File: ex4.py

package info (click to toggle)
slepc4py 3.23.1-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,060 kB
  • sloc: python: 2,939; makefile: 106; sh: 46; ansic: 41
file content (73 lines) | stat: -rw-r--r-- 1,728 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# ------------------------------------------------------------------------
#   Singular value decomposition of the Lauchli matrix
# ------------------------------------------------------------------------

try: range = xrange
except: pass

import sys, slepc4py
slepc4py.init(sys.argv)

from petsc4py import PETSc
from slepc4py import SLEPc

opts = PETSc.Options()
n  = opts.getInt('n', 30)
mu = opts.getReal('mu', 1e-6)

PETSc.Sys.Print( "Lauchli singular value decomposition, (%d x %d) mu=%g\n" % (n+1,n,mu) )

A = PETSc.Mat(); A.create()
A.setSizes([n+1, n])
A.setFromOptions()

rstart, rend = A.getOwnershipRange()

for i in range(rstart, rend):
  if i==0:
    for j in range(n):
      A[0,j] = 1.0
  else:
    A[i,i-1] = mu

A.assemble()

S = SLEPc.SVD(); S.create()

S.setOperator(A)
S.setType(S.Type.TRLANCZOS)
S.setFromOptions()

S.solve()

Print = PETSc.Sys.Print

Print( "******************************" )
Print( "*** SLEPc Solution Results ***" )
Print( "******************************\n" )

svd_type = S.getType()
Print( "Solution method: %s" % svd_type )

its = S.getIterationNumber()
Print( "Number of iterations of the method: %d" % its )

nsv, ncv, mpd = S.getDimensions()
Print( "Number of requested singular values: %d" % nsv )

tol, maxit = S.getTolerances()
Print( "Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit) )

nconv = S.getConverged()
Print( "Number of converged approximate singular triplets %d" % nconv )

if nconv > 0:
  v, u = A.createVecs()
  Print()
  Print("    sigma       residual norm ")
  Print("-------------  ---------------")
  for i in range(nconv):
    sigma = S.getSingularTriplet(i, u, v)
    error = S.computeError(i)
    Print( "   %6f     %12g" % (sigma, error) )
  Print()