1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
# ------------------------------------------------------------------------
# Singular value decomposition of the Lauchli matrix
# ------------------------------------------------------------------------
try: range = xrange
except: pass
import sys, slepc4py
slepc4py.init(sys.argv)
from petsc4py import PETSc
from slepc4py import SLEPc
opts = PETSc.Options()
n = opts.getInt('n', 30)
mu = opts.getReal('mu', 1e-6)
PETSc.Sys.Print( "Lauchli singular value decomposition, (%d x %d) mu=%g\n" % (n+1,n,mu) )
A = PETSc.Mat(); A.create()
A.setSizes([n+1, n])
A.setFromOptions()
rstart, rend = A.getOwnershipRange()
for i in range(rstart, rend):
if i==0:
for j in range(n):
A[0,j] = 1.0
else:
A[i,i-1] = mu
A.assemble()
S = SLEPc.SVD(); S.create()
S.setOperator(A)
S.setType(S.Type.TRLANCZOS)
S.setFromOptions()
S.solve()
Print = PETSc.Sys.Print
Print( "******************************" )
Print( "*** SLEPc Solution Results ***" )
Print( "******************************\n" )
svd_type = S.getType()
Print( "Solution method: %s" % svd_type )
its = S.getIterationNumber()
Print( "Number of iterations of the method: %d" % its )
nsv, ncv, mpd = S.getDimensions()
Print( "Number of requested singular values: %d" % nsv )
tol, maxit = S.getTolerances()
Print( "Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit) )
nconv = S.getConverged()
Print( "Number of converged approximate singular triplets %d" % nconv )
if nconv > 0:
v, u = A.createVecs()
Print()
Print(" sigma residual norm ")
Print("------------- ---------------")
for i in range(nconv):
sigma = S.getSingularTriplet(i, u, v)
error = S.computeError(i)
Print( " %6f %12g" % (sigma, error) )
Print()
|