1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
/*
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SLEPc - Scalable Library for Eigenvalue Problem Computations
Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
This file is part of SLEPc.
SLEPc is distributed under a 2-clause BSD license (see LICENSE).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
/*
User interface for SLEPc's polynomial eigenvalue solvers
*/
#pragma once
#include <slepceps.h>
/* SUBMANSEC = PEP */
SLEPC_EXTERN PetscErrorCode PEPInitializePackage(void);
SLEPC_EXTERN PetscErrorCode PEPFinalizePackage(void);
/*S
PEP - SLEPc object that manages all the polynomial eigenvalue problem solvers.
Level: beginner
.seealso: [](ch:pep), `PEPCreate()`
S*/
typedef struct _p_PEP* PEP;
/*J
PEPType - String with the name of a polynomial eigensolver.
Level: beginner
.seealso: [](ch:pep), `PEPSetType()`, `PEP`
J*/
typedef const char *PEPType;
#define PEPTOAR "toar"
#define PEPSTOAR "stoar"
#define PEPQARNOLDI "qarnoldi"
#define PEPLINEAR "linear"
#define PEPJD "jd"
#define PEPCISS "ciss"
/* Logging support */
SLEPC_EXTERN PetscClassId PEP_CLASSID;
/*E
PEPProblemType - Determines the type of the polynomial eigenproblem.
Values:
+ `PEP_GENERAL` - polynomial eigenproblem with no particular structure
. `PEP_HERMITIAN` - polynomial eigenproblem with all coefficient matrices Hermitian
. `PEP_HYPERBOLIC` - quadratic eigenproblem with hyperbolic structure
- `PEP_GYROSCOPIC` - quadratic eigenproblem with gyroscopic structure
Note:
By default, no particular structure is assumed (`PEP_GENERAL`).
Level: intermediate
.seealso: [](ch:pep), `PEPSetProblemType()`, `PEPGetProblemType()`
E*/
typedef enum { PEP_GENERAL = 1,
PEP_HERMITIAN = 2,
PEP_HYPERBOLIC = 3,
PEP_GYROSCOPIC = 4
} PEPProblemType;
/*MC
PEP_GENERAL - A polynomial eigenproblem with no particular structure.
Note:
This is the default problem type.
Level: intermediate
.seealso: [](ch:pep), `PEPProblemType`, `PEPSetProblemType()`, `PEP_HERMITIAN`, `PEP_HYPERBOLIC`, `PEP_GYROSCOPIC`
M*/
/*MC
PEP_HERMITIAN - A polynomial eigenvalue problem with all coefficient matrices Hermitian.
Notes:
This is used when all $A_i$ matrices passed in `PEPSetOperators()`
are Hermitian.
Currently there is support only for quadratic eigenvalue problems,
$(K+\lambda C+\lambda^2M)x=0$ with $K$, $C$, $M$ Hermitian.
Level: intermediate
.seealso: [](ch:pep), `PEPProblemType`, `PEPSetProblemType()`, `PEP_GENERAL`, `PEP_HYPERBOLIC`, `PEP_GYROSCOPIC`
M*/
/*MC
PEP_HYPERBOLIC - A quadratic eigenvalue problem with hyperbolic structure.
Note:
This is reserved for the case of a quadratic eigenvalue problem
$(K+\lambda C+\lambda^2M)x=0$ with Hermitian coefficient matrices, and in
addition $M$ is positive definite and $(x^*Cx)^2>4(x^*Mx)(x^*Kx)$ for all
nonzero $x\in\mathbb{C}^n$. All eigenvalues are real, and form two separate
groups of $n$ eigenvalues, each of them having linearly independent eigenvectors.
Level: intermediate
.seealso: [](ch:pep), `PEPProblemType`, `PEPSetProblemType()`, `PEP_GENERAL`, `PEP_HERMITIAN`, `PEP_GYROSCOPIC`
M*/
/*MC
PEP_GYROSCOPIC - A quadratic eigenvalue problem with gyroscopic structure.
Notes:
This is reserved for the case of a quadratic eigenvalue problem
$(K+\lambda C+\lambda^2M)x=0$ with $M$, $K$ Hermitian, $M>0$, and
$C$ skew-Hermitian.
Currently there is support for this problem type only in `PEPLINEAR`, using
a general eigensolver, without exploiting the structure.
Level: intermediate
.seealso: [](ch:pep), `PEPProblemType`, `PEPSetProblemType()`, `PEP_GENERAL`, `PEP_HERMITIAN`, `PEP_HYPERBOLIC`, `PEPLINEAR`
M*/
/*E
PEPWhich - Determines which part of the spectrum is requested.
Values:
+ `PEP_LARGEST_MAGNITUDE` - largest $|\lambda|$
. `PEP_SMALLEST_MAGNITUDE` - smallest $|\lambda|$
. `PEP_LARGEST_REAL` - largest $\mathrm{Re}(\lambda)$
. `PEP_SMALLEST_REAL` - smallest $\mathrm{Re}(\lambda)$
. `PEP_LARGEST_IMAGINARY` - largest $\mathrm{Im}(\lambda)$
. `PEP_SMALLEST_IMAGINARY` - smallest $\mathrm{Im}(\lambda)$
. `PEP_TARGET_MAGNITUDE` - smallest $|\lambda-\tau|$
. `PEP_TARGET_REAL` - smallest $|\mathrm{Re}(\lambda-\tau)|$
. `PEP_TARGET_IMAGINARY` - smallest $|\mathrm{Im}(\lambda-\tau)|$
. `PEP_ALL` - all $\lambda\in[a,b]$ or $\lambda\in\Omega$
- `PEP_WHICH_USER` - user-defined sorting criterion
Notes:
If SLEPc is compiled for real scalars `PEP_LARGEST_IMAGINARY` and
`PEP_SMALLEST_IMAGINARY` use the absolute value of the imaginary part
for eigenvalue selection.
The target $\tau$ is a scalar value provided with `PEPSetTarget()`.
The case `PEP_ALL` needs an interval $[a,b]$ given with `PEPSetInterval()`
or a region $\Omega$ specified with an `RG` object.
Level: intermediate
.seealso: [](ch:pep), `PEPSetWhichEigenpairs()`, `PEPSetTarget()`, `PEPSetInterval()`
E*/
typedef enum { PEP_LARGEST_MAGNITUDE = 1,
PEP_SMALLEST_MAGNITUDE = 2,
PEP_LARGEST_REAL = 3,
PEP_SMALLEST_REAL = 4,
PEP_LARGEST_IMAGINARY = 5,
PEP_SMALLEST_IMAGINARY = 6,
PEP_TARGET_MAGNITUDE = 7,
PEP_TARGET_REAL = 8,
PEP_TARGET_IMAGINARY = 9,
PEP_ALL = 10,
PEP_WHICH_USER = 11 } PEPWhich;
/*E
PEPBasis - The type of polynomial basis used to represent the polynomial
eigenproblem.
Values:
+ `PEP_BASIS_MONOMIAL` - monomial basis
. `PEP_BASIS_CHEBYSHEV1` - Chebyshev polynomials of the 1st kind
. `PEP_BASIS_CHEBYSHEV2` - Chebyshev polynomials of the 2nd kind
. `PEP_BASIS_LEGENDRE` - Legendre polynomials
. `PEP_BASIS_LAGUERRE` - Laguerre polynomials
- `PEP_BASIS_HERMITE` - Hermite polynomials
Notes:
The default is to work with the monomial basis to represent the polynomial,
i.e., $1, x, x^2, \dots, x^d$. For large degree $d$, numerical
difficulties may arise. In that case, a different basis is recommended.
The user is responsible for providing the coefficient matrices to
`PEPSetOperators()` represented in the selected basis.
Level: intermediate
.seealso: [](ch:pep), `PEPSetBasis()`
E*/
typedef enum { PEP_BASIS_MONOMIAL,
PEP_BASIS_CHEBYSHEV1,
PEP_BASIS_CHEBYSHEV2,
PEP_BASIS_LEGENDRE,
PEP_BASIS_LAGUERRE,
PEP_BASIS_HERMITE } PEPBasis;
SLEPC_EXTERN const char *PEPBasisTypes[];
/*E
PEPScale - The scaling strategy.
Values:
+ `PEP_SCALE_NONE` - no scaling
. `PEP_SCALE_SCALAR` - multiply by a scalar value
. `PEP_SCALE_DIAGONAL` - multiply by two diagonal matrices
- `PEP_SCALE_BOTH` - both scalar and diagonal scaling
Note:
See section [](#sec:scaling) for a discussion of the different scaling strategies.
Level: intermediate
.seealso: [](ch:pep), [](#sec:scaling), `PEPSetScale()`
E*/
typedef enum { PEP_SCALE_NONE,
PEP_SCALE_SCALAR,
PEP_SCALE_DIAGONAL,
PEP_SCALE_BOTH } PEPScale;
SLEPC_EXTERN const char *PEPScaleTypes[];
/*E
PEPRefine - The type of Newton iterative refinement.
Values:
+ `PEP_REFINE_NONE` - no refinement
. `PEP_REFINE_SIMPLE` - refinement of each converged eigenpair individually
- `PEP_REFINE_MULTIPLE` - refinement of the invariant pair as a whole
Note:
See section [](#sec:refine) for a discussion of the different refinement strategies.
Level: intermediate
.seealso: [](ch:pep), [](#sec:refine), `PEPSetRefine()`
E*/
typedef enum { PEP_REFINE_NONE,
PEP_REFINE_SIMPLE,
PEP_REFINE_MULTIPLE } PEPRefine;
SLEPC_EXTERN const char *PEPRefineTypes[];
/*E
PEPRefineScheme - The scheme used for solving linear systems during iterative refinement.
Values:
+ `PEP_REFINE_SCHEME_SCHUR` - use the Schur complement
. `PEP_REFINE_SCHEME_MBE` - use the mixed block elimination (MBE) scheme
- `PEP_REFINE_SCHEME_EXPLICIT` - build the full matrix explicitly
Note:
Iterative refinement may be very costly, due to the expensive linear
solves. These linear systems have a particular structure that can be
exploited in different ways, as described in {cite:p}`Cam16b`. See
`PEPSetRefine()` for additional details.
Level: intermediate
.seealso: [](ch:pep), [](#sec:refine), `PEPSetRefine()`
E*/
typedef enum { PEP_REFINE_SCHEME_SCHUR = 1,
PEP_REFINE_SCHEME_MBE = 2,
PEP_REFINE_SCHEME_EXPLICIT = 3 } PEPRefineScheme;
SLEPC_EXTERN const char *PEPRefineSchemes[];
/*E
PEPExtract - The eigenvector extraction strategy.
Values:
+ `PEP_EXTRACT_NONE` - trivial extraction
. `PEP_EXTRACT_NORM` - extraction based on the norm
. `PEP_EXTRACT_RESIDUAL` - extraction based on the residual
- `PEP_EXTRACT_STRUCTURED` - extraction using a linear combination of all the blocks
Note:
This is relevant for solvers based on linearization. Once the solver has
converged, the polynomial eigenvectors can be extracted from the
eigenvectors of the linearized problem in different ways. See the
discussion in section [](#sec:pepextr).
Level: intermediate
.seealso: [](ch:pep), [](#sec:pepextr), `PEPSetExtract()`
E*/
typedef enum { PEP_EXTRACT_NONE = 1,
PEP_EXTRACT_NORM = 2,
PEP_EXTRACT_RESIDUAL = 3,
PEP_EXTRACT_STRUCTURED = 4 } PEPExtract;
SLEPC_EXTERN const char *PEPExtractTypes[];
/*MC
PEP_EXTRACT_NONE - Trivial eigenvector extraction.
Note:
Given the eigenvector of the linearization, $y$, the eigenvector of the
polynomial eigenproblem $x$ is taken from the first block of $y$.
Level: intermediate
.seealso: [](ch:pep), [](#sec:pepextr), `PEPExtract`, `PEPSetExtract()`, `PEP_EXTRACT_NORM`, `PEP_EXTRACT_RESIDUAL`, `PEP_EXTRACT_STRUCTURED`
M*/
/*MC
PEP_EXTRACT_NORM - Eigenvector extraction based on the norm.
Notes:
Given the eigenvector of the linearization, $y$, the eigenvector of the
polynomial eigenproblem $x$ is obtained from the $i$th block for which
$|\phi_i(\lambda)|$ is maximum, where $\phi_i$ is the $i$th element
of the polynomial basis. In the case of the monomial basis, it will
select the first or last block depending on $|\lambda|\geq 1$ or $|\lambda|<1$.
This is the default extraction.
Level: intermediate
.seealso: [](ch:pep), [](#sec:pepextr), `PEPExtract`, `PEPSetExtract()`, `PEP_EXTRACT_NONE`, `PEP_EXTRACT_RESIDUAL`, `PEP_EXTRACT_STRUCTURED`
M*/
/*MC
PEP_EXTRACT_RESIDUAL - Eigenvector extraction based on the residual.
Note:
Given the eigenvector of the linearization, $y$, the eigenvector of the
polynomial eigenproblem $x$ is the block of $y$ that minimizes the
residual norm.
Level: intermediate
.seealso: [](ch:pep), [](#sec:pepextr), `PEPExtract`, `PEPSetExtract()`, `PEP_EXTRACT_NONE`, `PEP_EXTRACT_NORM`, `PEP_EXTRACT_STRUCTURED`
M*/
/*MC
PEP_EXTRACT_STRUCTURED - Eigenvector extraction using a linear combination of
all the blocks.
Note:
Given the eigenvector of the linearization, $y$, the eigenvector of the
polynomial eigenproblem $x$ is obtained as a linear combination of all
the blocks, such that it minimizes a certain norm.
Level: intermediate
.seealso: [](ch:pep), [](#sec:pepextr), `PEPExtract`, `PEPSetExtract()`, `PEP_EXTRACT_NONE`, `PEP_EXTRACT_NORM`, `PEP_EXTRACT_RESIDUAL`
M*/
/*E
PEPErrorType - The error type used to assess the accuracy of computed solutions.
Values:
+ `PEP_ERROR_ABSOLUTE` - compute error bound as $\|r\|$
. `PEP_ERROR_RELATIVE` - compute error bound as $\|r\|/|\lambda|$
- `PEP_ERROR_BACKWARD` - compute error bound as $\|r\|/(\sum_j\|A_j\||\lambda_i|^j)$
Level: intermediate
.seealso: [](ch:pep), `PEPComputeError()`
E*/
typedef enum { PEP_ERROR_ABSOLUTE,
PEP_ERROR_RELATIVE,
PEP_ERROR_BACKWARD } PEPErrorType;
SLEPC_EXTERN const char *PEPErrorTypes[];
/*E
PEPConv - The convergence criterion to be used by the solver.
Values:
+ `PEP_CONV_ABS` - absolute convergence criterion, $\|r\|$
. `PEP_CONV_REL` - convergence criterion relative to eigenvalue, $\|r\|/|\lambda|$
. `PEP_CONV_NORM` - convergence criterion relative to matrix norms, $\|r\|/(\sum_j\|A_j\||\lambda|^j)$
- `PEP_CONV_USER` - convergence dictated by user-provided function
Level: intermediate
.seealso: [](ch:pep), `PEPSetConvergenceTest()`, `PEPSetConvergenceTestFunction()`
E*/
typedef enum { PEP_CONV_ABS,
PEP_CONV_REL,
PEP_CONV_NORM,
PEP_CONV_USER } PEPConv;
/*E
PEPStop - The stopping test to decide the termination of the outer loop
of the eigensolver.
Values:
+ `PEP_STOP_BASIC` - default stopping test
- `PEP_STOP_USER` - user-provided stopping test
Level: advanced
.seealso: [](ch:pep), `PEPSetStoppingTest()`, `PEPSetStoppingTestFunction()`
E*/
typedef enum { PEP_STOP_BASIC,
PEP_STOP_USER } PEPStop;
/*MC
PEP_STOP_BASIC - The default stopping test.
Note:
By default, the termination of the outer loop is decided by calling
`PEPStoppingBasic()`, which will stop if all requested eigenvalues are converged,
or if the maximum number of iterations has been reached.
Level: advanced
.seealso: [](ch:pep), `PEPStop`, `PEPSetStoppingTest()`, `PEPStoppingBasic()`
M*/
/*MC
PEP_STOP_USER - The user-provided stopping test.
Note:
Customized stopping test using the user-provided function given with
`PEPSetStoppingTestFunction()`.
Level: advanced
.seealso: [](ch:pep), `PEPStop`, `PEPSetStoppingTest()`, `PEPSetStoppingTestFunction()`
M*/
/*E
PEPConvergedReason - Reason a polynomial eigensolver was determined to have converged
or diverged.
Values:
+ `PEP_CONVERGED_TOL` - converged up to tolerance
. `PEP_CONVERGED_USER` - converged due to a user-defined condition
. `PEP_DIVERGED_ITS` - exceeded the maximum number of allowed iterations
. `PEP_DIVERGED_BREAKDOWN` - generic breakdown in method
. `PEP_DIVERGED_SYMMETRY_LOST` - pseudo-Lanczos was not able to keep symmetry
- `PEP_CONVERGED_ITERATING` - the solver is still running
Level: intermediate
.seealso: [](ch:pep), `PEPSolve()`, `PEPGetConvergedReason()`, `PEPSetTolerances()`
E*/
typedef enum {/* converged */
PEP_CONVERGED_TOL = 1,
PEP_CONVERGED_USER = 2,
/* diverged */
PEP_DIVERGED_ITS = -1,
PEP_DIVERGED_BREAKDOWN = -2,
PEP_DIVERGED_SYMMETRY_LOST = -3,
PEP_CONVERGED_ITERATING = 0} PEPConvergedReason;
SLEPC_EXTERN const char *const*PEPConvergedReasons;
/*MC
PEP_CONVERGED_TOL - The computed error estimates, based on residual norms,
for all requested eigenvalues are below the tolerance.
Level: intermediate
.seealso: [](ch:pep), `PEPSolve()`, `PEPGetConvergedReason()`, `PEPConvergedReason`
M*/
/*MC
PEP_CONVERGED_USER - The solver was declared converged due to a user-defined condition.
Note:
This happens only when a user-defined stopping test has been set with
`PEPSetStoppingTestFunction()`.
Level: intermediate
.seealso: [](ch:pep), `PEPSolve()`, `PEPGetConvergedReason()`, `PEPConvergedReason`, `PEPSetStoppingTestFunction()`
M*/
/*MC
PEP_DIVERGED_ITS - Exceeded the maximum number of allowed iterations
before the convergence criterion was satisfied.
Level: intermediate
.seealso: [](ch:pep), `PEPSolve()`, `PEPGetConvergedReason()`, `PEPConvergedReason`
M*/
/*MC
PEP_DIVERGED_BREAKDOWN - A breakdown in the solver was detected so the
method could not continue.
Level: intermediate
.seealso: [](ch:pep), `PEPSolve()`, `PEPGetConvergedReason()`, `PEPConvergedReason`
M*/
/*MC
PEP_DIVERGED_SYMMETRY_LOST - The selected solver uses a pseudo-Lanczos recurrence,
which is numerically unstable, and a symmetry test revealed that instability
had appeared so the solver could not continue.
Level: intermediate
.seealso: [](ch:pep), `PEPSolve()`, `PEPGetConvergedReason()`, `PEPConvergedReason`
M*/
/*MC
PEP_CONVERGED_ITERATING - This value is returned if `PEPGetConvergedReason()` is called
while `PEPSolve()` is still running.
Level: intermediate
.seealso: [](ch:pep), `PEPSolve()`, `PEPGetConvergedReason()`, `PEPConvergedReason`
M*/
SLEPC_EXTERN PetscErrorCode PEPCreate(MPI_Comm,PEP*);
SLEPC_EXTERN PetscErrorCode PEPDestroy(PEP*);
SLEPC_EXTERN PetscErrorCode PEPReset(PEP);
SLEPC_EXTERN PetscErrorCode PEPSetType(PEP,PEPType);
SLEPC_EXTERN PetscErrorCode PEPGetType(PEP,PEPType*);
SLEPC_EXTERN PetscErrorCode PEPSetProblemType(PEP,PEPProblemType);
SLEPC_EXTERN PetscErrorCode PEPGetProblemType(PEP,PEPProblemType*);
SLEPC_EXTERN PetscErrorCode PEPSetOperators(PEP,PetscInt,Mat[]);
SLEPC_EXTERN PetscErrorCode PEPGetOperators(PEP,PetscInt,Mat*);
SLEPC_EXTERN PetscErrorCode PEPGetNumMatrices(PEP,PetscInt*);
SLEPC_EXTERN PetscErrorCode PEPSetTarget(PEP,PetscScalar);
SLEPC_EXTERN PetscErrorCode PEPGetTarget(PEP,PetscScalar*);
SLEPC_EXTERN PetscErrorCode PEPSetInterval(PEP,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPGetInterval(PEP,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPSetFromOptions(PEP);
SLEPC_EXTERN PetscErrorCode PEPSetDSType(PEP);
SLEPC_EXTERN PetscErrorCode PEPSetUp(PEP);
SLEPC_EXTERN PetscErrorCode PEPSolve(PEP);
SLEPC_EXTERN PetscErrorCode PEPView(PEP,PetscViewer);
SLEPC_EXTERN PetscErrorCode PEPViewFromOptions(PEP,PetscObject,const char[]);
SLEPC_EXTERN PetscErrorCode PEPErrorView(PEP,PEPErrorType,PetscViewer);
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "PEPErrorView()", ) static inline PetscErrorCode PEPPrintSolution(PEP pep,PetscViewer v) {return PEPErrorView(pep,PEP_ERROR_BACKWARD,v);}
SLEPC_EXTERN PetscErrorCode PEPErrorViewFromOptions(PEP);
SLEPC_EXTERN PetscErrorCode PEPConvergedReasonView(PEP,PetscViewer);
SLEPC_EXTERN PetscErrorCode PEPConvergedReasonViewFromOptions(PEP);
PETSC_DEPRECATED_FUNCTION(3, 14, 0, "PEPConvergedReasonView()", ) static inline PetscErrorCode PEPReasonView(PEP pep,PetscViewer v) {return PEPConvergedReasonView(pep,v);}
PETSC_DEPRECATED_FUNCTION(3, 14, 0, "PEPConvergedReasonViewFromOptions()", ) static inline PetscErrorCode PEPReasonViewFromOptions(PEP pep) {return PEPConvergedReasonViewFromOptions(pep);}
SLEPC_EXTERN PetscErrorCode PEPValuesView(PEP,PetscViewer);
SLEPC_EXTERN PetscErrorCode PEPValuesViewFromOptions(PEP);
SLEPC_EXTERN PetscErrorCode PEPVectorsView(PEP,PetscViewer);
SLEPC_EXTERN PetscErrorCode PEPVectorsViewFromOptions(PEP);
SLEPC_EXTERN PetscErrorCode PEPSetBV(PEP,BV);
SLEPC_EXTERN PetscErrorCode PEPGetBV(PEP,BV*);
SLEPC_EXTERN PetscErrorCode PEPSetRG(PEP,RG);
SLEPC_EXTERN PetscErrorCode PEPGetRG(PEP,RG*);
SLEPC_EXTERN PetscErrorCode PEPSetDS(PEP,DS);
SLEPC_EXTERN PetscErrorCode PEPGetDS(PEP,DS*);
SLEPC_EXTERN PetscErrorCode PEPSetST(PEP,ST);
SLEPC_EXTERN PetscErrorCode PEPGetST(PEP,ST*);
SLEPC_EXTERN PetscErrorCode PEPRefineGetKSP(PEP,KSP*);
SLEPC_EXTERN PetscErrorCode PEPSetTolerances(PEP,PetscReal,PetscInt);
SLEPC_EXTERN PetscErrorCode PEPGetTolerances(PEP,PetscReal*,PetscInt*);
SLEPC_EXTERN PetscErrorCode PEPGetConvergedReason(PEP,PEPConvergedReason*);
SLEPC_EXTERN PetscErrorCode PEPSetDimensions(PEP,PetscInt,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode PEPGetDimensions(PEP,PetscInt*,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode PEPSetScale(PEP,PEPScale,PetscReal,Vec,Vec,PetscInt,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPGetScale(PEP,PEPScale*,PetscReal*,Vec*,Vec*,PetscInt*,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPSetRefine(PEP,PEPRefine,PetscInt,PetscReal,PetscInt,PEPRefineScheme);
SLEPC_EXTERN PetscErrorCode PEPGetRefine(PEP,PEPRefine*,PetscInt*,PetscReal*,PetscInt*,PEPRefineScheme*);
SLEPC_EXTERN PetscErrorCode PEPSetExtract(PEP,PEPExtract);
SLEPC_EXTERN PetscErrorCode PEPGetExtract(PEP,PEPExtract*);
SLEPC_EXTERN PetscErrorCode PEPSetBasis(PEP,PEPBasis);
SLEPC_EXTERN PetscErrorCode PEPGetBasis(PEP,PEPBasis*);
SLEPC_EXTERN PetscErrorCode PEPGetConverged(PEP,PetscInt*);
SLEPC_EXTERN PetscErrorCode PEPGetEigenpair(PEP,PetscInt,PetscScalar*,PetscScalar*,Vec,Vec);
SLEPC_EXTERN PetscErrorCode PEPComputeError(PEP,PetscInt,PEPErrorType,PetscReal*);
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "PEPComputeError()", ) static inline PetscErrorCode PEPComputeRelativeError(PEP pep,PetscInt i,PetscReal *r) {return PEPComputeError(pep,i,PEP_ERROR_BACKWARD,r);}
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "PEPComputeError() with PEP_ERROR_ABSOLUTE", ) static inline PetscErrorCode PEPComputeResidualNorm(PEP pep,PetscInt i,PetscReal *r) {return PEPComputeError(pep,i,PEP_ERROR_ABSOLUTE,r);}
SLEPC_EXTERN PetscErrorCode PEPGetErrorEstimate(PEP,PetscInt,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPGetIterationNumber(PEP,PetscInt*);
SLEPC_EXTERN PetscErrorCode PEPSetInitialSpace(PEP,PetscInt,Vec[]);
SLEPC_EXTERN PetscErrorCode PEPSetWhichEigenpairs(PEP,PEPWhich);
SLEPC_EXTERN PetscErrorCode PEPGetWhichEigenpairs(PEP,PEPWhich*);
SLEPC_EXTERN PetscErrorCode PEPSetTrackAll(PEP,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPGetTrackAll(PEP,PetscBool*);
/*S
PEPMonitorFn - A function prototype for functions provided to `PEPMonitorSet()`.
Calling Sequence:
+ pep - the polynomial eigensolver context
. its - iteration number
. nconv - number of converged eigenpairs
. eigr - real part of the eigenvalues
. eigi - imaginary part of the eigenvalues
. errest - relative error estimates for each eigenpair
. nest - number of error estimates
- ctx - optional monitoring context, as provided with `PEPMonitorSet()`
Level: intermediate
.seealso: [](ch:pep), `PEPMonitorSet()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode PEPMonitorFn(PEP pep,PetscInt its,PetscInt nconv,PetscScalar eigr[],PetscScalar eigi[],PetscReal errest[],PetscInt nest,void *ctx);
/*S
PEPMonitorRegisterFn - A function prototype for functions provided to `PEPMonitorRegister()`.
Calling Sequence:
+ pep - the polynomial eigensolver context
. its - iteration number
. nconv - number of converged eigenpairs
. eigr - real part of the eigenvalues
. eigi - imaginary part of the eigenvalues
. errest - relative error estimates for each eigenpair
. nest - number of error estimates
- ctx - `PetscViewerAndFormat` object
Level: advanced
Note:
This is a `PEPMonitorFn` specialized for a context of `PetscViewerAndFormat`.
.seealso: [](ch:pep), `PEPMonitorSet()`, `PEPMonitorRegister()`, `PEPMonitorFn`, `PEPMonitorRegisterCreateFn`, `PEPMonitorRegisterDestroyFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode PEPMonitorRegisterFn(PEP pep,PetscInt its,PetscInt nconv,PetscScalar eigr[],PetscScalar eigi[],PetscReal errest[],PetscInt nest,PetscViewerAndFormat *ctx);
/*S
PEPMonitorRegisterCreateFn - A function prototype for functions that do the
creation when provided to `PEPMonitorRegister()`.
Calling Sequence:
+ viewer - the viewer to be used with the `PEPMonitorRegisterFn`
. format - the format of the viewer
. ctx - a context for the monitor
- result - a `PetscViewerAndFormat` object
Level: advanced
.seealso: [](ch:pep), `PEPMonitorRegisterFn`, `PEPMonitorSet()`, `PEPMonitorRegister()`, `PEPMonitorFn`, `PEPMonitorRegisterDestroyFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode PEPMonitorRegisterCreateFn(PetscViewer viewer,PetscViewerFormat format,void *ctx,PetscViewerAndFormat **result);
/*S
PEPMonitorRegisterDestroyFn - A function prototype for functions that do the after
use destruction when provided to `PEPMonitorRegister()`.
Calling Sequence:
. vf - a `PetscViewerAndFormat` object to be destroyed, including any context
Level: advanced
.seealso: [](ch:pep), `PEPMonitorRegisterFn`, `PEPMonitorSet()`, `PEPMonitorRegister()`, `PEPMonitorFn`, `PEPMonitorRegisterCreateFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode PEPMonitorRegisterDestroyFn(PetscViewerAndFormat **result);
SLEPC_EXTERN PetscErrorCode PEPMonitor(PEP,PetscInt,PetscInt,PetscScalar[],PetscScalar[],PetscReal[],PetscInt);
SLEPC_EXTERN PetscErrorCode PEPMonitorSet(PEP,PEPMonitorFn,void*,PetscCtxDestroyFn*);
SLEPC_EXTERN PetscErrorCode PEPMonitorCancel(PEP);
SLEPC_EXTERN PetscErrorCode PEPGetMonitorContext(PEP,void*);
SLEPC_EXTERN PetscErrorCode PEPMonitorSetFromOptions(PEP,const char[],const char[],void*,PetscBool);
SLEPC_EXTERN PEPMonitorRegisterFn PEPMonitorFirst;
SLEPC_EXTERN PEPMonitorRegisterFn PEPMonitorFirstDrawLG;
SLEPC_EXTERN PEPMonitorRegisterCreateFn PEPMonitorFirstDrawLGCreate;
SLEPC_EXTERN PEPMonitorRegisterFn PEPMonitorAll;
SLEPC_EXTERN PEPMonitorRegisterFn PEPMonitorAllDrawLG;
SLEPC_EXTERN PEPMonitorRegisterCreateFn PEPMonitorAllDrawLGCreate;
SLEPC_EXTERN PEPMonitorRegisterFn PEPMonitorConverged;
SLEPC_EXTERN PEPMonitorRegisterCreateFn PEPMonitorConvergedCreate;
SLEPC_EXTERN PEPMonitorRegisterFn PEPMonitorConvergedDrawLG;
SLEPC_EXTERN PEPMonitorRegisterCreateFn PEPMonitorConvergedDrawLGCreate;
SLEPC_EXTERN PEPMonitorRegisterDestroyFn PEPMonitorConvergedDestroy;
SLEPC_EXTERN PetscErrorCode PEPSetOptionsPrefix(PEP,const char[]);
SLEPC_EXTERN PetscErrorCode PEPAppendOptionsPrefix(PEP,const char[]);
SLEPC_EXTERN PetscErrorCode PEPGetOptionsPrefix(PEP,const char*[]);
SLEPC_EXTERN PetscFunctionList PEPList;
SLEPC_EXTERN PetscFunctionList PEPMonitorList;
SLEPC_EXTERN PetscFunctionList PEPMonitorCreateList;
SLEPC_EXTERN PetscFunctionList PEPMonitorDestroyList;
SLEPC_EXTERN PetscErrorCode PEPRegister(const char[],PetscErrorCode(*)(PEP));
SLEPC_EXTERN PetscErrorCode PEPMonitorRegister(const char[],PetscViewerType,PetscViewerFormat,PEPMonitorRegisterFn*,PEPMonitorRegisterCreateFn*,PEPMonitorRegisterDestroyFn*);
SLEPC_EXTERN PetscErrorCode PEPSetWorkVecs(PEP,PetscInt);
SLEPC_EXTERN PetscErrorCode PEPAllocateSolution(PEP,PetscInt);
/*S
PEPConvergenceTestFn - A prototype of a `PEP` convergence test function that
would be passed to `PEPSetConvergenceTestFunction()`.
Calling Sequence:
+ pep - the polynomial eigensolver context
. eigr - real part of the eigenvalue
. eigi - imaginary part of the eigenvalue
. res - residual norm associated to the eigenpair
. errest - [output] computed error estimate
- ctx - optional convergence context, as set by `PEPSetConvergenceTestFunction()`
Level: advanced
.seealso: [](ch:pep), `PEPSetConvergenceTest()`, `PEPSetConvergenceTestFunction()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode PEPConvergenceTestFn(PEP pep,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx);
SLEPC_EXTERN PetscErrorCode PEPSetConvergenceTest(PEP,PEPConv);
SLEPC_EXTERN PetscErrorCode PEPGetConvergenceTest(PEP,PEPConv*);
SLEPC_EXTERN PEPConvergenceTestFn PEPConvergedAbsolute;
SLEPC_EXTERN PEPConvergenceTestFn PEPConvergedRelative;
SLEPC_EXTERN PEPConvergenceTestFn PEPConvergedNorm;
SLEPC_EXTERN PetscErrorCode PEPSetConvergenceTestFunction(PEP,PEPConvergenceTestFn*,void*,PetscCtxDestroyFn*);
/*S
PEPStoppingTestFn - A prototype of a `PEP` stopping test function that would be
passed to `PEPSetStoppingTestFunction()`.
Calling Sequence:
+ pep - the polynomial eigensolver context
. its - current number of iterations
. max_it - maximum number of iterations
. nconv - number of currently converged eigenpairs
. nev - number of requested eigenpairs
. reason - [output] result of the stopping test
- ctx - optional stopping context, as set by `PEPSetStoppingTestFunction()`
Note:
A positive value of `reason` indicates that the iteration has finished successfully
(converged), and a negative value indicates an error condition (diverged). If
the iteration needs to be continued, `reason` must be set to `PEP_CONVERGED_ITERATING`
(zero).
Level: advanced
.seealso: [](ch:pep), `PEPSetStoppingTestFunction()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode PEPStoppingTestFn(PEP pep,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,PEPConvergedReason *reason,void *ctx);
SLEPC_EXTERN PetscErrorCode PEPSetStoppingTest(PEP,PEPStop);
SLEPC_EXTERN PetscErrorCode PEPGetStoppingTest(PEP,PEPStop*);
SLEPC_EXTERN PEPStoppingTestFn PEPStoppingBasic;
SLEPC_EXTERN PetscErrorCode PEPSetStoppingTestFunction(PEP,PEPStoppingTestFn*,void*,PetscCtxDestroyFn*);
SLEPC_EXTERN PetscErrorCode PEPSetEigenvalueComparison(PEP,SlepcEigenvalueComparisonFn*,void*);
/* --------- options specific to particular eigensolvers -------- */
SLEPC_EXTERN PetscErrorCode PEPLinearSetLinearization(PEP,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPLinearGetLinearization(PEP,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPLinearSetExplicitMatrix(PEP,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPLinearGetExplicitMatrix(PEP,PetscBool*);
SLEPC_EXTERN PetscErrorCode PEPLinearSetEPS(PEP,EPS);
SLEPC_EXTERN PetscErrorCode PEPLinearGetEPS(PEP,EPS*);
PETSC_DEPRECATED_FUNCTION(3, 10, 0, "PEPLinearSetLinearization()", ) static inline PetscErrorCode PEPLinearSetCompanionForm(PEP pep,PetscInt cform) {return (cform==1)?PEPLinearSetLinearization(pep,1.0,0.0):PEPLinearSetLinearization(pep,0.0,1.0);}
PETSC_DEPRECATED_FUNCTION(3, 10, 0, "PEPLinearGetLinearization()", ) static inline PetscErrorCode PEPLinearGetCompanionForm(PEP pep,PetscInt *cform) {(void)pep; if (cform) *cform=1; return PETSC_SUCCESS;}
SLEPC_EXTERN PetscErrorCode PEPQArnoldiSetRestart(PEP,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPQArnoldiGetRestart(PEP,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPQArnoldiSetLocking(PEP,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPQArnoldiGetLocking(PEP,PetscBool*);
SLEPC_EXTERN PetscErrorCode PEPTOARSetRestart(PEP,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPTOARGetRestart(PEP,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPTOARSetLocking(PEP,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPTOARGetLocking(PEP,PetscBool*);
SLEPC_EXTERN PetscErrorCode PEPSTOARSetLinearization(PEP,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPSTOARGetLinearization(PEP,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPSTOARSetLocking(PEP,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPSTOARGetLocking(PEP,PetscBool*);
SLEPC_EXTERN PetscErrorCode PEPSTOARSetDetectZeros(PEP,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPSTOARGetDetectZeros(PEP,PetscBool*);
SLEPC_EXTERN PetscErrorCode PEPSTOARGetInertias(PEP,PetscInt*,PetscReal*[],PetscInt*[]);
SLEPC_EXTERN PetscErrorCode PEPSTOARSetDimensions(PEP,PetscInt,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode PEPSTOARGetDimensions(PEP,PetscInt*,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode PEPSTOARSetCheckEigenvalueType(PEP,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPSTOARGetCheckEigenvalueType(PEP,PetscBool*);
SLEPC_EXTERN PetscErrorCode PEPCheckDefiniteQEP(PEP,PetscReal*,PetscReal*,PetscInt*,PetscInt*);
/*E
PEPJDProjection - The type of projection to be used in the Jacobi-Davidson solver.
Values:
+ `PEP_JD_PROJECTION_HARMONIC` - oblique projection
- `PEP_JD_PROJECTION_ORTHOGONAL` - orthogonal projection
Level: advanced
.seealso: [](ch:pep), `PEPJDSetProjection()`
E*/
typedef enum { PEP_JD_PROJECTION_HARMONIC,
PEP_JD_PROJECTION_ORTHOGONAL } PEPJDProjection;
SLEPC_EXTERN const char *PEPJDProjectionTypes[];
SLEPC_EXTERN PetscErrorCode PEPJDSetRestart(PEP,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPJDGetRestart(PEP,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPJDSetFix(PEP,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPJDGetFix(PEP,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPJDSetReusePreconditioner(PEP,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPJDGetReusePreconditioner(PEP,PetscBool*);
SLEPC_EXTERN PetscErrorCode PEPJDSetMinimalityIndex(PEP,PetscInt);
SLEPC_EXTERN PetscErrorCode PEPJDGetMinimalityIndex(PEP,PetscInt*);
SLEPC_EXTERN PetscErrorCode PEPJDSetProjection(PEP,PEPJDProjection);
SLEPC_EXTERN PetscErrorCode PEPJDGetProjection(PEP,PEPJDProjection*);
/*E
PEPCISSExtraction - The extraction technique used in the CISS solver.
Values:
+ `PEP_CISS_EXTRACTION_RITZ` - Rayleigh-Ritz extraction
. `PEP_CISS_EXTRACTION_HANKEL` - block Hankel method
- `PEP_CISS_EXTRACTION_CAA` - communication-avoiding Arnoldi method
Level: advanced
.seealso: [](ch:pep), `PEPCISSSetExtraction()`, `PEPCISSGetExtraction()`
E*/
typedef enum { PEP_CISS_EXTRACTION_RITZ,
PEP_CISS_EXTRACTION_HANKEL,
PEP_CISS_EXTRACTION_CAA } PEPCISSExtraction;
SLEPC_EXTERN const char *PEPCISSExtractions[];
#if defined(PETSC_USE_COMPLEX) || defined(PETSC_CLANG_STATIC_ANALYZER)
SLEPC_EXTERN PetscErrorCode PEPCISSSetExtraction(PEP,PEPCISSExtraction);
SLEPC_EXTERN PetscErrorCode PEPCISSGetExtraction(PEP,PEPCISSExtraction*);
SLEPC_EXTERN PetscErrorCode PEPCISSSetSizes(PEP,PetscInt,PetscInt,PetscInt,PetscInt,PetscInt,PetscBool);
SLEPC_EXTERN PetscErrorCode PEPCISSGetSizes(PEP,PetscInt*,PetscInt*,PetscInt*,PetscInt*,PetscInt*,PetscBool*);
SLEPC_EXTERN PetscErrorCode PEPCISSSetThreshold(PEP,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode PEPCISSGetThreshold(PEP,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode PEPCISSSetRefinement(PEP,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode PEPCISSGetRefinement(PEP,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode PEPCISSGetKSPs(PEP,PetscInt*,KSP*[]);
#else
#define SlepcPEPCISSUnavailable(pep) do { \
PetscFunctionBegin; \
SETERRQ(PetscObjectComm((PetscObject)pep),PETSC_ERR_SUP,"%s() not available with real scalars",PETSC_FUNCTION_NAME); \
} while (0)
static inline PetscErrorCode PEPCISSSetExtraction(PEP pep,PETSC_UNUSED PEPCISSExtraction ex) {SlepcPEPCISSUnavailable(pep);}
static inline PetscErrorCode PEPCISSGetExtraction(PEP pep,PETSC_UNUSED PEPCISSExtraction *ex) {SlepcPEPCISSUnavailable(pep);}
static inline PetscErrorCode PEPCISSSetSizes(PEP pep,PETSC_UNUSED PetscInt ip,PETSC_UNUSED PetscInt bs,PETSC_UNUSED PetscInt ms,PETSC_UNUSED PetscInt npart,PETSC_UNUSED PetscInt bsmax,PETSC_UNUSED PetscBool realmats) {SlepcPEPCISSUnavailable(pep);}
static inline PetscErrorCode PEPCISSGetSizes(PEP pep,PETSC_UNUSED PetscInt *ip,PETSC_UNUSED PetscInt *bs,PETSC_UNUSED PetscInt *ms,PETSC_UNUSED PetscInt *npart,PETSC_UNUSED PetscInt *bsmak,PETSC_UNUSED PetscBool *realmats) {SlepcPEPCISSUnavailable(pep);}
static inline PetscErrorCode PEPCISSSetThreshold(PEP pep,PETSC_UNUSED PetscReal delta,PETSC_UNUSED PetscReal spur) {SlepcPEPCISSUnavailable(pep);}
static inline PetscErrorCode PEPCISSGetThreshold(PEP pep,PETSC_UNUSED PetscReal *delta,PETSC_UNUSED PetscReal *spur) {SlepcPEPCISSUnavailable(pep);}
static inline PetscErrorCode PEPCISSSetRefinement(PEP pep,PETSC_UNUSED PetscInt inner,PETSC_UNUSED PetscInt blsize) {SlepcPEPCISSUnavailable(pep);}
static inline PetscErrorCode PEPCISSGetRefinement(PEP pep,PETSC_UNUSED PetscInt *inner,PETSC_UNUSED PetscInt *blsize) {SlepcPEPCISSUnavailable(pep);}
static inline PetscErrorCode PEPCISSGetKSPs(PEP pep,PETSC_UNUSED PetscInt *nsolve,PETSC_UNUSED KSP *ksp[]) {SlepcPEPCISSUnavailable(pep);}
#undef SlepcPEPCISSUnavailable
#endif
|