File: slepcds.h

package info (click to toggle)
slepc 3.24.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 122,028 kB
  • sloc: ansic: 104,353; javascript: 12,732; python: 5,958; f90: 3,312; cpp: 1,528; makefile: 761; xml: 679; sh: 347
file content (377 lines) | stat: -rw-r--r-- 15,027 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   SLEPc - Scalable Library for Eigenvalue Problem Computations
   Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

   This file is part of SLEPc.
   SLEPc is distributed under a 2-clause BSD license (see LICENSE).
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
/*
   User interface for the direct solver object in SLEPc
*/

#pragma once

#include <slepcsc.h>
#include <slepcfn.h>
#include <slepcrg.h>

/* SUBMANSEC = DS */

#define DS_MAX_SOLVE 6

SLEPC_EXTERN PetscErrorCode DSInitializePackage(void);
SLEPC_EXTERN PetscErrorCode DSFinalizePackage(void);

/*S
   DS - Direct solver (or dense system), to represent low-dimensional
   eigenproblems that must be solved within iterative solvers. This is an
   auxiliary object and is not normally needed by application programmers.

   Level: beginner

.seealso: [](sec:ds), `DSCreate()`
S*/
typedef struct _p_DS* DS;

/*J
   DSType - String with the name of the type of direct solver. Roughly,
   there are as many types as problem types are available within SLEPc.

   Level: beginner

.seealso: [](sec:ds), `DSSetType()`, `DS`
J*/
typedef const char *DSType;
#define DSHEP    "hep"
#define DSNHEP   "nhep"
#define DSGHEP   "ghep"
#define DSGHIEP  "ghiep"
#define DSGNHEP  "gnhep"
#define DSNHEPTS "nhepts"
#define DSSVD    "svd"
#define DSHSVD   "hsvd"
#define DSGSVD   "gsvd"
#define DSPEP    "pep"
#define DSNEP    "nep"

/* Logging support */
SLEPC_EXTERN PetscClassId DS_CLASSID;

/*E
   DSStateType - Indicates in which state the direct solver is.

   Values:
+  `DS_STATE_RAW`          - initial state, the matrices have not been modified yet
.  `DS_STATE_INTERMEDIATE` - matrices have been reduced to intermediate form
.  `DS_STATE_CONDENSED`    - problem solved, matrices in condensed form
-  `DS_STATE_TRUNCATED`    - problem solved and in addition the dimension has been truncated

   Level: advanced

.seealso: [](sec:ds), `DSSetState()`
E*/
typedef enum { DS_STATE_RAW,
               DS_STATE_INTERMEDIATE,
               DS_STATE_CONDENSED,
               DS_STATE_TRUNCATED } DSStateType;
SLEPC_EXTERN const char *DSStateTypes[];

/*MC
   DS_STATE_RAW - The `DS` object is in the initial state, where the matrices
   have not been modified yet, and have no particular structure.

   Level: advanced

.seealso: [](sec:ds), `DSStateType`, `DSSetState()`, `DS_STATE_INTERMEDIATE`, `DS_STATE_CONDENSED`, `DS_STATE_TRUNCATED`
M*/

/*MC
   DS_STATE_INTERMEDIATE - The `DS` object is a intermediate state, where the
   matrices have been reduced to an intermediate form, but the solve is not
   finished completely.

   Note:
   In some cases the solve starts at the intermediate stage, e.g., in Lanczos
   methods the projected matrix is already in tridiagonal form.

   Level: advanced

.seealso: [](sec:ds), `DSStateType`, `DSSetState()`, `DS_STATE_RAW`, `DS_STATE_CONDENSED`, `DS_STATE_TRUNCATED`
M*/

/*MC
   DS_STATE_CONDENSED - The `DS` object is in a state where the problem has
   been solved, and matrices have been reduced to condensed form.

   Note:
   This state is reached after a call to `DSSolve()`.

   Level: advanced

.seealso: [](sec:ds), `DSStateType`, `DSSetState()`, `DS_STATE_RAW`, `DS_STATE_INTERMEDIATE`, `DS_STATE_TRUNCATED`
M*/

/*MC
   DS_STATE_TRUNCATED - The `DS` object is in a state where the problem is
   solved and in addition the dimension has been truncated.

   Note:
   This state is reached after a call to `DSTruncate()`. The truncated size
   can be obtained with `DSGetDimensions()`.

   Level: advanced

.seealso: [](sec:ds), `DSStateType`, `DSSetState()`, `DSTruncate()`, `DSGetDimensions()`, `DS_STATE_RAW`, `DS_STATE_INTERMEDIATE`, `DS_STATE_CONDENSED`
M*/

/*E
   DSMatType - Used to refer to one of the matrices stored internally in `DS`.

   Values:
+  `DS_MAT_A` - first matrix of eigenproblem/singular value problem
.  `DS_MAT_B` - second matrix of a generalized eigenproblem
.  `DS_MAT_C` - third matrix of a quadratic eigenproblem (deprecated)
.  `DS_MAT_T` - tridiagonal matrix
.  `DS_MAT_D` - diagonal matrix
.  `DS_MAT_Q` - orthogonal matrix of (right) Schur vectors
.  `DS_MAT_Z` - orthogonal matrix of left Schur vectors
.  `DS_MAT_X` - right eigenvectors
.  `DS_MAT_Y` - left eigenvectors
.  `DS_MAT_U` - left singular vectors
.  `DS_MAT_V` - right singular vectors
.  `DS_MAT_W` - workspace matrix
-  `DS_MAT_E0` to `DS_MAT_E9` - extra matrices, used in `DSPEP` and `DSNEP`

   Notes:
   The matrices preferentially refer to the description above, but they
   may be used for a different purpose depending on the `DSType`.

   All matrices can have space to hold `ld x ld` elements, except for
   `DS_MAT_T` that has space for `3 x ld` elements (`ld` = leading dimension)
   and `DS_MAT_D` that has space for just `ld` elements.

   In `DSPEP` problems, matrices `A`, `B`, `W` can have space for `d*ld x d*ld`,
   where `d` is the polynomial degree, and `X` can have `ld x d*ld`.
   Also `DSNEP` has exceptions. Check the manual page of each `DS` type
   for details.

   Level: advanced

.seealso: [](sec:ds), `DSAllocate()`, `DSGetArray()`, `DSGetArrayReal()`, `DSVectors()`, `DSGetLeadingDimension()`
E*/
typedef enum { DS_MAT_A,
               DS_MAT_B,
               DS_MAT_C,
               DS_MAT_T,
               DS_MAT_D,
               DS_MAT_Q,
               DS_MAT_Z,
               DS_MAT_X,
               DS_MAT_Y,
               DS_MAT_U,
               DS_MAT_V,
               DS_MAT_W,
               DS_MAT_E0,
               DS_MAT_E1,
               DS_MAT_E2,
               DS_MAT_E3,
               DS_MAT_E4,
               DS_MAT_E5,
               DS_MAT_E6,
               DS_MAT_E7,
               DS_MAT_E8,
               DS_MAT_E9,
               DS_NUM_MAT } DSMatType;

/* Convenience for indexing extra matrices */
SLEPC_EXTERN DSMatType DSMatExtra[];
#define DS_NUM_EXTRA  10

/*E
   DSParallelType - Indicates the parallel mode that the direct solver will use.

   Values:
+  `DS_PARALLEL_REDUNDANT`    - redundant computation
.  `DS_PARALLEL_SYNCHRONIZED` - only one process computes the solution
-  `DS_PARALLEL_DISTRIBUTED`  - all processes participate in the solution

   Level: advanced

.seealso: [](sec:ds), `DSSetParallel()`
E*/
typedef enum { DS_PARALLEL_REDUNDANT,
               DS_PARALLEL_SYNCHRONIZED,
               DS_PARALLEL_DISTRIBUTED } DSParallelType;
SLEPC_EXTERN const char *DSParallelTypes[];

/*MC
   DS_PARALLEL_REDUNDANT - In this parallel mode, all processes will do
   the computation redundantly, starting from the same data, and producing
   the same result.

   Note:
   The result may be slightly different in the different processes if using a
   multithreaded BLAS library, which may cause issues in ill-conditioned problems.

   Level: advanced

.seealso: [](sec:ds), `DSParallelType`, `DSSetParallel()`, `DS_PARALLEL_SYNCHRONIZED`, `DS_PARALLEL_DISTRIBUTED`
M*/

/*MC
   DS_PARALLEL_SYNCHRONIZED - In this parallel mode, only the first MPI process
   performs the computation and then the computed quantities are broadcast to the
   other processes in the communicator.

   Note:
   The communication is not done automatically, an explicit call to `DSSynchronize()`
   is required.

   Level: advanced

.seealso: [](sec:ds), `DSParallelType`, `DSSetParallel()`, `DSSynchronize()`, `DS_PARALLEL_REDUNDANT`, `DS_PARALLEL_DISTRIBUTED`
M*/

/*MC
   DS_PARALLEL_DISTRIBUTED - In this parallel mode, every MPI process will be
   in charge of part of the computation.

   Note:
   This parallel mode can be used in some `DS` types only, such as the contour
   integral method of `DSNEP`.

   Level: advanced

.seealso: [](sec:ds), `DSParallelType`, `DSSetParallel()`, `DS_PARALLEL_REDUNDANT`, `DS_PARALLEL_SYNCHRONIZED`
M*/

SLEPC_EXTERN PetscErrorCode DSCreate(MPI_Comm,DS*);
SLEPC_EXTERN PetscErrorCode DSSetType(DS,DSType);
SLEPC_EXTERN PetscErrorCode DSGetType(DS,DSType*);
SLEPC_EXTERN PetscErrorCode DSSetOptionsPrefix(DS,const char[]);
SLEPC_EXTERN PetscErrorCode DSAppendOptionsPrefix(DS,const char[]);
SLEPC_EXTERN PetscErrorCode DSGetOptionsPrefix(DS,const char*[]);
SLEPC_EXTERN PetscErrorCode DSSetFromOptions(DS);
SLEPC_EXTERN PetscErrorCode DSView(DS,PetscViewer);
SLEPC_EXTERN PetscErrorCode DSViewFromOptions(DS,PetscObject,const char[]);
SLEPC_EXTERN PetscErrorCode DSViewMat(DS,PetscViewer,DSMatType);
SLEPC_EXTERN PetscErrorCode DSDestroy(DS*);
SLEPC_EXTERN PetscErrorCode DSReset(DS);
SLEPC_EXTERN PetscErrorCode DSDuplicate(DS,DS*);

SLEPC_EXTERN PetscErrorCode DSAllocate(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSReallocate(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSGetLeadingDimension(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSSetState(DS,DSStateType);
SLEPC_EXTERN PetscErrorCode DSGetState(DS,DSStateType*);
SLEPC_EXTERN PetscErrorCode DSSetDimensions(DS,PetscInt,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode DSGetDimensions(DS,PetscInt*,PetscInt*,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSSetBlockSize(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSGetBlockSize(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSGetTruncateSize(DS,PetscInt,PetscInt,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSTruncate(DS,PetscInt,PetscBool);
SLEPC_EXTERN PetscErrorCode DSSetIdentity(DS,DSMatType);
SLEPC_EXTERN PetscErrorCode DSSetMethod(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSGetMethod(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSSetParallel(DS,DSParallelType);
SLEPC_EXTERN PetscErrorCode DSGetParallel(DS,DSParallelType*);
SLEPC_EXTERN PetscErrorCode DSSetCompact(DS,PetscBool);
SLEPC_EXTERN PetscErrorCode DSGetCompact(DS,PetscBool*);
SLEPC_EXTERN PetscErrorCode DSSetExtraRow(DS,PetscBool);
SLEPC_EXTERN PetscErrorCode DSGetExtraRow(DS,PetscBool*);
SLEPC_EXTERN PetscErrorCode DSSetRefined(DS,PetscBool);
SLEPC_EXTERN PetscErrorCode DSGetRefined(DS,PetscBool*);
SLEPC_EXTERN PetscErrorCode DSGetMat(DS,DSMatType,Mat*);
SLEPC_EXTERN PetscErrorCode DSRestoreMat(DS,DSMatType,Mat*);
SLEPC_EXTERN PetscErrorCode DSGetMatAndColumn(DS,DSMatType,PetscInt,Mat*,Vec*);
SLEPC_EXTERN PetscErrorCode DSRestoreMatAndColumn(DS,DSMatType,PetscInt,Mat*,Vec*);
SLEPC_EXTERN PetscErrorCode DSGetArray(DS,DSMatType,PetscScalar*[]);
SLEPC_EXTERN PetscErrorCode DSRestoreArray(DS,DSMatType,PetscScalar*[]);
SLEPC_EXTERN PetscErrorCode DSGetArrayReal(DS,DSMatType,PetscReal*[]);
SLEPC_EXTERN PetscErrorCode DSRestoreArrayReal(DS,DSMatType,PetscReal*[]);
SLEPC_EXTERN PetscErrorCode DSVectors(DS,DSMatType,PetscInt*,PetscReal*);
SLEPC_EXTERN PetscErrorCode DSSolve(DS,PetscScalar[],PetscScalar[]);
SLEPC_EXTERN PetscErrorCode DSSort(DS,PetscScalar[],PetscScalar[],PetscScalar[],PetscScalar[],PetscInt*);
SLEPC_EXTERN PetscErrorCode DSSortWithPermutation(DS,PetscInt[],PetscScalar[],PetscScalar[]);
SLEPC_EXTERN PetscErrorCode DSSynchronize(DS,PetscScalar[],PetscScalar[]);
PETSC_DEPRECATED_FUNCTION(3, 18, 0, "DSGetMat()+MatDenseGetSubMatrix()+MatCopy()", ) static inline PetscErrorCode DSCopyMat(DS ds,DSMatType m,PetscInt mr,PetscInt mc,Mat A,PetscInt Ar,PetscInt Ac,PetscInt rows,PetscInt cols,PetscBool out)
{
  Mat M,M0,A0;

  PetscFunctionBegin;
  PetscCall(DSGetMat(ds,m,&M));
  PetscCall(MatDenseGetSubMatrix(M,mr,mr+rows,mc,mc+cols,&M0));
  PetscCall(MatDenseGetSubMatrix(A,Ar,Ar+rows,Ac,Ac+cols,&A0));
  if (out) PetscCall(MatCopy(M0,A0,SAME_NONZERO_PATTERN));
  else PetscCall(MatCopy(A0,M0,SAME_NONZERO_PATTERN));
  PetscCall(MatDenseRestoreSubMatrix(M,&M0));
  PetscCall(MatDenseRestoreSubMatrix(A,&A0));
  PetscCall(DSRestoreMat(ds,m,&M));
  PetscFunctionReturn(PETSC_SUCCESS);
}
SLEPC_EXTERN PetscErrorCode DSMatGetSize(DS,DSMatType,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSMatIsHermitian(DS,DSMatType,PetscBool*);
SLEPC_EXTERN PetscErrorCode DSSetSlepcSC(DS,SlepcSC);
SLEPC_EXTERN PetscErrorCode DSGetSlepcSC(DS,SlepcSC*);
SLEPC_EXTERN PetscErrorCode DSUpdateExtraRow(DS);
SLEPC_EXTERN PetscErrorCode DSCond(DS,PetscReal*);
SLEPC_EXTERN PetscErrorCode DSTranslateHarmonic(DS,PetscScalar,PetscReal,PetscBool,PetscScalar[],PetscReal*);
SLEPC_EXTERN PetscErrorCode DSTranslateRKS(DS,PetscScalar);
SLEPC_EXTERN PetscErrorCode DSOrthogonalize(DS,DSMatType,PetscInt,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSPseudoOrthogonalize(DS,DSMatType,PetscInt,PetscReal[],PetscInt*,PetscReal[]);

/* --------- options specific to particular solvers -------- */

SLEPC_EXTERN PetscErrorCode DSSVDSetDimensions(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSSVDGetDimensions(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSGSVDSetDimensions(DS,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode DSGSVDGetDimensions(DS,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSHSVDSetDimensions(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSHSVDGetDimensions(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSHSVDSetReorthogonalize(DS,PetscBool);
SLEPC_EXTERN PetscErrorCode DSHSVDGetReorthogonalize(DS,PetscBool*);

SLEPC_EXTERN PetscErrorCode DSPEPSetDegree(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSPEPGetDegree(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSPEPSetCoefficients(DS,PetscReal[]);
SLEPC_EXTERN PetscErrorCode DSPEPGetCoefficients(DS,PetscReal*[]);

SLEPC_EXTERN PetscErrorCode DSNEPSetFN(DS,PetscInt,FN[]);
SLEPC_EXTERN PetscErrorCode DSNEPGetFN(DS,PetscInt,FN*);
SLEPC_EXTERN PetscErrorCode DSNEPGetNumFN(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSNEPSetMinimality(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSNEPGetMinimality(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSNEPSetRefine(DS,PetscReal,PetscInt);
SLEPC_EXTERN PetscErrorCode DSNEPGetRefine(DS,PetscReal*,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSNEPSetIntegrationPoints(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSNEPGetIntegrationPoints(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSNEPSetSamplingSize(DS,PetscInt);
SLEPC_EXTERN PetscErrorCode DSNEPGetSamplingSize(DS,PetscInt*);
SLEPC_EXTERN PetscErrorCode DSNEPSetRG(DS,RG);
SLEPC_EXTERN PetscErrorCode DSNEPGetRG(DS,RG*);

/*S
   DSNEPMatrixFunctionFn - A prototype of a `DSNEP` compute matrix function that
   would be passed to `DSNEPSetComputeMatrixFunction()`.

   Calling Sequence:
+  ds     - the direct solver object
.  lambda - point where $T(\lambda)$ or $T'(\lambda)$ must be evaluated
.  deriv  - if true compute $T'(\lambda)$, otherwise compute $T(\lambda)$
.  mat    - the `DS` matrix where the result must be stored
-  ctx    - [optional] user-defined context for private data for the
            matrix evaluation routine (may be `NULL`)

   Level: developer

.seealso: [](sec:ds), `DSNEPSetComputeMatrixFunction()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode DSNEPMatrixFunctionFn(DS ds,PetscScalar lambda,PetscBool deriv,DSMatType mat,void *ctx);

SLEPC_EXTERN PetscErrorCode DSNEPSetComputeMatrixFunction(DS,DSNEPMatrixFunctionFn*,void*);
SLEPC_EXTERN PetscErrorCode DSNEPGetComputeMatrixFunction(DS,DSNEPMatrixFunctionFn**,void*);

SLEPC_EXTERN PetscFunctionList DSList;
SLEPC_EXTERN PetscErrorCode DSRegister(const char[],PetscErrorCode(*)(DS));