File: ex2.rst

package info (click to toggle)
slepc4py 3.24.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,760 kB
  • sloc: python: 6,916; makefile: 129; ansic: 98; sh: 46
file content (118 lines) | stat: -rw-r--r-- 3,752 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
ex2.py: Standard symmetric eigenproblem for the 2-D Laplacian
=============================================================

This example computes eigenvalues and eigenvectors of the discrete Laplacian
on a two-dimensional domain with finite differences.

The full source code for this demo can be `downloaded here
<../_static/ex2.py>`__.

Initialization is similar to previous examples.

::

  try: range = xrange
  except: pass

  import sys, slepc4py
  slepc4py.init(sys.argv)

  from petsc4py import PETSc
  from slepc4py import SLEPc

  Print = PETSc.Sys.Print

In this example we have organized the code in several functions. This
one builds the finite-difference Laplacian matrix by computing the
indices of each entry. An alternative would be to use the functionality
offered by `DMDA <petsc4py.PETSc.DMDA>`.

::

  def construct_operator(m, n):
      # Create matrix for 2D Laplacian operator
      A = PETSc.Mat().create()
      A.setSizes([m*n, m*n])
      A.setFromOptions()
      # Fill matrix
      hx = 1.0/(m-1) # x grid spacing
      hy = 1.0/(n-1) # y grid spacing
      diagv = 2.0*hy/hx + 2.0*hx/hy
      offdx = -1.0*hy/hx
      offdy = -1.0*hx/hy
      Istart, Iend = A.getOwnershipRange()
      for I in range(Istart, Iend) :
          A[I,I] = diagv
          i = I//n    # map row number to
          j = I - i*n # grid coordinates
          if i> 0  : J = I-n; A[I,J] = offdx
          if i< m-1: J = I+n; A[I,J] = offdx
          if j> 0  : J = I-1; A[I,J] = offdy
          if j< n-1: J = I+1; A[I,J] = offdy
      A.assemble()
      return A

This function receives the matrix and the problem type, then solves the
eigenvalue problem and prints information about the computed solution.
Although we know that eigenvalues and eigenvectors are real in this
example, the function is prepared to solve it as a non-symmetric problem,
by passing `SLEPc.EPS.ProblemType.NHEP`, that is why the code handles
possibly complex eigenvalues and eigenvectors.

::

  def solve_eigensystem(A, problem_type=SLEPc.EPS.ProblemType.HEP):
      # Create the result vectors
      xr, xi = A.createVecs()

      # Setup the eigensolver
      E = SLEPc.EPS().create()
      E.setOperators(A,None)
      E.setDimensions(3,PETSc.DECIDE)
      E.setProblemType(problem_type)
      E.setFromOptions()

      # Solve the eigensystem
      E.solve()

      Print("")
      its = E.getIterationNumber()
      Print("Number of iterations of the method: %i" % its)
      sol_type = E.getType()
      Print("Solution method: %s" % sol_type)
      nev, ncv, mpd = E.getDimensions()
      Print("Number of requested eigenvalues: %i" % nev)
      tol, maxit = E.getTolerances()
      Print("Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit))
      nconv = E.getConverged()
      Print("Number of converged eigenpairs: %d" % nconv)
      if nconv > 0:
          Print("")
          Print("        k          ||Ax-kx||/||kx|| ")
          Print("----------------- ------------------")
          for i in range(nconv):
              k = E.getEigenpair(i, xr, xi)
              error = E.computeError(i)
              if k.imag != 0.0:
                Print(" %9f%+9f j  %12g" % (k.real, k.imag, error))
              else:
                Print(" %12f       %12g" % (k.real, error))
          Print("")

The main program simply processes three user-defined command-line options
and calls the other two functions.

::

  def main():
      opts = PETSc.Options()
      N = opts.getInt('N', 32)
      m = opts.getInt('m', N)
      n = opts.getInt('n', m)
      Print("Symmetric Eigenproblem (sparse matrix), "
            "N=%d (%dx%d grid)" % (m*n, m, n))
      A = construct_operator(m,n)
      solve_eigensystem(A)

  if __name__ == '__main__':
      main()