1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
# ex2.py: Standard symmetric eigenproblem for the 2-D Laplacian
# =============================================================
#
# This example computes eigenvalues and eigenvectors of the discrete Laplacian
# on a two-dimensional domain with finite differences.
#
# The full source code for this demo can be `downloaded here
# <../_static/ex2.py>`__.
# Initialization is similar to previous examples.
try: range = xrange
except: pass
import sys, slepc4py
slepc4py.init(sys.argv)
from petsc4py import PETSc
from slepc4py import SLEPc
Print = PETSc.Sys.Print
# In this example we have organized the code in several functions. This
# one builds the finite-difference Laplacian matrix by computing the
# indices of each entry. An alternative would be to use the functionality
# offered by `DMDA <petsc4py.PETSc.DMDA>`.
def construct_operator(m, n):
# Create matrix for 2D Laplacian operator
A = PETSc.Mat().create()
A.setSizes([m*n, m*n])
A.setFromOptions()
# Fill matrix
hx = 1.0/(m-1) # x grid spacing
hy = 1.0/(n-1) # y grid spacing
diagv = 2.0*hy/hx + 2.0*hx/hy
offdx = -1.0*hy/hx
offdy = -1.0*hx/hy
Istart, Iend = A.getOwnershipRange()
for I in range(Istart, Iend) :
A[I,I] = diagv
i = I//n # map row number to
j = I - i*n # grid coordinates
if i> 0 : J = I-n; A[I,J] = offdx
if i< m-1: J = I+n; A[I,J] = offdx
if j> 0 : J = I-1; A[I,J] = offdy
if j< n-1: J = I+1; A[I,J] = offdy
A.assemble()
return A
# This function receives the matrix and the problem type, then solves the
# eigenvalue problem and prints information about the computed solution.
# Although we know that eigenvalues and eigenvectors are real in this
# example, the function is prepared to solve it as a non-symmetric problem,
# by passing `SLEPc.EPS.ProblemType.NHEP`, that is why the code handles
# possibly complex eigenvalues and eigenvectors.
def solve_eigensystem(A, problem_type=SLEPc.EPS.ProblemType.HEP):
# Create the result vectors
xr, xi = A.createVecs()
# Setup the eigensolver
E = SLEPc.EPS().create()
E.setOperators(A,None)
E.setDimensions(3,PETSc.DECIDE)
E.setProblemType(problem_type)
E.setFromOptions()
# Solve the eigensystem
E.solve()
Print("")
its = E.getIterationNumber()
Print("Number of iterations of the method: %i" % its)
sol_type = E.getType()
Print("Solution method: %s" % sol_type)
nev, ncv, mpd = E.getDimensions()
Print("Number of requested eigenvalues: %i" % nev)
tol, maxit = E.getTolerances()
Print("Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit))
nconv = E.getConverged()
Print("Number of converged eigenpairs: %d" % nconv)
if nconv > 0:
Print("")
Print(" k ||Ax-kx||/||kx|| ")
Print("----------------- ------------------")
for i in range(nconv):
k = E.getEigenpair(i, xr, xi)
error = E.computeError(i)
if k.imag != 0.0:
Print(" %9f%+9f j %12g" % (k.real, k.imag, error))
else:
Print(" %12f %12g" % (k.real, error))
Print("")
# The main program simply processes three user-defined command-line options
# and calls the other two functions.
def main():
opts = PETSc.Options()
N = opts.getInt('N', 32)
m = opts.getInt('m', N)
n = opts.getInt('n', m)
Print("Symmetric Eigenproblem (sparse matrix), "
"N=%d (%dx%d grid)" % (m*n, m, n))
A = construct_operator(m,n)
solve_eigensystem(A)
if __name__ == '__main__':
main()
|