1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
|
/*
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SLEPc - Scalable Library for Eigenvalue Problem Computations
Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
This file is part of SLEPc.
SLEPc is distributed under a 2-clause BSD license (see LICENSE).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
/*
User interface for the SLEPc linear eigenvalue solvers
*/
#pragma once
#include <slepcst.h>
#include <slepcbv.h>
#include <slepcds.h>
#include <slepcrg.h>
#include <slepclme.h>
#include <petscsnes.h>
/* SUBMANSEC = EPS */
SLEPC_EXTERN PetscErrorCode EPSInitializePackage(void);
SLEPC_EXTERN PetscErrorCode EPSFinalizePackage(void);
/*S
EPS - SLEPc object that manages all the linear eigenvalue problem solvers.
Level: beginner
.seealso: [](ch:eps), `EPSCreate()`, `ST`
S*/
typedef struct _p_EPS* EPS;
/*J
EPSType - String with the name of a linear eigensolver.
Level: beginner
.seealso: [](ch:eps), `EPSSetType()`, `EPS`
J*/
typedef const char *EPSType;
#define EPSPOWER "power"
#define EPSSUBSPACE "subspace"
#define EPSARNOLDI "arnoldi"
#define EPSLANCZOS "lanczos"
#define EPSKRYLOVSCHUR "krylovschur"
#define EPSGD "gd"
#define EPSJD "jd"
#define EPSRQCG "rqcg"
#define EPSLOBPCG "lobpcg"
#define EPSCISS "ciss"
#define EPSLYAPII "lyapii"
#define EPSLAPACK "lapack"
#define EPSARPACK "arpack"
#define EPSBLOPEX "blopex"
#define EPSPRIMME "primme"
#define EPSFEAST "feast"
#define EPSSCALAPACK "scalapack"
#define EPSELPA "elpa"
#define EPSELEMENTAL "elemental"
#define EPSEVSL "evsl"
#define EPSCHASE "chase"
/* Logging support */
SLEPC_EXTERN PetscClassId EPS_CLASSID;
/*E
EPSProblemType - Determines the type of eigenvalue problem.
Values:
+ `EPS_HEP` - Hermitian
. `EPS_GHEP` - generalized Hermitian
. `EPS_NHEP` - non-Hermitian
. `EPS_GNHEP` - generalized non-Hermitian
. `EPS_PGNHEP` - generalized non-Hermitian with positive (semi-)definite $B$
. `EPS_GHIEP` - generalized Hermitian-indefinite
. `EPS_BSE` - structured Bethe-Salpeter
- `EPS_HAMILT` - structured Hamiltonian
Note:
In real scalars, one should read the term Hermitian as symmetric.
Level: intermediate
.seealso: [](ch:eps), `EPSSetProblemType()`, `EPSGetProblemType()`
E*/
typedef enum { EPS_HEP = 1,
EPS_GHEP = 2,
EPS_NHEP = 3,
EPS_GNHEP = 4,
EPS_PGNHEP = 5,
EPS_GHIEP = 6,
EPS_BSE = 7,
EPS_HAMILT = 8 } EPSProblemType;
/*MC
EPS_HEP - A Hermitian eigenvalue problem.
Note:
The problem is formulated as $Ax=\lambda x$, where $A$ is real symmetric
or complex Hermitian.
Level: intermediate
.seealso: [](ch:eps), `EPSProblemType`, `EPSSetProblemType()`
M*/
/*MC
EPS_GHEP - A generalized Hermitian eigenvalue problem.
Note:
The problem is formulated as $Ax=\lambda Bx$, where $A$ and $B$ are real
symmetric or complex Hermitian, and $B$ is positive (semi-)definite.
Level: intermediate
.seealso: [](ch:eps), `EPSProblemType`, `EPSSetProblemType()`
M*/
/*MC
EPS_NHEP - A non-Hermitian eigenvalue problem.
Note:
The problem is formulated as $Ax=\lambda x$, where $A$ is non-symmetric
(or non-Hermitian).
Level: intermediate
.seealso: [](ch:eps), `EPSProblemType`, `EPSSetProblemType()`
M*/
/*MC
EPS_GNHEP - A generalized non-Hermitian eigenvalue problem.
Note:
The problem is formulated as $Ax=\lambda Bx$, where $A$ or $B$ are
non-symmetric (or non-Hermitian).
Level: intermediate
.seealso: [](ch:eps), `EPSProblemType`, `EPSSetProblemType()`
M*/
/*MC
EPS_PGNHEP - A generalized non-Hermitian eigenvalue problem with positive
(semi-)definite $B$.
Notes:
The problem is formulated as $Ax=\lambda Bx$, where $A$ is non-symmetric
(or non-Hermitian), but $B$ is symmetric (or Hermitian) and positive
(semi-)definite.
The problem will be solved with a non-Hermitian solver, but using an
inner product induced by matrix $B$.
Level: intermediate
.seealso: [](ch:eps), `EPSProblemType`, `EPSSetProblemType()`
M*/
/*MC
EPS_GHIEP - A generalized Hermitian-indefinite eigenvalue problem.
Notes:
The problem is formulated as $Ax=\lambda Bx$, where both $A$ and $B$ are
real symmetric or complex Hermitian, but $B$ is indefinite.
The solver will try to exploit the symmetry by using an indefinite
inner product, which may turn the computation numerically unstable.
To avoid this, solve the problem as non-Hermitian.
Level: intermediate
.seealso: [](ch:eps), `EPSProblemType`, `EPSSetProblemType()`
M*/
/*MC
EPS_BSE - A structured Bethe-Salpeter eigenvalue problem.
Notes:
The problem is formulated as $Hx=\lambda x$, where $H$ has a Bethe-Salpeter
structure,
$$H = \begin{bmatrix}
R & C \\
-C^* & -R^T
\end{bmatrix},$$
where $R$ is Hermitian and $C$ is complex symmetric. Can also be used in
the case of real matrices.
A description of the properties of this problem can be found in {cite:p}`Alv25`
and references therein.
Level: intermediate
.seealso: [](ch:eps), [](sec:structured), `EPSProblemType`, `EPSSetProblemType()`
M*/
/*MC
EPS_HAMILT - A structured Hamiltonian eigenvalue problem.
Note:
The problem is formulated as $Hx=\lambda x$, where $H$ has a Hamiltonian
structure,
$$H = \begin{bmatrix}
A & B \\
C & -A^*
\end{bmatrix},$$
where $A$, $B$ and $C$ are either real with $B=B^T$, $C=C^T$, or complex with
$B=B^*$, $C=C^*$.
Level: intermediate
.seealso: [](ch:eps), [](sec:structured), `EPSProblemType`, `EPSSetProblemType()`
M*/
/*E
EPSExtraction - Determines the type of extraction technique employed
by the eigensolver.
Values:
+ `EPS_RITZ` - Rayleigh-Ritz extraction
. `EPS_HARMONIC` - harmonic Ritz extraction
. `EPS_HARMONIC_RELATIVE` - harmonic Ritz extraction relative to the eigenvalue
. `EPS_HARMONIC_RIGHT` - harmonic Ritz extraction for rightmost eigenvalues
. `EPS_HARMONIC_LARGEST` - harmonic Ritz extraction for largest magnitude (without target)
. `EPS_REFINED` - refined Ritz extraction
- `EPS_REFINED_HARMONIC` - refined harmonic Ritz extraction
Level: advanced
.seealso: [](ch:eps), `EPSSetExtraction()`, `EPSGetExtraction()`
E*/
typedef enum { EPS_RITZ,
EPS_HARMONIC,
EPS_HARMONIC_RELATIVE,
EPS_HARMONIC_RIGHT,
EPS_HARMONIC_LARGEST,
EPS_REFINED,
EPS_REFINED_HARMONIC } EPSExtraction;
/*MC
EPS_RITZ - The standard Rayleigh-Ritz extraction.
Note:
This is the default way of computing eigenpair approximations from a
given subspace.
Level: advanced
.seealso: [](ch:eps), `EPSExtraction`, `EPSSetExtraction()`
M*/
/*MC
EPS_HARMONIC - The harmonic Ritz extraction.
Notes:
This extraction method may provide better convergence when computing
interior eigenvalues close to a given target.
For the particular case of Krylov-Schur, a detailed description can
be found in {cite:p}`Rom09`.
Level: advanced
.seealso: [](ch:eps), `EPSExtraction`, `EPSSetExtraction()`, `EPSSetTarget()`
M*/
/*MC
EPS_HARMONIC_RELATIVE - The harmonic Ritz extraction relative to the eigenvalue.
Note:
This is a variation of `EPS_HARMONIC`, used in Davidson methods only.
Level: advanced
.seealso: [](ch:eps), `EPSExtraction`, `EPSSetExtraction()`, `EPSSetTarget()`
M*/
/*MC
EPS_HARMONIC_RIGHT - The harmonic Ritz extraction for rightmost eigenvalues.
Note:
This is a variation of `EPS_HARMONIC`, used in Davidson methods only.
Level: advanced
.seealso: [](ch:eps), `EPSExtraction`, `EPSSetExtraction()`, `EPSSetTarget()`
M*/
/*MC
EPS_HARMONIC_LARGEST - The harmonic Ritz extraction for largest magnitude
eigenvalues (without target).
Note:
This is a variation of `EPS_HARMONIC`, used in Davidson methods only.
Level: advanced
.seealso: [](ch:eps), `EPSExtraction`, `EPSSetExtraction()`
M*/
/*MC
EPS_REFINED - The refined Ritz extraction method {cite:p}`Jia97`.
Note:
Currently implemented only in `EPSARNOLDI`.
Level: advanced
.seealso: [](ch:eps), `EPSExtraction`, `EPSSetExtraction()`
M*/
/*MC
EPS_REFINED_HARMONIC - The refined harmonic Ritz extraction.
Note:
This is a combination of `EPS_HARMONIC` and `EPS_REFINED`.
Developer Note:
Currently not implemented, reserved for future use.
Level: advanced
.seealso: [](ch:eps), `EPSExtraction`, `EPSSetExtraction()`
M*/
/*E
EPSWhich - Determines which part of the spectrum is requested.
Values:
+ `EPS_LARGEST_MAGNITUDE` - largest $|\lambda|$
. `EPS_SMALLEST_MAGNITUDE` - smallest $|\lambda|$
. `EPS_LARGEST_REAL` - largest $\mathrm{Re}(\lambda)$
. `EPS_SMALLEST_REAL` - smallest $\mathrm{Re}(\lambda)$
. `EPS_LARGEST_IMAGINARY` - largest $\mathrm{Im}(\lambda)$
. `EPS_SMALLEST_IMAGINARY` - smallest $\mathrm{Im}(\lambda)$
. `EPS_TARGET_MAGNITUDE` - smallest $|\lambda-\tau|$
. `EPS_TARGET_REAL` - smallest $|\mathrm{Re}(\lambda-\tau)|$
. `EPS_TARGET_IMAGINARY` - smallest $|\mathrm{Im}(\lambda-\tau)|$
. `EPS_ALL` - all $\lambda\in[a,b]$ or $\lambda\in\Omega$
- `EPS_WHICH_USER` - user-defined sorting criterion
Notes:
If SLEPc is compiled for real scalars `EPS_LARGEST_IMAGINARY` and
`EPS_SMALLEST_IMAGINARY` use the absolute value of the imaginary part
for eigenvalue selection.
The target $\tau$ is a scalar value provided with `EPSSetTarget()`.
The case `EPS_ALL` needs an interval $[a,b]$ given with `EPSSetInterval()`
or a region $\Omega$ specified with an `RG` object.
Level: intermediate
.seealso: [](ch:eps), `EPSSetWhichEigenpairs()`, `EPSSetTarget()`, `EPSSetInterval()`
E*/
typedef enum { EPS_LARGEST_MAGNITUDE = 1,
EPS_SMALLEST_MAGNITUDE = 2,
EPS_LARGEST_REAL = 3,
EPS_SMALLEST_REAL = 4,
EPS_LARGEST_IMAGINARY = 5,
EPS_SMALLEST_IMAGINARY = 6,
EPS_TARGET_MAGNITUDE = 7,
EPS_TARGET_REAL = 8,
EPS_TARGET_IMAGINARY = 9,
EPS_ALL = 10,
EPS_WHICH_USER = 11 } EPSWhich;
/*E
EPSBalance - The type of balancing used for non-Hermitian problems.
Values:
+ `EPS_BALANCE_NONE` - no balancing matrix is used
. `EPS_BALANCE_ONESIDE` - balancing matrix $D$ is computed with a one-sided Krylov method
. `EPS_BALANCE_TWOSIDE` - balancing matrix $D$ is computed with a two-sided Krylov method
- `EPS_BALANCE_USER` - use a balancing matrix $D$ provided by the user
Level: intermediate
.seealso: [](ch:eps), [](sec:balancing), `EPSSetBalance()`
E*/
typedef enum { EPS_BALANCE_NONE,
EPS_BALANCE_ONESIDE,
EPS_BALANCE_TWOSIDE,
EPS_BALANCE_USER } EPSBalance;
SLEPC_EXTERN const char *EPSBalanceTypes[];
/*E
EPSErrorType - The error type used to assess the accuracy of computed solutions.
Values:
+ `EPS_ERROR_ABSOLUTE` - compute error bound as $\|r\|$
. `EPS_ERROR_RELATIVE` - compute error bound as $\|r\|/|\lambda|$
- `EPS_ERROR_BACKWARD` - compute error bound as $\|r\|/(\|A\|+|\lambda|\|B\|)$
Level: intermediate
.seealso: [](ch:eps), `EPSComputeError()`
E*/
typedef enum { EPS_ERROR_ABSOLUTE,
EPS_ERROR_RELATIVE,
EPS_ERROR_BACKWARD } EPSErrorType;
SLEPC_EXTERN const char *EPSErrorTypes[];
/*E
EPSConv - The convergence criterion to be used by the solver.
Values:
+ `EPS_CONV_ABS` - absolute convergence criterion, $\|r\|$
. `EPS_CONV_REL` - convergence criterion relative to eigenvalue, $\|r\|/|\lambda|$
. `EPS_CONV_NORM` - convergence criterion relative to matrix norms, $\|r\|/(\|A\|+|\lambda|\|B\|)$
- `EPS_CONV_USER` - convergence dictated by user-provided function
Level: intermediate
.seealso: [](ch:eps), `EPSSetConvergenceTest()`, `EPSSetConvergenceTestFunction()`
E*/
typedef enum { EPS_CONV_ABS,
EPS_CONV_REL,
EPS_CONV_NORM,
EPS_CONV_USER } EPSConv;
/*E
EPSStop - The stopping test to decide the termination of the outer loop
of the eigensolver.
Values:
+ `EPS_STOP_BASIC` - default stopping test
. `EPS_STOP_USER` - user-provided stopping test
- `EPS_STOP_THRESHOLD` - threshold stopping test
Level: advanced
.seealso: [](ch:eps), `EPSSetStoppingTest()`, `EPSSetStoppingTestFunction()`
E*/
typedef enum { EPS_STOP_BASIC,
EPS_STOP_USER,
EPS_STOP_THRESHOLD } EPSStop;
/*MC
EPS_STOP_BASIC - The default stopping test.
Note:
By default, the termination of the outer loop is decided by calling
`EPSStoppingBasic()`, which will stop if all requested eigenvalues are converged,
or if the maximum number of iterations has been reached.
Level: advanced
.seealso: [](ch:eps), `EPSStop`, `EPSSetStoppingTest()`, `EPSStoppingBasic()`
M*/
/*MC
EPS_STOP_USER - The user-provided stopping test.
Note:
Customized stopping test using the user-provided function given with
`EPSSetStoppingTestFunction()`.
Level: advanced
.seealso: [](ch:eps), `EPSStop`, `EPSSetStoppingTest()`, `EPSSetStoppingTestFunction()`
M*/
/*MC
EPS_STOP_THRESHOLD - The threshold stopping test.
Note:
When a threshold has been provided with `EPSSetThreshold()`, the termination
of the outer loop is decided by calling `EPSStoppingThreshold()`, which will
stop when one of the computed eigenvalues is not above/below the threshold.
If a number of wanted eigenvalues has been specified via `EPSSetDimensions()`
then it is also taken into account, and the solver will stop when one of the
two conditions (threshold or number of converged values) is met.
Level: advanced
.seealso: [](ch:eps), `EPSStop`, `EPSSetStoppingTest()`, `EPSStoppingThreshold()`, `EPSSetThreshold()`, `EPSSetDimensions()`
M*/
/*E
EPSConvergedReason - Reason an eigensolver was determined to have converged
or diverged.
Values:
+ `EPS_CONVERGED_TOL` - converged up to tolerance
. `EPS_CONVERGED_USER` - converged due to a user-defined condition
. `EPS_DIVERGED_ITS` - exceeded the maximum number of allowed iterations
. `EPS_DIVERGED_BREAKDOWN` - generic breakdown in method
. `EPS_DIVERGED_SYMMETRY_LOST` - pseudo-Lanczos was not able to keep symmetry
- `EPS_CONVERGED_ITERATING` - the solver is still running
Level: intermediate
.seealso: [](ch:eps), `EPSSolve()`, `EPSGetConvergedReason()`, `EPSSetTolerances()`
E*/
typedef enum {/* converged */
EPS_CONVERGED_TOL = 1,
EPS_CONVERGED_USER = 2,
/* diverged */
EPS_DIVERGED_ITS = -1,
EPS_DIVERGED_BREAKDOWN = -2,
EPS_DIVERGED_SYMMETRY_LOST = -3,
EPS_CONVERGED_ITERATING = 0} EPSConvergedReason;
SLEPC_EXTERN const char *const*EPSConvergedReasons;
/*MC
EPS_CONVERGED_TOL - The computed error estimates, based on residual norms,
for all requested eigenvalues are below the tolerance.
Level: intermediate
.seealso: [](ch:eps), `EPSSolve()`, `EPSGetConvergedReason()`, `EPSConvergedReason`
M*/
/*MC
EPS_CONVERGED_USER - The solver was declared converged due to a user-defined condition.
Note:
This happens only when a user-defined stopping test has been set with
`EPSSetStoppingTestFunction()`.
Level: intermediate
.seealso: [](ch:eps), `EPSSolve()`, `EPSGetConvergedReason()`, `EPSConvergedReason`, `EPSSetStoppingTestFunction()`
M*/
/*MC
EPS_DIVERGED_ITS - Exceeded the maximum number of allowed iterations
before the convergence criterion was satisfied.
Level: intermediate
.seealso: [](ch:eps), `EPSSolve()`, `EPSGetConvergedReason()`, `EPSConvergedReason`
M*/
/*MC
EPS_DIVERGED_BREAKDOWN - A breakdown in the solver was detected so the
method could not continue.
Level: intermediate
.seealso: [](ch:eps), `EPSSolve()`, `EPSGetConvergedReason()`, `EPSConvergedReason`
M*/
/*MC
EPS_DIVERGED_SYMMETRY_LOST - The selected solver uses a pseudo-Lanczos recurrence,
which is numerically unstable, and a symmetry test revealed that instability
had appeared so the solver could not continue.
Level: intermediate
.seealso: [](ch:eps), `EPSSolve()`, `EPSGetConvergedReason()`, `EPSConvergedReason`
M*/
/*MC
EPS_CONVERGED_ITERATING - This value is returned if `EPSGetConvergedReason()` is called
while `EPSSolve()` is still running.
Level: intermediate
.seealso: [](ch:eps), `EPSSolve()`, `EPSGetConvergedReason()`, `EPSConvergedReason`
M*/
/*S
EPSStoppingCtx - Data structure (C struct) to hold additional information to
be used in some stopping test functions.
Level: advanced
.seealso: [](ch:eps), `EPSSetStoppingTestFunction()`
S*/
struct _n_EPSStoppingCtx {
PetscReal firstev; /* the (absolute) value of the first converged eigenvalue */
PetscReal lastev; /* the (absolute) value of the last converged eigenvalue */
PetscReal thres; /* threshold set with EPSSetThreshold() */
PetscBool threlative; /* threshold is relative */
EPSWhich which; /* which eigenvalues are being computed */
};
typedef struct _n_EPSStoppingCtx* EPSStoppingCtx;
SLEPC_EXTERN PetscErrorCode EPSCreate(MPI_Comm,EPS*);
SLEPC_EXTERN PetscErrorCode EPSDestroy(EPS*);
SLEPC_EXTERN PetscErrorCode EPSReset(EPS);
SLEPC_EXTERN PetscErrorCode EPSSetType(EPS,EPSType);
SLEPC_EXTERN PetscErrorCode EPSGetType(EPS,EPSType*);
SLEPC_EXTERN PetscErrorCode EPSSetProblemType(EPS,EPSProblemType);
SLEPC_EXTERN PetscErrorCode EPSGetProblemType(EPS,EPSProblemType*);
SLEPC_EXTERN PetscErrorCode EPSSetExtraction(EPS,EPSExtraction);
SLEPC_EXTERN PetscErrorCode EPSGetExtraction(EPS,EPSExtraction*);
SLEPC_EXTERN PetscErrorCode EPSSetBalance(EPS,EPSBalance,PetscInt,PetscReal);
SLEPC_EXTERN PetscErrorCode EPSGetBalance(EPS,EPSBalance*,PetscInt*,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSSetOperators(EPS,Mat,Mat);
SLEPC_EXTERN PetscErrorCode EPSGetOperators(EPS,Mat*,Mat*);
SLEPC_EXTERN PetscErrorCode EPSSetFromOptions(EPS);
SLEPC_EXTERN PetscErrorCode EPSSetDSType(EPS);
SLEPC_EXTERN PetscErrorCode EPSSetUp(EPS);
SLEPC_EXTERN PetscErrorCode EPSSolve(EPS);
SLEPC_EXTERN PetscErrorCode EPSView(EPS,PetscViewer);
SLEPC_EXTERN PetscErrorCode EPSViewFromOptions(EPS,PetscObject,const char[]);
SLEPC_EXTERN PetscErrorCode EPSErrorView(EPS,EPSErrorType,PetscViewer);
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "EPSErrorView()", ) static inline PetscErrorCode EPSPrintSolution(EPS eps,PetscViewer v) {return EPSErrorView(eps,EPS_ERROR_RELATIVE,v);}
SLEPC_EXTERN PetscErrorCode EPSErrorViewFromOptions(EPS);
SLEPC_EXTERN PetscErrorCode EPSConvergedReasonView(EPS,PetscViewer);
SLEPC_EXTERN PetscErrorCode EPSConvergedReasonViewFromOptions(EPS);
PETSC_DEPRECATED_FUNCTION(3, 14, 0, "EPSConvergedReasonView()", ) static inline PetscErrorCode EPSReasonView(EPS eps,PetscViewer v) {return EPSConvergedReasonView(eps,v);}
PETSC_DEPRECATED_FUNCTION(3, 14, 0, "EPSConvergedReasonViewFromOptions()", ) static inline PetscErrorCode EPSReasonViewFromOptions(EPS eps) {return EPSConvergedReasonViewFromOptions(eps);}
SLEPC_EXTERN PetscErrorCode EPSValuesView(EPS,PetscViewer);
SLEPC_EXTERN PetscErrorCode EPSValuesViewFromOptions(EPS);
SLEPC_EXTERN PetscErrorCode EPSVectorsView(EPS,PetscViewer);
SLEPC_EXTERN PetscErrorCode EPSVectorsViewFromOptions(EPS);
SLEPC_EXTERN PetscErrorCode EPSSetTarget(EPS,PetscScalar);
SLEPC_EXTERN PetscErrorCode EPSGetTarget(EPS,PetscScalar*);
SLEPC_EXTERN PetscErrorCode EPSSetInterval(EPS,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode EPSGetInterval(EPS,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSSetST(EPS,ST);
SLEPC_EXTERN PetscErrorCode EPSGetST(EPS,ST*);
SLEPC_EXTERN PetscErrorCode EPSSetBV(EPS,BV);
SLEPC_EXTERN PetscErrorCode EPSGetBV(EPS,BV*);
SLEPC_EXTERN PetscErrorCode EPSSetRG(EPS,RG);
SLEPC_EXTERN PetscErrorCode EPSGetRG(EPS,RG*);
SLEPC_EXTERN PetscErrorCode EPSSetDS(EPS,DS);
SLEPC_EXTERN PetscErrorCode EPSGetDS(EPS,DS*);
SLEPC_EXTERN PetscErrorCode EPSSetTolerances(EPS,PetscReal,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSGetTolerances(EPS,PetscReal*,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSSetDimensions(EPS,PetscInt,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSGetDimensions(EPS,PetscInt*,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSGetConvergedReason(EPS,EPSConvergedReason*);
SLEPC_EXTERN PetscErrorCode EPSGetConverged(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSGetEigenpair(EPS,PetscInt,PetscScalar*,PetscScalar*,Vec,Vec);
SLEPC_EXTERN PetscErrorCode EPSGetEigenvalue(EPS,PetscInt,PetscScalar*,PetscScalar*);
SLEPC_EXTERN PetscErrorCode EPSGetEigenvector(EPS,PetscInt,Vec,Vec);
SLEPC_EXTERN PetscErrorCode EPSGetLeftEigenvector(EPS,PetscInt,Vec,Vec);
SLEPC_EXTERN PetscErrorCode EPSComputeError(EPS,PetscInt,EPSErrorType,PetscReal*);
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "EPSComputeError()", ) static inline PetscErrorCode EPSComputeRelativeError(EPS eps,PetscInt i,PetscReal *r) {return EPSComputeError(eps,i,EPS_ERROR_RELATIVE,r);}
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "EPSComputeError() with EPS_ERROR_ABSOLUTE", ) static inline PetscErrorCode EPSComputeResidualNorm(EPS eps,PetscInt i,PetscReal *r) {return EPSComputeError(eps,i,EPS_ERROR_ABSOLUTE,r);}
SLEPC_EXTERN PetscErrorCode EPSGetInvariantSubspace(EPS,Vec[]);
SLEPC_EXTERN PetscErrorCode EPSGetErrorEstimate(EPS,PetscInt,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSGetIterationNumber(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSSetWhichEigenpairs(EPS,EPSWhich);
SLEPC_EXTERN PetscErrorCode EPSGetWhichEigenpairs(EPS,EPSWhich*);
SLEPC_EXTERN PetscErrorCode EPSSetThreshold(EPS,PetscReal,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSGetThreshold(EPS,PetscReal*,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSSetTwoSided(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSGetTwoSided(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSSetTrueResidual(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSGetTrueResidual(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSSetPurify(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSGetPurify(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSIsGeneralized(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSIsHermitian(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSIsPositive(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSIsStructured(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSSetTrackAll(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSGetTrackAll(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSSetDeflationSpace(EPS,PetscInt,Vec[]);
SLEPC_EXTERN PetscErrorCode EPSSetInitialSpace(EPS,PetscInt,Vec[]);
SLEPC_EXTERN PetscErrorCode EPSSetLeftInitialSpace(EPS,PetscInt,Vec[]);
/*S
EPSMonitorFn - A function prototype for functions provided to `EPSMonitorSet()`.
Calling Sequence:
+ eps - the linear eigensolver context
. its - iteration number
. nconv - number of converged eigenpairs
. eigr - real part of the eigenvalues
. eigi - imaginary part of the eigenvalues
. errest - relative error estimates for each eigenpair
. nest - number of error estimates
- ctx - optional monitoring context, as provided with `EPSMonitorSet()`
Level: intermediate
.seealso: [](ch:eps), `EPSMonitorSet()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode EPSMonitorFn(EPS eps,PetscInt its,PetscInt nconv,PetscScalar eigr[],PetscScalar eigi[],PetscReal errest[],PetscInt nest,void *ctx);
/*S
EPSMonitorRegisterFn - A function prototype for functions provided to `EPSMonitorRegister()`.
Calling Sequence:
+ eps - the linear eigensolver context
. its - iteration number
. nconv - number of converged eigenpairs
. eigr - real part of the eigenvalues
. eigi - imaginary part of the eigenvalues
. errest - relative error estimates for each eigenpair
. nest - number of error estimates
- ctx - `PetscViewerAndFormat` object
Level: advanced
Note:
This is an `EPSMonitorFn` specialized for a context of `PetscViewerAndFormat`.
.seealso: [](ch:eps), `EPSMonitorSet()`, `EPSMonitorRegister()`, `EPSMonitorFn`, `EPSMonitorRegisterCreateFn`, `EPSMonitorRegisterDestroyFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode EPSMonitorRegisterFn(EPS eps,PetscInt its,PetscInt nconv,PetscScalar eigr[],PetscScalar eigi[],PetscReal errest[],PetscInt nest,PetscViewerAndFormat *ctx);
/*S
EPSMonitorRegisterCreateFn - A function prototype for functions that do the
creation when provided to `EPSMonitorRegister()`.
Calling Sequence:
+ viewer - the viewer to be used with the `EPSMonitorRegisterFn`
. format - the format of the viewer
. ctx - a context for the monitor
- result - a `PetscViewerAndFormat` object
Level: advanced
.seealso: [](ch:eps), `EPSMonitorRegisterFn`, `EPSMonitorSet()`, `EPSMonitorRegister()`, `EPSMonitorFn`, `EPSMonitorRegisterDestroyFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode EPSMonitorRegisterCreateFn(PetscViewer viewer,PetscViewerFormat format,void *ctx,PetscViewerAndFormat **result);
/*S
EPSMonitorRegisterDestroyFn - A function prototype for functions that do the after
use destruction when provided to `EPSMonitorRegister()`.
Calling Sequence:
. vf - a `PetscViewerAndFormat` object to be destroyed, including any context
Level: advanced
.seealso: [](ch:eps), `EPSMonitorRegisterFn`, `EPSMonitorSet()`, `EPSMonitorRegister()`, `EPSMonitorFn`, `EPSMonitorRegisterCreateFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode EPSMonitorRegisterDestroyFn(PetscViewerAndFormat **result);
SLEPC_EXTERN PetscErrorCode EPSMonitor(EPS,PetscInt,PetscInt,PetscScalar[],PetscScalar[],PetscReal[],PetscInt);
SLEPC_EXTERN PetscErrorCode EPSMonitorSet(EPS,EPSMonitorFn,void*,PetscCtxDestroyFn*);
SLEPC_EXTERN PetscErrorCode EPSMonitorCancel(EPS);
SLEPC_EXTERN PetscErrorCode EPSGetMonitorContext(EPS,void*);
SLEPC_EXTERN PetscErrorCode EPSMonitorSetFromOptions(EPS,const char[],const char[],void*,PetscBool);
SLEPC_EXTERN EPSMonitorRegisterFn EPSMonitorFirst;
SLEPC_EXTERN EPSMonitorRegisterFn EPSMonitorFirstDrawLG;
SLEPC_EXTERN EPSMonitorRegisterCreateFn EPSMonitorFirstDrawLGCreate;
SLEPC_EXTERN EPSMonitorRegisterFn EPSMonitorAll;
SLEPC_EXTERN EPSMonitorRegisterFn EPSMonitorAllDrawLG;
SLEPC_EXTERN EPSMonitorRegisterCreateFn EPSMonitorAllDrawLGCreate;
SLEPC_EXTERN EPSMonitorRegisterFn EPSMonitorConverged;
SLEPC_EXTERN EPSMonitorRegisterCreateFn EPSMonitorConvergedCreate;
SLEPC_EXTERN EPSMonitorRegisterFn EPSMonitorConvergedDrawLG;
SLEPC_EXTERN EPSMonitorRegisterCreateFn EPSMonitorConvergedDrawLGCreate;
SLEPC_EXTERN EPSMonitorRegisterDestroyFn EPSMonitorConvergedDestroy;
SLEPC_EXTERN PetscErrorCode EPSSetOptionsPrefix(EPS,const char[]);
SLEPC_EXTERN PetscErrorCode EPSAppendOptionsPrefix(EPS,const char[]);
SLEPC_EXTERN PetscErrorCode EPSGetOptionsPrefix(EPS,const char*[]);
SLEPC_EXTERN PetscFunctionList EPSList;
SLEPC_EXTERN PetscFunctionList EPSMonitorList;
SLEPC_EXTERN PetscFunctionList EPSMonitorCreateList;
SLEPC_EXTERN PetscFunctionList EPSMonitorDestroyList;
SLEPC_EXTERN PetscErrorCode EPSRegister(const char[],PetscErrorCode(*)(EPS));
SLEPC_EXTERN PetscErrorCode EPSMonitorRegister(const char[],PetscViewerType,PetscViewerFormat,EPSMonitorRegisterFn*,EPSMonitorRegisterCreateFn*,EPSMonitorRegisterDestroyFn*);
SLEPC_EXTERN PetscErrorCode EPSSetWorkVecs(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSAllocateSolution(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSReallocateSolution(EPS,PetscInt);
/*S
EPSConvergenceTestFn - A prototype of an `EPS` convergence test function that
would be passed to `EPSSetConvergenceTestFunction()`.
Calling Sequence:
+ eps - the linear eigensolver context
. eigr - real part of the eigenvalue
. eigi - imaginary part of the eigenvalue
. res - residual norm associated to the eigenpair
. errest - [output] computed error estimate
- ctx - optional convergence context, as set by `EPSSetConvergenceTestFunction()`
Level: advanced
.seealso: [](ch:eps), `EPSSetConvergenceTest()`, `EPSSetConvergenceTestFunction()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode EPSConvergenceTestFn(EPS eps,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx);
SLEPC_EXTERN PetscErrorCode EPSSetConvergenceTest(EPS,EPSConv);
SLEPC_EXTERN PetscErrorCode EPSGetConvergenceTest(EPS,EPSConv*);
SLEPC_EXTERN EPSConvergenceTestFn EPSConvergedAbsolute;
SLEPC_EXTERN EPSConvergenceTestFn EPSConvergedRelative;
SLEPC_EXTERN EPSConvergenceTestFn EPSConvergedNorm;
SLEPC_EXTERN PetscErrorCode EPSSetConvergenceTestFunction(EPS,EPSConvergenceTestFn*,void*,PetscCtxDestroyFn*);
/*S
EPSStoppingTestFn - A prototype of an `EPS` stopping test function that would
be passed to `EPSSetStoppingTestFunction()`.
Calling Sequence:
+ eps - the linear eigensolver context
. its - current number of iterations
. max_it - maximum number of iterations
. nconv - number of currently converged eigenpairs
. nev - number of requested eigenpairs
. reason - [output] result of the stopping test
- ctx - optional stopping context, as set by `EPSSetStoppingTestFunction()`
Note:
A positive value of `reason` indicates that the iteration has finished successfully
(converged), and a negative value indicates an error condition (diverged). If
the iteration needs to be continued, `reason` must be set to `EPS_CONVERGED_ITERATING`
(zero).
Level: advanced
.seealso: [](ch:eps), `EPSSetStoppingTest()`, `EPSSetStoppingTestFunction()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode EPSStoppingTestFn(EPS eps,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,EPSConvergedReason *reason,void *ctx);
SLEPC_EXTERN PetscErrorCode EPSSetStoppingTest(EPS,EPSStop);
SLEPC_EXTERN PetscErrorCode EPSGetStoppingTest(EPS,EPSStop*);
SLEPC_EXTERN EPSStoppingTestFn EPSStoppingBasic;
SLEPC_EXTERN EPSStoppingTestFn EPSStoppingThreshold;
SLEPC_EXTERN PetscErrorCode EPSSetStoppingTestFunction(EPS,EPSStoppingTestFn*,void*,PetscCtxDestroyFn*);
SLEPC_EXTERN PetscErrorCode EPSSetEigenvalueComparison(EPS,SlepcEigenvalueComparisonFn*,void*);
SLEPC_EXTERN PetscErrorCode EPSSetArbitrarySelection(EPS,SlepcArbitrarySelectionFn*,void*);
/* --------- options specific to particular eigensolvers -------- */
/*E
EPSPowerShiftType - The type of shift used in the Power iteration solver.
Values:
+ `EPS_POWER_SHIFT_CONSTANT` - constant shift
. `EPS_POWER_SHIFT_RAYLEIGH` - variable shift using Rayleigh quotient
- `EPS_POWER_SHIFT_WILKINSON` - variable shift using Wilkinson's approach
Note:
Details of the three variants can be found in {cite:p}`Her05`.
Level: advanced
.seealso: [](ch:eps), `EPSPowerSetShiftType()`, `EPSPowerGetShiftType()`
E*/
typedef enum { EPS_POWER_SHIFT_CONSTANT,
EPS_POWER_SHIFT_RAYLEIGH,
EPS_POWER_SHIFT_WILKINSON } EPSPowerShiftType;
SLEPC_EXTERN const char *EPSPowerShiftTypes[];
/*MC
EPS_POWER_SHIFT_CONSTANT - The power iteration will use a constant shift.
Note:
Together with `STSINVERT`, the `EPSPOWER` solver implements the inverse iteration
method, i.e., it will apply $(A-\sigma I)^{-1}$ at each iteration, by solving
a linear system. By default, the shift $\sigma$ is constant and given by the
user with `EPSSetTarget()`.
Details of the three variants can be found in {cite:p}`Her05`.
Level: advanced
.seealso: [](ch:eps), `EPSPowerShiftType`, `EPSPowerSetShiftType()`, `STSetShift()`, `EPSSetTarget()`, `EPS_POWER_SHIFT_RAYLEIGH`, `EPS_POWER_SHIFT_WILKINSON`
M*/
/*MC
EPS_POWER_SHIFT_RAYLEIGH - The power iteration will use a variable shift
computed with the Rayleigh quotient.
Notes:
Together with `STSINVERT`, the `EPSPOWER` solver implements the inverse iteration
method, i.e., it will apply $(A-\sigma I)^{-1}$ at each iteration, by solving
a linear system. With this strategy, the value of the shift will be updated at
each iteration as $\sigma=\frac{x^*Ax}{x^*x}$, where $x$ is the current eigenvector
approximation. The resulting iteration is the RQI method.
Updating the shift may involve a high computational cost if the linear solve
is done via a factorization.
Details of the three variants can be found in {cite:p}`Her05`.
Level: advanced
.seealso: [](ch:eps), `EPSPowerShiftType`, `EPSPowerSetShiftType()`, `STSetShift()`, `EPSSetTarget()`, `EPS_POWER_SHIFT_CONSTANT`, `EPS_POWER_SHIFT_WILKINSON`
M*/
/*MC
EPS_POWER_SHIFT_WILKINSON - The power iteration will use a variable shift
computed with Wilkinson's approach.
Note:
Together with `STSINVERT`, the `EPSPOWER` solver implements the inverse iteration
method, i.e., it will apply $(A-\sigma I)^{-1}$ at each iteration, by solving
a linear system. With this strategy, the value of the shift will be updated at
each iteration as proposed by Wilkinson, see {cite:p}`Par80{8.10}`.
Updating the shift may involve a high computational cost if the linear solve
is done via a factorization.
Details of the three variants can be found in {cite:p}`Her05`.
Level: advanced
.seealso: [](ch:eps), `EPSPowerShiftType`, `EPSPowerSetShiftType()`, `STSetShift()`, `EPSSetTarget()`, `EPS_POWER_SHIFT_CONSTANT`, `EPS_POWER_SHIFT_RAYLEIGH`
M*/
SLEPC_EXTERN PetscErrorCode EPSPowerSetShiftType(EPS,EPSPowerShiftType);
SLEPC_EXTERN PetscErrorCode EPSPowerGetShiftType(EPS,EPSPowerShiftType*);
SLEPC_EXTERN PetscErrorCode EPSPowerSetNonlinear(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSPowerGetNonlinear(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSPowerSetUpdate(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSPowerGetUpdate(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSPowerSetSignNormalization(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSPowerGetSignNormalization(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSPowerSetSNES(EPS,SNES);
SLEPC_EXTERN PetscErrorCode EPSPowerGetSNES(EPS,SNES*);
SLEPC_EXTERN PetscErrorCode EPSArnoldiSetDelayed(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSArnoldiGetDelayed(EPS,PetscBool*);
/*E
EPSKrylovSchurBSEType - The method to be used in the Krylov-Schur solver
for the case of BSE structured eigenproblems.
Values:
+ `EPS_KRYLOVSCHUR_BSE_SHAO` - a Lanczos method proposed by Shao and coauthors
. `EPS_KRYLOVSCHUR_BSE_GRUNING` - a Lanczos method proposed by Gruning and coauthors
- `EPS_KRYLOVSCHUR_BSE_PROJECTEDBSE` - a Lanczos method resulting is a projected problem with BSE structure
Note:
All variants are implemented in combination with a thick restart, see
the details in {cite:p}`Alv25`.
Level: advanced
.seealso: [](ch:eps), `EPSKrylovSchurSetBSEType()`, `EPSKrylovSchurGetBSEType()`
E*/
typedef enum { EPS_KRYLOVSCHUR_BSE_SHAO,
EPS_KRYLOVSCHUR_BSE_GRUNING,
EPS_KRYLOVSCHUR_BSE_PROJECTEDBSE } EPSKrylovSchurBSEType;
SLEPC_EXTERN const char *EPSKrylovSchurBSETypes[];
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurSetBSEType(EPS,EPSKrylovSchurBSEType);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetBSEType(EPS,EPSKrylovSchurBSEType*);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurSetRestart(EPS,PetscReal);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetRestart(EPS,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurSetLocking(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetLocking(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurSetPartitions(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetPartitions(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurSetDetectZeros(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetDetectZeros(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurSetDimensions(EPS,PetscInt,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetDimensions(EPS,PetscInt*,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurSetSubintervals(EPS,PetscReal[]);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetSubintervals(EPS,PetscReal*[]);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetInertias(EPS,PetscInt*,PetscReal*[],PetscInt*[]);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetSubcommInfo(EPS,PetscInt*,PetscInt*,Vec*);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetSubcommPairs(EPS,PetscInt,PetscScalar*,Vec);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetSubcommMats(EPS,Mat*,Mat*);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurUpdateSubcommMats(EPS,PetscScalar,PetscScalar,Mat,PetscScalar,PetscScalar, Mat,MatStructure,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSKrylovSchurGetKSP(EPS,KSP*);
/*E
EPSLanczosReorthogType - The type of reorthogonalization used in `EPSLANCZOS`.
Values:
+ `EPS_LANCZOS_REORTHOG_LOCAL` - local orthogonalization, only involves previous two vectors
. `EPS_LANCZOS_REORTHOG_FULL` - full orthogonalization against all previous vectors
. `EPS_LANCZOS_REORTHOG_SELECTIVE` - selective reorthogonalization against nearly converged Ritz vectors
. `EPS_LANCZOS_REORTHOG_PERIODIC` - periodic reorthogonalization against all previous vectors
. `EPS_LANCZOS_REORTHOG_PARTIAL` - partial reorthogonalization against as subset of previous vectors
- `EPS_LANCZOS_REORTHOG_DELAYED` - full orthogonalization with delayed reorthogonalization
Note:
Details of the different reorthogonalization strategies can be found in
{cite:p}`Her06`.
Level: advanced
.seealso: [](ch:eps), `EPSLanczosSetReorthog()`, `EPSLanczosGetReorthog()`
E*/
typedef enum { EPS_LANCZOS_REORTHOG_LOCAL,
EPS_LANCZOS_REORTHOG_FULL,
EPS_LANCZOS_REORTHOG_SELECTIVE,
EPS_LANCZOS_REORTHOG_PERIODIC,
EPS_LANCZOS_REORTHOG_PARTIAL,
EPS_LANCZOS_REORTHOG_DELAYED } EPSLanczosReorthogType;
SLEPC_EXTERN const char *EPSLanczosReorthogTypes[];
SLEPC_EXTERN PetscErrorCode EPSLanczosSetReorthog(EPS,EPSLanczosReorthogType);
SLEPC_EXTERN PetscErrorCode EPSLanczosGetReorthog(EPS,EPSLanczosReorthogType*);
/*E
EPSPRIMMEMethod - The method selected in the PRIMME library.
Note:
See the documentation of PRIMME {cite:p}`Sta10` for a description of the methods.
Level: advanced
.seealso: [](ch:eps), `EPSPRIMMESetMethod()`, `EPSPRIMMEGetMethod()`
E*/
typedef enum { EPS_PRIMME_DYNAMIC = 1,
EPS_PRIMME_DEFAULT_MIN_TIME = 2,
EPS_PRIMME_DEFAULT_MIN_MATVECS = 3,
EPS_PRIMME_ARNOLDI = 4,
EPS_PRIMME_GD = 5,
EPS_PRIMME_GD_PLUSK = 6,
EPS_PRIMME_GD_OLSEN_PLUSK = 7,
EPS_PRIMME_JD_OLSEN_PLUSK = 8,
EPS_PRIMME_RQI = 9,
EPS_PRIMME_JDQR = 10,
EPS_PRIMME_JDQMR = 11,
EPS_PRIMME_JDQMR_ETOL = 12,
EPS_PRIMME_SUBSPACE_ITERATION = 13,
EPS_PRIMME_LOBPCG_ORTHOBASIS = 14,
EPS_PRIMME_LOBPCG_ORTHOBASISW = 15 } EPSPRIMMEMethod;
SLEPC_EXTERN const char *EPSPRIMMEMethods[];
SLEPC_EXTERN PetscErrorCode EPSPRIMMESetBlockSize(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSPRIMMEGetBlockSize(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSPRIMMESetMethod(EPS,EPSPRIMMEMethod);
SLEPC_EXTERN PetscErrorCode EPSPRIMMEGetMethod(EPS,EPSPRIMMEMethod*);
SLEPC_EXTERN PetscErrorCode EPSGDSetKrylovStart(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSGDGetKrylovStart(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSGDSetBlockSize(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSGDGetBlockSize(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSGDSetRestart(EPS,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSGDGetRestart(EPS,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSGDSetInitialSize(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSGDGetInitialSize(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSGDSetBOrth(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSGDGetBOrth(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSGDSetDoubleExpansion(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSGDGetDoubleExpansion(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSJDSetKrylovStart(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSJDGetKrylovStart(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSJDSetBlockSize(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSJDGetBlockSize(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSJDSetRestart(EPS,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSJDGetRestart(EPS,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSJDSetInitialSize(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSJDGetInitialSize(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSJDSetFix(EPS,PetscReal);
SLEPC_EXTERN PetscErrorCode EPSJDGetFix(EPS,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSJDSetConstCorrectionTol(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSJDGetConstCorrectionTol(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSJDSetBOrth(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSJDGetBOrth(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSRQCGSetReset(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSRQCGGetReset(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSLOBPCGSetBlockSize(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSLOBPCGGetBlockSize(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSLOBPCGSetRestart(EPS,PetscReal);
SLEPC_EXTERN PetscErrorCode EPSLOBPCGGetRestart(EPS,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSLOBPCGSetLocking(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSLOBPCGGetLocking(EPS,PetscBool*);
/*E
EPSCISSQuadRule - The quadrature rule used in the `EPSCISS` solver.
Values:
+ `EPS_CISS_QUADRULE_TRAPEZOIDAL` - trapezoidal rule
- `EPS_CISS_QUADRULE_CHEBYSHEV` - Gauss quadrature on Chebyshev points
Note:
For a detailed description see {cite:p}`Mae16`.
Level: advanced
.seealso: [](ch:eps), `EPSCISSSetQuadRule()`, `EPSCISSGetQuadRule()`
E*/
typedef enum { EPS_CISS_QUADRULE_TRAPEZOIDAL = 1,
EPS_CISS_QUADRULE_CHEBYSHEV = 2 } EPSCISSQuadRule;
SLEPC_EXTERN const char *EPSCISSQuadRules[];
/*E
EPSCISSExtraction - The extraction technique used in the `EPSCISS` solver.
Values:
+ `EPS_CISS_EXTRACTION_RITZ` - Ritz approximations from Rayleigh-Ritz projection
- `EPS_CISS_EXTRACTION_HANKEL` - use Hankel pencil as in the original Sakurai-Sugiura method
Note:
For a detailed description see {cite:p}`Mae16`.
Level: advanced
.seealso: [](ch:eps), `EPSCISSSetExtraction()`, `EPSCISSGetExtraction()`
E*/
typedef enum { EPS_CISS_EXTRACTION_RITZ,
EPS_CISS_EXTRACTION_HANKEL } EPSCISSExtraction;
SLEPC_EXTERN const char *EPSCISSExtractions[];
SLEPC_EXTERN PetscErrorCode EPSCISSSetExtraction(EPS,EPSCISSExtraction);
SLEPC_EXTERN PetscErrorCode EPSCISSGetExtraction(EPS,EPSCISSExtraction*);
SLEPC_EXTERN PetscErrorCode EPSCISSSetQuadRule(EPS,EPSCISSQuadRule);
SLEPC_EXTERN PetscErrorCode EPSCISSGetQuadRule(EPS,EPSCISSQuadRule*);
SLEPC_EXTERN PetscErrorCode EPSCISSSetSizes(EPS,PetscInt,PetscInt,PetscInt,PetscInt,PetscInt,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSCISSGetSizes(EPS,PetscInt*,PetscInt*,PetscInt*,PetscInt*,PetscInt*,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSCISSSetThreshold(EPS,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode EPSCISSGetThreshold(EPS,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSCISSSetRefinement(EPS,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSCISSGetRefinement(EPS,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSCISSSetUseST(EPS,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSCISSGetUseST(EPS,PetscBool*);
SLEPC_EXTERN PetscErrorCode EPSCISSGetKSPs(EPS,PetscInt*,KSP*[]);
SLEPC_EXTERN PetscErrorCode EPSLyapIISetLME(EPS,LME);
SLEPC_EXTERN PetscErrorCode EPSLyapIIGetLME(EPS,LME*);
SLEPC_EXTERN PetscErrorCode EPSLyapIISetRanks(EPS,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSLyapIIGetRanks(EPS,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSBLOPEXSetBlockSize(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSBLOPEXGetBlockSize(EPS,PetscInt*);
/*E
EPSEVSLDOSMethod - The method to approximate the density of states (DOS)
in the `EPSEVSL` solver.
Values:
+ `EPS_EVSL_DOS_KPM` - Kernel Polynomial Method
- `EPS_EVSL_DOS_LANCZOS` - Lanczos method
Note:
See the documentation of EVSL {cite:p}`Li19` for an explanation.
Level: advanced
.seealso: [](ch:eps), `EPSEVSLSetDOSParameters()`, `EPSEVSLGetDOSParameters()`
E*/
typedef enum { EPS_EVSL_DOS_KPM,
EPS_EVSL_DOS_LANCZOS } EPSEVSLDOSMethod;
SLEPC_EXTERN const char *EPSEVSLDOSMethods[];
/*E
EPSEVSLDamping - The damping type used in the `EPSEVSL` solver.
Values:
+ `EPS_EVSL_DAMPING_NONE` - no damping
. `EPS_EVSL_DAMPING_JACKSON` - Jackson damping
- `EPS_EVSL_DAMPING_SIGMA` - Lanczos damping
Note:
See the documentation of EVSL {cite:p}`Li19` for an explanation.
Level: advanced
.seealso: [](ch:eps), `EPSEVSLSetDOSParameters()`, `EPSEVSLGetDOSParameters()`
E*/
typedef enum { EPS_EVSL_DAMPING_NONE,
EPS_EVSL_DAMPING_JACKSON,
EPS_EVSL_DAMPING_SIGMA } EPSEVSLDamping;
SLEPC_EXTERN const char *EPSEVSLDampings[];
SLEPC_EXTERN PetscErrorCode EPSEVSLSetRange(EPS,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode EPSEVSLGetRange(EPS,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSEVSLSetSlices(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSEVSLGetSlices(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSEVSLSetDOSParameters(EPS,EPSEVSLDOSMethod,PetscInt,PetscInt,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSEVSLGetDOSParameters(EPS,EPSEVSLDOSMethod*,PetscInt*,PetscInt*,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSEVSLSetPolParameters(EPS,PetscInt,PetscReal);
SLEPC_EXTERN PetscErrorCode EPSEVSLGetPolParameters(EPS,PetscInt*,PetscReal*);
SLEPC_EXTERN PetscErrorCode EPSEVSLSetDamping(EPS,EPSEVSLDamping);
SLEPC_EXTERN PetscErrorCode EPSEVSLGetDamping(EPS,EPSEVSLDamping*);
SLEPC_EXTERN PetscErrorCode EPSFEASTSetNumPoints(EPS,PetscInt);
SLEPC_EXTERN PetscErrorCode EPSFEASTGetNumPoints(EPS,PetscInt*);
SLEPC_EXTERN PetscErrorCode EPSCHASESetDegree(EPS,PetscInt,PetscBool);
SLEPC_EXTERN PetscErrorCode EPSCHASEGetDegree(EPS,PetscInt*,PetscBool*);
|