1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
/*
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SLEPc - Scalable Library for Eigenvalue Problem Computations
Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
This file is part of SLEPc.
SLEPc is distributed under a 2-clause BSD license (see LICENSE).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
/*
User interface for SLEPc's singular value solvers
*/
#pragma once
#include <slepceps.h>
#include <slepcbv.h>
#include <slepcds.h>
/* SUBMANSEC = SVD */
SLEPC_EXTERN PetscErrorCode SVDInitializePackage(void);
SLEPC_EXTERN PetscErrorCode SVDFinalizePackage(void);
/*S
SVD - SLEPc object that manages all the singular value problem solvers.
Level: beginner
.seealso: [](ch:svd), `SVDCreate()`
S*/
typedef struct _p_SVD* SVD;
/*J
SVDType - String with the name of a singular value solver.
Level: beginner
.seealso: [](ch:svd), `SVDSetType()`, `SVD`
J*/
typedef const char *SVDType;
#define SVDCROSS "cross"
#define SVDCYCLIC "cyclic"
#define SVDLANCZOS "lanczos"
#define SVDTRLANCZOS "trlanczos"
#define SVDRANDOMIZED "randomized"
#define SVDLAPACK "lapack"
#define SVDSCALAPACK "scalapack"
#define SVDKSVD "ksvd"
#define SVDELEMENTAL "elemental"
#define SVDPRIMME "primme"
/* Logging support */
SLEPC_EXTERN PetscClassId SVD_CLASSID;
/*E
SVDProblemType - Determines the type of the singular value problem.
Values:
+ `SVD_STANDARD` - standard SVD (SVD)
. `SVD_GENERALIZED` - generalized SVD (GSVD)
- `SVD_HYPERBOLIC` - hyperbolic SVD (HSVD)
Level: beginner
.seealso: [](ch:svd), `SVDSetProblemType()`, `SVDGetProblemType()`
E*/
typedef enum { SVD_STANDARD = 1,
SVD_GENERALIZED = 2,
SVD_HYPERBOLIC = 3
} SVDProblemType;
/*MC
SVD_STANDARD - A (standard) singular value problem (SVD).
Note:
The problem is formulated as $A=U\Sigma V^*$, where $A$ is a possibly
non-square matrix.
Level: beginner
.seealso: [](ch:svd), `SVDProblemType`, `SVDSetProblemType()`, `SVD_GENERALIZED`, `SVD_HYPERBOLIC`
M*/
/*MC
SVD_GENERALIZED - A generalized singular value problem (GSVD).
Note:
The problem is formulated as $U^*AX=C$, $V^*BX=S$, where $A$ and $B$
have the same number of columns.
Level: beginner
.seealso: [](ch:svd), `SVDProblemType`, `SVDSetProblemType()`, `SVD_STANDARD`, `SVD_HYPERBOLIC`
M*/
/*MC
SVD_HYPERBOLIC - A hyperbolic singular value problem (HSVD).
Note:
The problem is formulated as $A=U\Sigma V^*$, with $U^*\Omega U=\tilde\Omega$,
where $A$ is a possibly non-square matrix, and $\Omega$, $\tilde\Omega$
are signature matrices.
Level: beginner
.seealso: [](ch:svd), `SVDProblemType`, `SVDSetProblemType()`, `SVD_STANDARD`, `SVD_GENERALIZED`
M*/
/*E
SVDWhich - Determines whether largest or smallest singular values
are to be computed.
Values:
+ `SVD_LARGEST` - largest singular values
- `SVD_SMALLEST` - smallest singular values
Level: intermediate
.seealso: [](ch:svd), `SVDSetWhichSingularTriplets()`, `SVDGetWhichSingularTriplets()`
E*/
typedef enum { SVD_LARGEST,
SVD_SMALLEST } SVDWhich;
/*MC
SVD_LARGEST - The solver is configured to compute largest singular values.
Note:
This is the default.
Level: intermediate
.seealso: [](ch:svd), `SVDWhich`, `SVDSetWhichSingularTriplets()`, `SVD_SMALLEST`
M*/
/*MC
SVD_SMALLEST - The solver is configured to compute smallest singular values.
Note:
Computing small singular values is generally more difficult than computing
largest ones, because in many cases these values are very small and
tightly clustered together. In the case of rank-deficient matrices, smallest
singular values are zero, and this may pose difficulties to the solvers.
Level: intermediate
.seealso: [](ch:svd), `SVDWhich`, `SVDSetWhichSingularTriplets()`, `SVD_LARGEST`
M*/
/*E
SVDErrorType - The error type used to assess accuracy of computed solutions.
Values:
+ `SVD_ERROR_ABSOLUTE` - compute error bound as $\|r\|$
. `SVD_ERROR_RELATIVE` - compute error bound as $\|r\|/\sigma$
- `SVD_ERROR_NORM` - compute error bound as $\|r\|/\max\{\|A\|,\|B\|\}$
Note:
The residual norm $\|r\|$ is actually computed from two parts, such as
$\sqrt{\eta_1^2+\eta_2^2}$ with $\eta_1 = \|Av-\sigma u\|_2$ and
$\eta_2 = \|A^*u-\sigma v\|_2$, see more details at `SVDComputeError()`.
There is also a normalization factor related to the norm of the vectors,
which also varies with the problem type.
Level: intermediate
.seealso: [](ch:svd), `SVDComputeError()`, `SVDProblemType`
E*/
typedef enum { SVD_ERROR_ABSOLUTE,
SVD_ERROR_RELATIVE,
SVD_ERROR_NORM } SVDErrorType;
SLEPC_EXTERN const char *SVDErrorTypes[];
/*E
SVDConv - The convergence criterion to be used by the solver.
Values:
+ `SVD_CONV_ABS` - absolute convergence criterion, $\|r\|$
. `SVD_CONV_REL` - convergence criterion relative to singular value, $\|r\|/\sigma$
. `SVD_CONV_NORM` - convergence criterion relative to matrix norms, $\|r\|/\max\{\|A\|,\|B\|\}$
. `SVD_CONV_MAXIT` - no convergence until maximum number of iterations has been reached
- `SVD_CONV_USER` - convergence dictated by user-provided function
Note:
The `SVD_CONV_MAXIT` convergence criterion is used only in `SVDRANDOMIZED`.
Level: intermediate
.seealso: [](ch:svd), `SVDSetConvergenceTest()`, `SVDSetConvergenceTestFunction()`, `SVDSetTolerances()`
E*/
typedef enum { SVD_CONV_ABS,
SVD_CONV_REL,
SVD_CONV_NORM,
SVD_CONV_MAXIT,
SVD_CONV_USER } SVDConv;
/*E
SVDStop - The stopping test to decide the termination of the outer loop
of the singular value solver.
Values:
+ `SVD_STOP_BASIC` - default stopping test
. `SVD_STOP_USER` - user-provided stopping test
- `SVD_STOP_THRESHOLD` - threshold stopping test
Level: advanced
.seealso: [](ch:svd), `SVDSetStoppingTest()`, `SVDSetStoppingTestFunction()`
E*/
typedef enum { SVD_STOP_BASIC,
SVD_STOP_USER,
SVD_STOP_THRESHOLD } SVDStop;
/*MC
SVD_STOP_BASIC - The default stopping test.
Note:
By default, the termination of the outer loop is decided by calling
`SVDStoppingBasic()`, which will stop if all requested singular values are converged,
or if the maximum number of iterations has been reached.
Level: advanced
.seealso: [](ch:svd), `SVDStop`, `SVDSetStoppingTest()`, `SVDStoppingBasic()`
M*/
/*MC
SVD_STOP_USER - The user-provided stopping test.
Note:
Customized stopping test using the user-provided function given with
`SVDSetStoppingTestFunction()`.
Level: advanced
.seealso: [](ch:svd), `SVDStop`, `SVDSetStoppingTest()`, `SVDSetStoppingTestFunction()`
M*/
/*MC
SVD_STOP_THRESHOLD - The threshold stopping test.
Note:
When a threshold has been provided with `SVDSetThreshold()`, the termination
of the outer loop is decided by calling `SVDStoppingThreshold()`, which will
stop when one of the computed singular values is not above/below the threshold.
If a number of wanted singular values has been specified via `SVDSetDimensions()`
then it is also taken into account, and the solver will stop when one of the
two conditions (threshold or number of converged values) is met.
Level: advanced
.seealso: [](ch:svd), `SVDStop`, `SVDSetStoppingTest()`, `SVDStoppingThreshold()`, `SVDSetThreshold()`, `SVDSetDimensions()`
M*/
/*E
SVDConvergedReason - Reason a singular value solver was determined to have
converged or diverged.
Values:
+ `SVD_CONVERGED_TOL` - converged up to tolerance
. `SVD_CONVERGED_USER` - converged due to a user-defined condition
. `SVD_CONVERGED_MAXIT` - reached maximum number of iterations with `SVD_CONV_MAXIT` criterion
. `SVD_DIVERGED_ITS` - exceeded the maximum number of allowed iterations
. `SVD_DIVERGED_BREAKDOWN` - generic breakdown in method
. `SVD_DIVERGED_SYMMETRY_LOST` - underlying indefinite eigensolver was not able to keep symmetry
- `SVD_CONVERGED_ITERATING` - the solver is still running
Level: intermediate
.seealso: [](ch:svd), `SVDSolve()`, `SVDGetConvergedReason()`, `SVDSetTolerances()`
E*/
typedef enum {/* converged */
SVD_CONVERGED_TOL = 1,
SVD_CONVERGED_USER = 2,
SVD_CONVERGED_MAXIT = 3,
/* diverged */
SVD_DIVERGED_ITS = -1,
SVD_DIVERGED_BREAKDOWN = -2,
SVD_DIVERGED_SYMMETRY_LOST = -3,
SVD_CONVERGED_ITERATING = 0 } SVDConvergedReason;
SLEPC_EXTERN const char *const*SVDConvergedReasons;
/*MC
SVD_CONVERGED_TOL - The computed error estimates, based on residual norms,
for all requested singular values are below the tolerance.
Level: intermediate
.seealso: [](ch:svd), `SVDSolve()`, `SVDGetConvergedReason()`, `SVDConvergedReason`
M*/
/*MC
SVD_CONVERGED_USER - The solver was declared converged due to a user-defined condition.
Note:
This happens only when a user-defined stopping test has been set with
`SVDSetStoppingTestFunction()`.
Level: intermediate
.seealso: [](ch:svd), `SVDSolve()`, `SVDGetConvergedReason()`, `SVDConvergedReason`, `SVDSetStoppingTestFunction()`
M*/
/*MC
SVD_CONVERGED_MAXIT - The solver has reached the maximum number of iterations
with the `SVD_CONV_MAXIT` criterion.
Note:
This is considered a successful exit, because the user wanted to do a fixed
number of iterations. But be aware that the computed solution may be inaccurate,
in particular, individual singular vectors will not have good residual. This
is available in `SVDRANDOMIZED` only.
Level: intermediate
.seealso: [](ch:svd), `SVDSolve()`, `SVDGetConvergedReason()`, `SVDConvergedReason`, `SVD_CONV_MAXIT`, `SVDRANDOMIZED`
M*/
/*MC
SVD_DIVERGED_ITS - Exceeded the maximum number of allowed iterations
before the convergence criterion was satisfied.
Level: intermediate
.seealso: [](ch:svd), `SVDSolve()`, `SVDGetConvergedReason()`, `SVDConvergedReason`
M*/
/*MC
SVD_DIVERGED_BREAKDOWN - A breakdown in the solver was detected so the
method could not continue.
Level: intermediate
.seealso: [](ch:svd), `SVDSolve()`, `SVDGetConvergedReason()`, `SVDConvergedReason`
M*/
/*MC
SVD_DIVERGED_SYMMETRY_LOST - The selected solver uses a pseudo-Lanczos recurrence,
which is numerically unstable, and a symmetry test revealed that instability
had appeared so the solver could not continue.
Level: intermediate
.seealso: [](ch:svd), `SVDSolve()`, `SVDGetConvergedReason()`, `SVDConvergedReason`
M*/
/*MC
SVD_CONVERGED_ITERATING - This value is returned if `SVDGetConvergedReason()` is called
while `SVDSolve()` is still running.
Level: intermediate
.seealso: [](ch:svd), `SVDSolve()`, `SVDGetConvergedReason()`, `SVDConvergedReason`
M*/
/*S
SVDStoppingCtx - Data structure (C struct) to hold additional information to
be used in some stopping test functions.
Level: advanced
.seealso: [](ch:svd), `SVDSetStoppingTestFunction()`
S*/
struct _n_SVDStoppingCtx {
PetscReal firstsv; /* the value of the first converged singular value */
PetscReal lastsv; /* the value of the last converged singular value */
PetscReal thres; /* threshold set with SVDSetThreshold() */
PetscBool threlative; /* threshold is relative */
SVDWhich which; /* which singular values are being computed */
};
typedef struct _n_SVDStoppingCtx* SVDStoppingCtx;
SLEPC_EXTERN PetscErrorCode SVDCreate(MPI_Comm,SVD*);
SLEPC_EXTERN PetscErrorCode SVDSetBV(SVD,BV,BV);
SLEPC_EXTERN PetscErrorCode SVDGetBV(SVD,BV*,BV*);
SLEPC_EXTERN PetscErrorCode SVDSetDS(SVD,DS);
SLEPC_EXTERN PetscErrorCode SVDGetDS(SVD,DS*);
SLEPC_EXTERN PetscErrorCode SVDSetType(SVD,SVDType);
SLEPC_EXTERN PetscErrorCode SVDGetType(SVD,SVDType*);
SLEPC_EXTERN PetscErrorCode SVDSetProblemType(SVD,SVDProblemType);
SLEPC_EXTERN PetscErrorCode SVDGetProblemType(SVD,SVDProblemType*);
SLEPC_EXTERN PetscErrorCode SVDIsGeneralized(SVD,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDIsHyperbolic(SVD,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDSetOperators(SVD,Mat,Mat);
PETSC_DEPRECATED_FUNCTION(3, 15, 0, "SVDSetOperators()", ) static inline PetscErrorCode SVDSetOperator(SVD svd,Mat A) {return SVDSetOperators(svd,A,PETSC_NULLPTR);}
SLEPC_EXTERN PetscErrorCode SVDGetOperators(SVD,Mat*,Mat*);
PETSC_DEPRECATED_FUNCTION(3, 15, 0, "SVDGetOperators()", ) static inline PetscErrorCode SVDGetOperator(SVD svd,Mat *A) {return SVDGetOperators(svd,A,PETSC_NULLPTR);}
SLEPC_EXTERN PetscErrorCode SVDSetSignature(SVD,Vec);
SLEPC_EXTERN PetscErrorCode SVDGetSignature(SVD,Vec);
SLEPC_EXTERN PetscErrorCode SVDSetInitialSpaces(SVD,PetscInt,Vec[],PetscInt,Vec[]);
PETSC_DEPRECATED_FUNCTION(3, 1, 0, "SVDSetInitialSpaces()", ) static inline PetscErrorCode SVDSetInitialSpace(SVD svd,PetscInt nr,Vec *isr) {return SVDSetInitialSpaces(svd,nr,isr,0,PETSC_NULLPTR);}
PETSC_DEPRECATED_FUNCTION(3, 1, 0, "SVDSetInitialSpaces()", ) static inline PetscErrorCode SVDSetInitialSpaceLeft(SVD svd,PetscInt nl,Vec *isl) {return SVDSetInitialSpaces(svd,0,PETSC_NULLPTR,nl,isl);}
SLEPC_EXTERN PetscErrorCode SVDSetImplicitTranspose(SVD,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDGetImplicitTranspose(SVD,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDSetDimensions(SVD,PetscInt,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode SVDGetDimensions(SVD,PetscInt*,PetscInt*,PetscInt*);
SLEPC_EXTERN PetscErrorCode SVDSetTolerances(SVD,PetscReal,PetscInt);
SLEPC_EXTERN PetscErrorCode SVDGetTolerances(SVD,PetscReal*,PetscInt*);
SLEPC_EXTERN PetscErrorCode SVDSetWhichSingularTriplets(SVD,SVDWhich);
SLEPC_EXTERN PetscErrorCode SVDGetWhichSingularTriplets(SVD,SVDWhich*);
SLEPC_EXTERN PetscErrorCode SVDSetThreshold(SVD,PetscReal,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDGetThreshold(SVD,PetscReal*,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDSetFromOptions(SVD);
SLEPC_EXTERN PetscErrorCode SVDSetOptionsPrefix(SVD,const char[]);
SLEPC_EXTERN PetscErrorCode SVDAppendOptionsPrefix(SVD,const char[]);
SLEPC_EXTERN PetscErrorCode SVDGetOptionsPrefix(SVD,const char*[]);
SLEPC_EXTERN PetscErrorCode SVDSetDSType(SVD);
SLEPC_EXTERN PetscErrorCode SVDSetUp(SVD);
SLEPC_EXTERN PetscErrorCode SVDSolve(SVD);
SLEPC_EXTERN PetscErrorCode SVDGetIterationNumber(SVD,PetscInt*);
SLEPC_EXTERN PetscErrorCode SVDGetConvergedReason(SVD,SVDConvergedReason*);
SLEPC_EXTERN PetscErrorCode SVDGetConverged(SVD,PetscInt*);
SLEPC_EXTERN PetscErrorCode SVDGetSingularTriplet(SVD,PetscInt,PetscReal*,Vec,Vec);
SLEPC_EXTERN PetscErrorCode SVDComputeError(SVD,PetscInt,SVDErrorType,PetscReal*);
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "SVDComputeError()", ) static inline PetscErrorCode SVDComputeRelativeError(SVD svd,PetscInt i,PetscReal *r) {return SVDComputeError(svd,i,SVD_ERROR_RELATIVE,r);}
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "SVDComputeError() with SVD_ERROR_ABSOLUTE", ) static inline PetscErrorCode SVDComputeResidualNorms(SVD svd,PetscInt i,PetscReal *r1,PETSC_UNUSED PetscReal *r2) {return SVDComputeError(svd,i,SVD_ERROR_ABSOLUTE,r1);}
SLEPC_EXTERN PetscErrorCode SVDView(SVD,PetscViewer);
SLEPC_EXTERN PetscErrorCode SVDViewFromOptions(SVD,PetscObject,const char[]);
SLEPC_EXTERN PetscErrorCode SVDErrorView(SVD,SVDErrorType,PetscViewer);
PETSC_DEPRECATED_FUNCTION(3, 6, 0, "SVDErrorView()", ) static inline PetscErrorCode SVDPrintSolution(SVD svd,PetscViewer v) {return SVDErrorView(svd,SVD_ERROR_RELATIVE,v);}
SLEPC_EXTERN PetscErrorCode SVDErrorViewFromOptions(SVD);
SLEPC_EXTERN PetscErrorCode SVDConvergedReasonView(SVD,PetscViewer);
SLEPC_EXTERN PetscErrorCode SVDConvergedReasonViewFromOptions(SVD);
PETSC_DEPRECATED_FUNCTION(3, 14, 0, "SVDConvergedReasonView()", ) static inline PetscErrorCode SVDReasonView(SVD svd,PetscViewer v) {return SVDConvergedReasonView(svd,v);}
PETSC_DEPRECATED_FUNCTION(3, 14, 0, "SVDConvergedReasonViewFromOptions()", ) static inline PetscErrorCode SVDReasonViewFromOptions(SVD svd) {return SVDConvergedReasonViewFromOptions(svd);}
SLEPC_EXTERN PetscErrorCode SVDValuesView(SVD,PetscViewer);
SLEPC_EXTERN PetscErrorCode SVDValuesViewFromOptions(SVD);
SLEPC_EXTERN PetscErrorCode SVDVectorsView(SVD,PetscViewer);
SLEPC_EXTERN PetscErrorCode SVDVectorsViewFromOptions(SVD);
SLEPC_EXTERN PetscErrorCode SVDDestroy(SVD*);
SLEPC_EXTERN PetscErrorCode SVDReset(SVD);
SLEPC_EXTERN PetscErrorCode SVDSetWorkVecs(SVD,PetscInt,PetscInt);
SLEPC_EXTERN PetscErrorCode SVDSetTrackAll(SVD,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDGetTrackAll(SVD,PetscBool*);
/*S
SVDMonitorFn - A function prototype for functions provided to `SVDMonitorSet()`.
Calling Sequence:
+ svd - the singular value solver context
. its - iteration number
. nconv - number of converged singular triplets
. sigma - singular values
. errest - relative error estimates for each singular triplet
. nest - number of error estimates
- ctx - optional monitoring context, as provided with `SVDMonitorSet()`
Level: intermediate
.seealso: [](ch:svd), `SVDMonitorSet()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode SVDMonitorFn(SVD svd,PetscInt its,PetscInt nconv,PetscReal sigma[],PetscReal errest[],PetscInt nest,void *ctx);
/*S
SVDMonitorRegisterFn - A function prototype for functions provided to `SVDMonitorRegister()`.
Calling Sequence:
+ svd - the singular value solver context
. its - iteration number
. nconv - number of converged singular triplets
. sigma - singular values
. errest - relative error estimates for each singular triplet
. nest - number of error estimates
- ctx - `PetscViewerAndFormat` object
Level: advanced
Note:
This is an `SVDMonitorFn` specialized for a context of `PetscViewerAndFormat`.
.seealso: [](ch:svd), `SVDMonitorSet()`, `SVDMonitorRegister()`, `SVDMonitorFn`, `SVDMonitorRegisterCreateFn`, `SVDMonitorRegisterDestroyFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode SVDMonitorRegisterFn(SVD svd,PetscInt its,PetscInt nconv,PetscReal sigma[],PetscReal errest[],PetscInt nest,PetscViewerAndFormat *ctx);
/*S
SVDMonitorRegisterCreateFn - A function prototype for functions that do
the creation when provided to `SVDMonitorRegister()`.
Calling Sequence:
+ viewer - the viewer to be used with the `SVDMonitorRegisterFn`
. format - the format of the viewer
. ctx - a context for the monitor
- result - a `PetscViewerAndFormat` object
Level: advanced
.seealso: [](ch:svd), `SVDMonitorRegisterFn`, `SVDMonitorSet()`, `SVDMonitorRegister()`, `SVDMonitorFn`, `SVDMonitorRegisterDestroyFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode SVDMonitorRegisterCreateFn(PetscViewer viewer,PetscViewerFormat format,void *ctx,PetscViewerAndFormat **result);
/*S
SVDMonitorRegisterDestroyFn - A function prototype for functions that do the after
use destruction when provided to `SVDMonitorRegister()`.
Calling Sequence:
. vf - a `PetscViewerAndFormat` object to be destroyed, including any context
Level: advanced
.seealso: [](ch:svd), `SVDMonitorRegisterFn`, `SVDMonitorSet()`, `SVDMonitorRegister()`, `SVDMonitorFn`, `SVDMonitorRegisterCreateFn`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode SVDMonitorRegisterDestroyFn(PetscViewerAndFormat **result);
SLEPC_EXTERN PetscErrorCode SVDMonitor(SVD,PetscInt,PetscInt,PetscReal[],PetscReal[],PetscInt);
SLEPC_EXTERN PetscErrorCode SVDMonitorSet(SVD,SVDMonitorFn,void*,PetscCtxDestroyFn*);
SLEPC_EXTERN PetscErrorCode SVDMonitorCancel(SVD);
SLEPC_EXTERN PetscErrorCode SVDGetMonitorContext(SVD,void*);
SLEPC_EXTERN PetscErrorCode SVDMonitorSetFromOptions(SVD,const char[],const char[],void*,PetscBool);
SLEPC_EXTERN SVDMonitorRegisterFn SVDMonitorFirst;
SLEPC_EXTERN SVDMonitorRegisterFn SVDMonitorFirstDrawLG;
SLEPC_EXTERN SVDMonitorRegisterCreateFn SVDMonitorFirstDrawLGCreate;
SLEPC_EXTERN SVDMonitorRegisterFn SVDMonitorAll;
SLEPC_EXTERN SVDMonitorRegisterFn SVDMonitorAllDrawLG;
SLEPC_EXTERN SVDMonitorRegisterCreateFn SVDMonitorAllDrawLGCreate;
SLEPC_EXTERN SVDMonitorRegisterFn SVDMonitorConverged;
SLEPC_EXTERN SVDMonitorRegisterCreateFn SVDMonitorConvergedCreate;
SLEPC_EXTERN SVDMonitorRegisterFn SVDMonitorConvergedDrawLG;
SLEPC_EXTERN SVDMonitorRegisterCreateFn SVDMonitorConvergedDrawLGCreate;
SLEPC_EXTERN SVDMonitorRegisterDestroyFn SVDMonitorConvergedDestroy;
SLEPC_EXTERN SVDMonitorRegisterFn SVDMonitorConditioning;
SLEPC_EXTERN PetscFunctionList SVDList;
SLEPC_EXTERN PetscFunctionList SVDMonitorList;
SLEPC_EXTERN PetscFunctionList SVDMonitorCreateList;
SLEPC_EXTERN PetscFunctionList SVDMonitorDestroyList;
SLEPC_EXTERN PetscErrorCode SVDRegister(const char[],PetscErrorCode(*)(SVD));
SLEPC_EXTERN PetscErrorCode SVDMonitorRegister(const char[],PetscViewerType,PetscViewerFormat,SVDMonitorRegisterFn*,SVDMonitorRegisterCreateFn*,SVDMonitorRegisterDestroyFn*);
SLEPC_EXTERN PetscErrorCode SVDAllocateSolution(SVD,PetscInt);
SLEPC_EXTERN PetscErrorCode SVDReallocateSolution(SVD,PetscInt);
/*S
SVDConvergenceTestFn - A prototype of an `SVD` convergence test function that
would be passed to `SVDSetConvergenceTestFunction()`.
Calling Sequence:
+ svd - the singular value solver context
. sigma - computed singular value
. res - residual norm associated to the singular triplet
. errest - [output] computed error estimate
- ctx - optional convergence context, as set by `SVDSetConvergenceTestFunction()`
Level: advanced
.seealso: [](ch:svd), `SVDSetConvergenceTest()`, `SVDSetConvergenceTestFunction()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode SVDConvergenceTestFn(SVD svd,PetscReal sigma,PetscReal res,PetscReal *errest,void *ctx);
SLEPC_EXTERN PetscErrorCode SVDSetConvergenceTest(SVD,SVDConv);
SLEPC_EXTERN PetscErrorCode SVDGetConvergenceTest(SVD,SVDConv*);
SLEPC_EXTERN SVDConvergenceTestFn SVDConvergedAbsolute;
SLEPC_EXTERN SVDConvergenceTestFn SVDConvergedRelative;
SLEPC_EXTERN SVDConvergenceTestFn SVDConvergedNorm;
SLEPC_EXTERN SVDConvergenceTestFn SVDConvergedMaxIt;
SLEPC_EXTERN PetscErrorCode SVDSetConvergenceTestFunction(SVD,SVDConvergenceTestFn*,void*,PetscCtxDestroyFn*);
/*S
SVDStoppingTestFn - A prototype of an `SVD` stopping test function that would
be passed to `SVDSetStoppingTestFunction()`.
Calling Sequence:
+ svd - the singular value solver context
. its - current number of iterations
. max_it - maximum number of iterations
. nconv - number of currently converged singular triplets
. nsv - number of requested singular triplets
. reason - [output] result of the stopping test
- ctx - optional stopping context, as set by `SVDSetStoppingTestFunction()`
Note:
A positive value of `reason` indicates that the iteration has finished successfully
(converged), and a negative value indicates an error condition (diverged). If
the iteration needs to be continued, `reason` must be set to `SVD_CONVERGED_ITERATING`
(zero).
Level: advanced
.seealso: [](ch:svd), `SVDSetStoppingTest()`, `SVDSetStoppingTestFunction()`
S*/
PETSC_EXTERN_TYPEDEF typedef PetscErrorCode SVDStoppingTestFn(SVD svd,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nsv,SVDConvergedReason *reason,void *ctx);
SLEPC_EXTERN PetscErrorCode SVDSetStoppingTest(SVD,SVDStop);
SLEPC_EXTERN PetscErrorCode SVDGetStoppingTest(SVD,SVDStop*);
SLEPC_EXTERN SVDStoppingTestFn SVDStoppingBasic;
SLEPC_EXTERN SVDStoppingTestFn SVDStoppingThreshold;
SLEPC_EXTERN PetscErrorCode SVDSetStoppingTestFunction(SVD,SVDStoppingTestFn*,void*,PetscCtxDestroyFn*);
/* --------- options specific to particular solvers -------- */
SLEPC_EXTERN PetscErrorCode SVDCrossSetExplicitMatrix(SVD,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDCrossGetExplicitMatrix(SVD,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDCrossSetEPS(SVD,EPS);
SLEPC_EXTERN PetscErrorCode SVDCrossGetEPS(SVD,EPS*);
SLEPC_EXTERN PetscErrorCode SVDCyclicSetExplicitMatrix(SVD,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDCyclicGetExplicitMatrix(SVD,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDCyclicSetEPS(SVD,EPS);
SLEPC_EXTERN PetscErrorCode SVDCyclicGetEPS(SVD,EPS*);
SLEPC_EXTERN PetscErrorCode SVDLanczosSetOneSide(SVD,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDLanczosGetOneSide(SVD,PetscBool*);
/*E
SVDTRLanczosGBidiag - The choice of bidiagonalization for the `SVDTRLANCZOS` GSVD solver.
Values:
+ `SVD_TRLANCZOS_GBIDIAG_SINGLE` - single bidiagonalization ($Q_A$)
. `SVD_TRLANCZOS_GBIDIAG_UPPER` - joint bidiagonalization, both $Q_A$ and $Q_B$ in upper bidiagonal form
- `SVD_TRLANCZOS_GBIDIAG_LOWER` - joint bidiagonalization, $Q_A$ lower bidiagonal, $Q_B$ upper bidiagonal
Note:
The different variants are described in {cite:p}`Alv24`.
Level: advanced
.seealso: [](ch:svd), `SVDTRLanczosSetGBidiag()`, `SVDTRLanczosGetGBidiag()`
E*/
typedef enum {
SVD_TRLANCZOS_GBIDIAG_SINGLE,
SVD_TRLANCZOS_GBIDIAG_UPPER,
SVD_TRLANCZOS_GBIDIAG_LOWER
} SVDTRLanczosGBidiag;
SLEPC_EXTERN const char *SVDTRLanczosGBidiags[];
SLEPC_EXTERN PetscErrorCode SVDTRLanczosSetGBidiag(SVD,SVDTRLanczosGBidiag);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosGetGBidiag(SVD,SVDTRLanczosGBidiag*);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosSetOneSide(SVD,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosGetOneSide(SVD,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosSetKSP(SVD,KSP);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosGetKSP(SVD,KSP*);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosSetRestart(SVD,PetscReal);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosGetRestart(SVD,PetscReal*);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosSetLocking(SVD,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosGetLocking(SVD,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosSetExplicitMatrix(SVD,PetscBool);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosGetExplicitMatrix(SVD,PetscBool*);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosSetScale(SVD,PetscReal);
SLEPC_EXTERN PetscErrorCode SVDTRLanczosGetScale(SVD,PetscReal*);
/*E
SVDPRIMMEMethod - The SVD method selected in the PRIMME library.
Note:
See the documentation of PRIMME {cite:p}`Sta10` for a description of the methods.
Level: advanced
.seealso: [](ch:svd), `SVDPRIMMESetMethod()`, `SVDPRIMMEGetMethod()`
E*/
typedef enum { SVD_PRIMME_HYBRID = 1,
SVD_PRIMME_NORMALEQUATIONS = 2,
SVD_PRIMME_AUGMENTED = 3 } SVDPRIMMEMethod;
SLEPC_EXTERN const char *SVDPRIMMEMethods[];
SLEPC_EXTERN PetscErrorCode SVDPRIMMESetBlockSize(SVD,PetscInt);
SLEPC_EXTERN PetscErrorCode SVDPRIMMEGetBlockSize(SVD,PetscInt*);
SLEPC_EXTERN PetscErrorCode SVDPRIMMESetMethod(SVD,SVDPRIMMEMethod);
SLEPC_EXTERN PetscErrorCode SVDPRIMMEGetMethod(SVD,SVDPRIMMEMethod*);
/*E
SVDKSVDEigenMethod - The method to solve the eigenproblem within the KSVD library.
Note:
See the documentation of KSVD {cite:p}`Suk19` for a description of the methods.
Level: advanced
.seealso: [](ch:svd), `SVDKSVDSetEigenMethod()`, `SVDKSVDGetEigenMethod()`
E*/
typedef enum { SVD_KSVD_EIGEN_MRRR = 1,
SVD_KSVD_EIGEN_DC = 2,
SVD_KSVD_EIGEN_ELPA = 3 } SVDKSVDEigenMethod;
SLEPC_EXTERN const char *SVDKSVDEigenMethods[];
/*E
SVDKSVDPolarMethod - The method to compute the polar decomposition within the KSVD library.
Note:
See the documentation of KSVD {cite:p}`Suk19` for a description of the methods.
Level: advanced
.seealso: [](ch:svd), `SVDKSVDSetPolarMethod()`, `SVDKSVDGetPolarMethod()`
E*/
typedef enum { SVD_KSVD_POLAR_QDWH = 1,
SVD_KSVD_POLAR_ZOLOPD = 2 } SVDKSVDPolarMethod;
SLEPC_EXTERN const char *SVDKSVDPolarMethods[];
SLEPC_EXTERN PetscErrorCode SVDKSVDSetEigenMethod(SVD,SVDKSVDEigenMethod);
SLEPC_EXTERN PetscErrorCode SVDKSVDGetEigenMethod(SVD,SVDKSVDEigenMethod*);
SLEPC_EXTERN PetscErrorCode SVDKSVDSetPolarMethod(SVD,SVDKSVDPolarMethod);
SLEPC_EXTERN PetscErrorCode SVDKSVDGetPolarMethod(SVD,SVDKSVDPolarMethod*);
|