1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/*
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SLEPc - Scalable Library for Eigenvalue Problem Computations
Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
This file is part of SLEPc.
SLEPc is distributed under a 2-clause BSD license (see LICENSE).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
/*
Spectral transformation module for eigenvalue problems
*/
#pragma once
#include <slepcsys.h>
#include <slepcbv.h>
#include <petscksp.h>
/* SUBMANSEC = ST */
SLEPC_EXTERN PetscErrorCode STInitializePackage(void);
SLEPC_EXTERN PetscErrorCode STFinalizePackage(void);
/*S
ST - Spectral transformation, encapsulates the functionality required
for acceleration techniques based on the transformation of the spectrum,
e.g., shift-and-invert.
Level: beginner
.seealso: [](ch:st), `STCreate()`
S*/
typedef struct _p_ST* ST;
/*J
STType - String with the name of the spectral transformation type.
Level: beginner
.seealso: [](ch:st), `ST`, `STSetType()`
J*/
typedef const char *STType;
#define STSHIFT "shift"
#define STSINVERT "sinvert"
#define STCAYLEY "cayley"
#define STPRECOND "precond"
#define STFILTER "filter"
#define STSHELL "shell"
/* Logging support */
SLEPC_EXTERN PetscClassId ST_CLASSID;
SLEPC_EXTERN PetscErrorCode STCreate(MPI_Comm,ST*);
SLEPC_EXTERN PetscErrorCode STDestroy(ST*);
SLEPC_EXTERN PetscErrorCode STReset(ST);
SLEPC_EXTERN PetscErrorCode STSetType(ST,STType);
SLEPC_EXTERN PetscErrorCode STGetType(ST,STType*);
SLEPC_EXTERN PetscErrorCode STSetMatrices(ST,PetscInt,Mat[]);
SLEPC_EXTERN PetscErrorCode STGetMatrix(ST,PetscInt,Mat*);
SLEPC_EXTERN PetscErrorCode STGetMatrixTransformed(ST,PetscInt,Mat*);
SLEPC_EXTERN PetscErrorCode STGetNumMatrices(ST,PetscInt*);
SLEPC_EXTERN PetscErrorCode STGetOperator(ST,Mat*);
SLEPC_EXTERN PetscErrorCode STRestoreOperator(ST,Mat*);
SLEPC_EXTERN PetscErrorCode STSetUp(ST);
SLEPC_EXTERN PetscErrorCode STSetFromOptions(ST);
SLEPC_EXTERN PetscErrorCode STView(ST,PetscViewer);
SLEPC_EXTERN PetscErrorCode STViewFromOptions(ST,PetscObject,const char[]);
PETSC_DEPRECATED_FUNCTION(3, 15, 0, "STSetMatrices()", ) static inline PetscErrorCode STSetOperators(ST st,PetscInt n,Mat *A) {return STSetMatrices(st,n,A);}
PETSC_DEPRECATED_FUNCTION(3, 15, 0, "STGetMatrix()", ) static inline PetscErrorCode STGetOperators(ST st,PetscInt k,Mat *A) {return STGetMatrix(st,k,A);}
PETSC_DEPRECATED_FUNCTION(3, 15, 0, "STGetMatrixTransformed()", ) static inline PetscErrorCode STGetTOperators(ST st,PetscInt k,Mat *A) {return STGetMatrixTransformed(st,k,A);}
PETSC_DEPRECATED_FUNCTION(3, 15, 0, "STGetOperator() followed by MatComputeOperator()", ) static inline PetscErrorCode STComputeExplicitOperator(ST st,Mat *A)
{
Mat Op;
PetscFunctionBegin;
PetscCall(STGetOperator(st,&Op));
PetscCall(MatComputeOperator(Op,MATAIJ,A));
PetscCall(STRestoreOperator(st,&Op));
PetscFunctionReturn(PETSC_SUCCESS);
}
SLEPC_EXTERN PetscErrorCode STApply(ST,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STApplyMat(ST,Mat,Mat);
SLEPC_EXTERN PetscErrorCode STApplyTranspose(ST,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STApplyHermitianTranspose(ST,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STMatMult(ST,PetscInt,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STMatMultTranspose(ST,PetscInt,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STMatMultHermitianTranspose(ST,PetscInt,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STMatSolve(ST,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STMatSolveTranspose(ST,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STMatSolveHermitianTranspose(ST,Vec,Vec);
SLEPC_EXTERN PetscErrorCode STMatMatSolve(ST,Mat,Mat);
SLEPC_EXTERN PetscErrorCode STGetBilinearForm(ST,Mat*);
SLEPC_EXTERN PetscErrorCode STMatSetUp(ST,PetscScalar,PetscScalar[]);
SLEPC_EXTERN PetscErrorCode STPostSolve(ST);
SLEPC_EXTERN PetscErrorCode STResetMatrixState(ST);
SLEPC_EXTERN PetscErrorCode STSetWorkVecs(ST,PetscInt);
SLEPC_EXTERN PetscErrorCode STSetKSP(ST,KSP);
SLEPC_EXTERN PetscErrorCode STGetKSP(ST,KSP*);
SLEPC_EXTERN PetscErrorCode STSetShift(ST,PetscScalar);
SLEPC_EXTERN PetscErrorCode STGetShift(ST,PetscScalar*);
SLEPC_EXTERN PetscErrorCode STSetDefaultShift(ST,PetscScalar);
SLEPC_EXTERN PetscErrorCode STScaleShift(ST,PetscScalar);
SLEPC_EXTERN PetscErrorCode STSetBalanceMatrix(ST,Vec);
SLEPC_EXTERN PetscErrorCode STGetBalanceMatrix(ST,Vec*);
SLEPC_EXTERN PetscErrorCode STSetTransform(ST,PetscBool);
SLEPC_EXTERN PetscErrorCode STGetTransform(ST,PetscBool*);
SLEPC_EXTERN PetscErrorCode STSetStructured(ST,PetscBool);
SLEPC_EXTERN PetscErrorCode STGetStructured(ST,PetscBool*);
SLEPC_EXTERN PetscErrorCode STSetOptionsPrefix(ST,const char[]);
SLEPC_EXTERN PetscErrorCode STAppendOptionsPrefix(ST,const char[]);
SLEPC_EXTERN PetscErrorCode STGetOptionsPrefix(ST,const char*[]);
SLEPC_EXTERN PetscErrorCode STBackTransform(ST,PetscInt,PetscScalar[],PetscScalar[]);
SLEPC_EXTERN PetscErrorCode STIsInjective(ST,PetscBool*);
SLEPC_EXTERN PetscErrorCode STCheckNullSpace(ST,BV);
SLEPC_EXTERN PetscErrorCode STSetPreconditionerMat(ST,Mat);
SLEPC_EXTERN PetscErrorCode STGetPreconditionerMat(ST,Mat*);
SLEPC_EXTERN PetscErrorCode STSetSplitPreconditioner(ST,PetscInt,Mat[],MatStructure);
SLEPC_EXTERN PetscErrorCode STGetSplitPreconditionerTerm(ST,PetscInt,Mat*);
SLEPC_EXTERN PetscErrorCode STGetSplitPreconditionerInfo(ST,PetscInt*,MatStructure*);
SLEPC_EXTERN PetscErrorCode STMatCreateVecs(ST,Vec*,Vec*);
SLEPC_EXTERN PetscErrorCode STMatCreateVecsEmpty(ST,Vec*,Vec*);
SLEPC_EXTERN PetscErrorCode STMatGetSize(ST,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode STMatGetLocalSize(ST,PetscInt*,PetscInt*);
/*E
STMatMode - Determines how to handle the coefficient matrix of the linear
system associated with the spectral transformation.
Values:
+ `ST_MATMODE_COPY` - the coefficient matrix is built explicitly on a copy of $A$
. `ST_MATMODE_INPLACE` - the coefficient matrix is built explicitly overwriting $A$
- `ST_MATMODE_SHELL` - the coefficient matrix is handled implicitly
Level: intermediate
.seealso: [](ch:st), `STSetMatMode()`, `STGetMatMode()`
E*/
typedef enum { ST_MATMODE_COPY,
ST_MATMODE_INPLACE,
ST_MATMODE_SHELL } STMatMode;
SLEPC_EXTERN const char *STMatModes[];
/*MC
ST_MATMODE_COPY - The coefficient matrix of the linear system, $A-\sigma B$, is
built explicitly on a copy of $A$.
Note:
If memory is an issue, one may prefer one of the other two modes.
Level: intermediate
.seealso: [](ch:st), `STMatMode`, `STSetMatMode()`, `ST_MATMODE_INPLACE`, `ST_MATMODE_SHELL`
M*/
/*MC
ST_MATMODE_INPLACE - The coefficient matrix of the linear system, $A-\sigma B$, is
built explicitly overwritting $A$.
Note:
This mode uses less memory than `ST_MATMODE_COPY`, but it modifies $A$. This
alteration of $A$ is reversed after the eigensolution process has finished,
but due to roundoff, the result might not be exactly equal to the original $A$.
Level: intermediate
.seealso: [](ch:st), `STMatMode`, `STSetMatMode()`, `ST_MATMODE_COPY`, `ST_MATMODE_SHELL`
M*/
/*MC
ST_MATMODE_SHELL - The coefficient matrix of the linear system, $A-\sigma B$, is
not built explicitly, and instead it is handled implicitly via a `MATSHELL`.
Note:
This mode severely restricts the number of possibilities available for solving
the linear system via `KSP`.
Level: intermediate
.seealso: [](ch:st), `STMatMode`, `STSetMatMode()`, `ST_MATMODE_COPY`, `ST_MATMODE_INPLACE`
M*/
SLEPC_EXTERN PetscErrorCode STSetMatMode(ST,STMatMode);
SLEPC_EXTERN PetscErrorCode STGetMatMode(ST,STMatMode*);
SLEPC_EXTERN PetscErrorCode STSetMatStructure(ST,MatStructure);
SLEPC_EXTERN PetscErrorCode STGetMatStructure(ST,MatStructure*);
SLEPC_EXTERN PetscFunctionList STList;
SLEPC_EXTERN PetscErrorCode STRegister(const char[],PetscErrorCode(*)(ST));
/* --------- options specific to particular spectral transformations-------- */
/*S
STShellApplyFn - A prototype of a function for the user-defined `STApply()`
operation in an `STSHELL`.
Calling Sequence:
+ st - the spectral transformation context
. xin - input vector
- xout - output vector
Level: advanced
.seealso: [](ch:st), `STShellSetApply()`, `STApply()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode STShellApplyFn(ST st,Vec xin,Vec xout);
/*S
STShellApplyTransposeFn - A prototype of a function for the user-defined `STApplyTranspose()`
operation in an `STSHELL`.
Calling Sequence:
+ st - the spectral transformation context
. xin - input vector
- xout - output vector
Level: advanced
.seealso: [](ch:st), `STShellSetApplyTranspose()`, `STApplyTranspose()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode STShellApplyTransposeFn(ST st,Vec xin,Vec xout);
/*S
STShellApplyHermitianTransposeFn - A prototype of a function for the user-defined
`STApplyHermitianTranspose()` operation in an `STSHELL`.
Calling Sequence:
+ st - the spectral transformation context
. xin - input vector
- xout - output vector
Level: advanced
.seealso: [](ch:st), `STShellSetApplyHermitianTranspose()`, `STApplyHermitianTranspose()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode STShellApplyHermitianTransposeFn(ST st,Vec xin,Vec xout);
/*S
STShellBackTransformFn - A prototype of a function for the user-defined `STBackTransform()`
operation in an `STSHELL`.
Calling Sequence:
+ st - the spectral transformation context
. n - number of eigenvalues to be backtransformed
. eigr - pointer to the real parts of the eigenvalues to transform back
- eigi - pointer to the imaginary parts
Level: advanced
.seealso: [](ch:st), `STShellSetBackTransform()`, `STBackTransform()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode STShellBackTransformFn(ST st,PetscInt n,PetscScalar *eigr,PetscScalar *eigi);
SLEPC_EXTERN PetscErrorCode STShellGetContext(ST,void*);
SLEPC_EXTERN PetscErrorCode STShellSetContext(ST,void*);
SLEPC_EXTERN PetscErrorCode STShellSetApply(ST,STShellApplyFn*);
SLEPC_EXTERN PetscErrorCode STShellSetApplyTranspose(ST,STShellApplyTransposeFn*);
SLEPC_EXTERN PetscErrorCode STShellSetApplyHermitianTranspose(ST,STShellApplyHermitianTransposeFn*);
SLEPC_EXTERN PetscErrorCode STShellSetBackTransform(ST,STShellBackTransformFn*);
SLEPC_EXTERN PetscErrorCode STCayleyGetAntishift(ST,PetscScalar*);
SLEPC_EXTERN PetscErrorCode STCayleySetAntishift(ST,PetscScalar);
PETSC_DEPRECATED_FUNCTION(3, 15, 0, "STGetPreconditionerMat()", ) static inline PetscErrorCode STPrecondGetMatForPC(ST st,Mat *A) {return STGetPreconditionerMat(st,A);}
PETSC_DEPRECATED_FUNCTION(3, 15, 0, "STSetPreconditionerMat()", ) static inline PetscErrorCode STPrecondSetMatForPC(ST st,Mat A) {return STSetPreconditionerMat(st,A);}
SLEPC_EXTERN PetscErrorCode STPrecondGetKSPHasMat(ST,PetscBool*);
SLEPC_EXTERN PetscErrorCode STPrecondSetKSPHasMat(ST,PetscBool);
/*E
STFilterType - Selects the method used to build the filter.
Values:
+ `ST_FILTER_FILTLAN` - the filter is built with FILTLAN (Filtered Lanczos)
- `ST_FILTER_CHEBYSHEV` - the filter is built with a Chebyshev series
Level: intermediate
.seealso: [](ch:st), `STFilterSetType()`, `STGetFilterType()`
E*/
typedef enum { ST_FILTER_FILTLAN = 1,
ST_FILTER_CHEBYSHEV = 2 } STFilterType;
SLEPC_EXTERN const char *STFilterTypes[];
/*MC
ST_FILTER_FILTLAN - The polynomial filter is built with FILTLAN (Filtered Lanczos).
Note:
This filter implements the Filtered Lanczos method {cite:p}`Fan12`. In fact,
the implementation adapts files from the FILTLAN package by the same authors,
which have been converted for a native integration in SLEPc.
Level: intermediate
.seealso: [](ch:st), `STFilterType`, `STFilterSetType()`, `ST_FILTER_CHEBYSHEV`
M*/
/*MC
ST_FILTER_CHEBYSHEV - The filter is based on a truncated Chebyshev series.
Note:
The application of the filter is implemented by means of a Clenshaw
algorithm. This filter also supports using damping, see `STFilterSetDamping()`.
Level: intermediate
.seealso: [](ch:st), `STFilterType`, `STSetFilterType()`, `STFilterSetDamping()`, `ST_FILTER_FILTLAN`
M*/
/*E
STFilterDamping - The damping type used to build the filter.
Values:
+ `ST_FILTER_DAMPING_NONE` - no damping
. `ST_FILTER_DAMPING_JACKSON` - Jackson damping
. `ST_FILTER_DAMPING_LANCZOS` - Lanczos damping
- `ST_FILTER_DAMPING_FEJER` - Fejer damping
Notes:
The default is no damping.
For the definition of the damping coefficients, see for instance {cite:p}`Pie16`
Level: advanced
.seealso: [](ch:st), `STSetFilterDamping()`, `STGetFilterDamping()`
E*/
typedef enum { ST_FILTER_DAMPING_NONE,
ST_FILTER_DAMPING_JACKSON,
ST_FILTER_DAMPING_LANCZOS,
ST_FILTER_DAMPING_FEJER } STFilterDamping;
SLEPC_EXTERN const char *STFilterDampings[];
/*MC
ST_MATMODE_COPY - The coefficient matrix of the linear system, $A-\sigma B$, is
built explicitly on a copy of $A$.
Note:
If memory is an issue, one may prefer one of the other two modes.
Level: intermediate
.seealso: [](ch:st), `STMatMode`, `STSetMatMode()`, `ST_MATMODE_INPLACE`, `ST_MATMODE_SHELL`
M*/
SLEPC_EXTERN PetscErrorCode STFilterSetType(ST,STFilterType);
SLEPC_EXTERN PetscErrorCode STFilterGetType(ST,STFilterType*);
SLEPC_EXTERN PetscErrorCode STFilterSetInterval(ST,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode STFilterGetInterval(ST,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode STFilterSetRange(ST,PetscReal,PetscReal);
SLEPC_EXTERN PetscErrorCode STFilterGetRange(ST,PetscReal*,PetscReal*);
SLEPC_EXTERN PetscErrorCode STFilterSetDegree(ST,PetscInt);
SLEPC_EXTERN PetscErrorCode STFilterGetDegree(ST,PetscInt*);
SLEPC_EXTERN PetscErrorCode STFilterGetThreshold(ST,PetscReal*);
SLEPC_EXTERN PetscErrorCode STFilterSetDamping(ST,STFilterDamping);
SLEPC_EXTERN PetscErrorCode STFilterGetDamping(ST,STFilterDamping*);
|