, Jose E. Roman and Vicente Vidal.
SLEPc: A Scalable and Flexible Toolkit for the Solution of
Eigenvalue Problems, ACM Trans. Math. Softw. 31(3), pp. 351-362,
2005.</p>
</aside>
</aside>
<section id="features">
<h2>Features<a class="headerlink" href="#features" title="Link to this heading">#</a></h2>
<p>Currently, the following types of eigenproblems can be addressed:</p>
<ul class="simple">
<li><p>Standard eigenvalue problem, <em>Ax=kx</em>, either for Hermitian or
non-Hermitian matrices.</p></li>
<li><p>Generalized eigenvalue problem, <em>Ax=kBx</em>, either Hermitian
positive-definite or not.</p></li>
<li><p>Partial singular value decomposition of a rectangular matrix,
<em>Au=sv</em>.</p></li>
<li><p>Polynomial eigenvalue problem, <em>P(k)x=0</em>.</p></li>
<li><p>Nonlinear eigenvalue problem, <em>T(k)x=0</em>.</p></li>
<li><p>Computing the action of a matrix function on a vector, <em>w=f(alpha A)v</em>.</p></li>
</ul>
<p>For the linear eigenvalue problem, the following methods are available:</p>
<ul class="simple">
<li><p>Krylov eigensolvers, particularly Krylov-Schur, Arnoldi, and
Lanczos.</p></li>
<li><p>Davidson-type eigensolvers, including Generalized Davidson and
Jacobi-Davidson.</p></li>
<li><p>Subspace iteration and single vector iterations (inverse iteration,
RQI).</p></li>
<li><p>Conjugate gradient for the minimization of the Rayleigh quotient.</p></li>
<li><p>A contour integral solver.</p></li>
</ul>
<p>For singular value computations, the following alternatives can be
used:</p>
<ul class="simple">
<li><p>Use an eigensolver via the cross-product matrix <em>A’A</em> or the cyclic
matrix <em>[0 A; A’ 0]</em>.</p></li>
<li><p>Explicitly restarted Lanczos bidiagonalization.</p></li>
<li><p>Implicitly restarted Lanczos bidiagonalization (thick-restart
Lanczos).</p></li>
</ul>
<p>For polynomial eigenvalue problems, the following methods are available:</p>
<ul class="simple">
<li><p>Use an eigensolver to solve the generalized eigenvalue problem
obtained after linearization.</p></li>
<li><p>TOAR and Q-Arnoldi, memory efficient variants of Arnoldi for polynomial
eigenproblems.</p></li>
</ul>
<p>For general nonlinear eigenvalue problems, the following methods can be used:</p>
<ul class="simple">
<li><p>Solve a polynomial eigenproblem obtained via polynomial interpolation.</p></li>
<li><p>Rational interpolation and linearization (NLEIGS).</p></li>
<li><p>Newton-type methods such as SLP or RII.</p></li>
</ul>
<p>Computation of interior eigenvalues is supported by means of the
following methodologies:</p>
<ul class="simple">
<li><p>Spectral transformations, such as shift-and-invert. This technique
implicitly uses the inverse of the shifted matrix <em>(A-tI)</em> in order
to compute eigenvalues closest to a given target value, <em>t</em>.</p></li>
<li><p>Harmonic extraction, a cheap alternative to shift-and-invert that
also tries to approximate eigenvalues closest to a target, <em>t</em>, but
without requiring a matrix inversion.</p></li>
</ul>
<p>Other remarkable features include:</p>
<ul class="simple">
<li><p>High computational efficiency, by using NumPy and SLEPc under the
hood.</p></li>
<li><p>Data-structure neutral implementation, by using efficient sparse
matrix storage provided by PETSc. Implicit matrix representation is
also available by providing basic operations such as matrix-vector
products as user-defined Python functions.</p></li>
<li><p>Run-time flexibility, by specifying numerous setting at the command
line.</p></li>
<li><p>Ability to do the computation in parallel.</p></li>
</ul>
</section>
<section id="components">
<h2>Components<a class="headerlink" href="#components" title="Link to this heading">#</a></h2>
<p>SLEPc provides the following components, which are mirrored by slepc4py
for its use from Python. The first five components are solvers for
different classes of problems, while the rest can be considered
auxiliary object.</p>
<dl class="field-list simple">
<dt class="field-odd">EPS<span class="colon">:</span></dt>
<dd class="field-odd"><p>The Eigenvalue Problem Solver is the component that provides all
the functionality necessary to define and solve an
eigenproblem. It provides mechanisms for completely specifying
the problem: the problem type (e.g. standard symmetric), number
of eigenvalues to compute, part of the spectrum of
interest. Once the problem has been defined, a collection of
solvers can be used to compute the required solutions. The
behavior of the solvers can be tuned by means of a few
parameters, such as the maximum dimension of the subspace to be
used during the computation.</p>
</dd>
<dt class="field-even">SVD<span class="colon">:</span></dt>
<dd class="field-even"><p>This component is the analog of EPS for the case of Singular
Value Decompositions. The user provides a rectangular matrix and
specifies how many singular values and vectors are to be
computed, whether the largest or smallest ones, as well as some
other parameters for fine tuning the computation. Different
solvers are available, as in the case of EPS.</p>
</dd>
<dt class="field-odd">PEP<span class="colon">:</span></dt>
<dd class="field-odd"><p>This component is the analog of EPS for the case of Polynomial
Eigenvalue Problems. The user provides the coefficient matrices of
the polynomial. Several parameters can be specified, as in
the case of EPS. It is also possible to indicate whether the
problem belongs to a special type, e.g., symmetric or gyroscopic.</p>
</dd>
<dt class="field-even">NEP<span class="colon">:</span></dt>
<dd class="field-even"><p>This component covers the case of general nonlinear eigenproblems,
T(lambda)x=0. The user provides the parameter-dependent matrix T
via the split form or by means of callback functions.</p>
</dd>
<dt class="field-odd">MFN<span class="colon">:</span></dt>
<dd class="field-odd"><p>This component provides the functionality for computing the action
of a matrix function on a vector. Given a matrix A and a vector b,
the call MFNSolve(mfn,b,x) computes x=f(A)b, where f is a function
such as the exponential.</p>
</dd>
<dt class="field-even">LME<span class="colon">:</span></dt>
<dd class="field-even"><p>This component provides the functionality for solving linear matrix
equations such as Lyapunov or Sylvester where the solution has low
rank.</p>
</dd>
<dt class="field-odd">ST<span class="colon">:</span></dt>
<dd class="field-odd"><p>The Spectral Transformation is a component that provides
convenient implementations of common spectral
transformations. These are simple transformations that map
eigenvalues to different positions, in such a way that
convergence to wanted eigenvalues is enhanced. The most common
spectral transformation is shift-and-invert, that allows for the
computation of eigenvalues closest to a given target value.</p>
</dd>
<dt class="field-even">BV<span class="colon">:</span></dt>
<dd class="field-even"><p>This component encapsulates the concept of a set of Basis Vectors
spanning a vector space. This component provides convenient access
to common operations such as orthogonalization of vectors. The
BV component is usually not required by end-users.</p>
</dd>
<dt class="field-odd">DS<span class="colon">:</span></dt>
<dd class="field-odd"><p>The Dense System (or Direct Solver) component, used internally to
solve dense eigenproblems of small size that appear in the course
of iterative eigensolvers.</p>
</dd>
<dt class="field-even">FN<span class="colon">:</span></dt>
<dd class="field-even"><p>A component used to define mathematical functions. This is required
by the end-user for instance to define function T(.) when solving
nonlinear eigenproblems with NEP in split form.</p>
</dd>
<dt class="field-odd">RG<span class="colon">:</span></dt>
<dd class="field-odd"><p>A component used to define a region of the complex plane such as an
ellipse or a rectangle. This is required by end-users in some cases
such as contour-integral eigensolvers.</p>
</dd>
</dl>
<p>In addition to the above components, some extra functionality is provided
in the :Sys: and :Util: sections.</p>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="index.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">SLEPc for Python</p>
</div>
</a>
<a class="right-next"
href="tutorial.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Tutorial</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#features">Features</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#components">Components</a></li>
</ul>
</nav></div>
<div class="sidebar-secondary-item">
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/overview.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.3.7.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
<!-- # L10n: Setting the PST URL as an argument as this does not need to be localized -->
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1.
</p></div>
<div class="footer-item"><p class="last-updated">
Last updated on 2025-11-07T09:28:35+0100 (v3.24.1).
<br/>
</p></div>
</div>
</div>
</footer>
</body>
</html>
|