File: ex7.py

package info (click to toggle)
slepc4py 3.24.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,760 kB
  • sloc: python: 6,916; makefile: 129; ansic: 98; sh: 46
file content (215 lines) | stat: -rw-r--r-- 6,521 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# ex7.py: Nonlinear eigenproblem with callback functions
# ======================================================
#
# This example solves a nonlinear eigenvalue problem arising from the
# the discretization of a PDE on a one-dimensional domain with finite
# differences. The nonlinearity comes from the boundary conditions.
# The PDE is
#
# .. math::
#
#    -u'' = \lambda u
#
# defined on the interval [0,1] and subject to the boundary conditions
#
# .. math::
#
#    u(0)=0, u'(1)=u(1)\lambda\frac{\kappa}{\kappa-\lambda},
#
# where :math:`\lambda` is the eigenvalue and :math:`\kappa` is a parameter.
#
# The full source code for this demo can be `downloaded here
# <../_static/ex7.py>`__.

# Initialization is similar to previous examples.

import sys, slepc4py
slepc4py.init(sys.argv)

from petsc4py import PETSc
from slepc4py import SLEPc
from numpy import sqrt, sin

Print = PETSc.Sys.Print

# When implementing a nonlinear eigenproblem with callback functions we
# must provide code that builds the function matrix :math:`T(\lambda)`
# for a given :math:`\lambda` and optionally the Jacobian matrix
# :math:`T'(\lambda)`, i.e., the derivative with respect to the eigenvalue.
#
# In slepc4py the callbacks are integrated in a class. In this example,
# apart from the constructor, we have three methods:
#
# + ``formFunction`` to fill the function matrix ``F``. Note that ``F``
#   is received as an argument and we just need to fill its entries using
#   the value of the parameter ``mu``. Matrix ``B`` is used to build
#   the preconditioner, and is usually equal to ``F``.
# + ``formJacobian`` to fill the Jacobian matrix ``J``. Some eigensolvers
#   do not need this, but it is recommended to implement it.
# + ``checkSolution`` is just a convenience method to check that a given
#   solution satisfies the PDE.

class MyPDE(object):

    def __init__(self, kappa, h):
        self.kappa = kappa
        self.h     = h

    def formFunction(self, nep, mu, F, B):
        n, m = F.getSize()
        Istart, Iend = F.getOwnershipRange()
        i1 = Istart
        if Istart==0: i1 = i1 + 1
        i2 = Iend
        if Iend==n: i2 = i2 - 1
        h = self.h
        c = self.kappa/(mu-self.kappa)
        d = n

        # Interior grid points
        for i in range(i1,i2):
            val = -d-mu*h/6.0
            F[i,i-1] = val
            F[i,i]   = 2.0*(d-mu*h/3.0)
            F[i,i+1] = val

        # Boundary points
        if Istart==0:
            F[0,0] = 2.0*(d-mu*h/3.0)
            F[0,1] = -d-mu*h/6.0
        if Iend==n:
            F[n-1,n-2] = -d-mu*h/6.0
            F[n-1,n-1] = d-mu*h/3.0+mu*c

        F.assemble()
        if B != F: B.assemble()
        return PETSc.Mat.Structure.SAME_NONZERO_PATTERN

    def formJacobian(self, nep, mu, J):
        n, m = J.getSize()
        Istart, Iend = J.getOwnershipRange()
        i1 = Istart
        if Istart==0: i1 = i1 + 1
        i2 = Iend
        if Iend==n: i2 = i2 - 1
        h = self.h
        c = self.kappa/(mu-self.kappa)

        # Interior grid points
        for i in range(i1,i2):
            J[i,i-1] = -h/6.0
            J[i,i]   = -2.0*h/3.0
            J[i,i+1] = -h/6.0

        # Boundary points
        if Istart==0:
            J[0,0] = -2.0*h/3.0
            J[0,1] = -h/6.0
        if Iend==n:
            J[n-1,n-2] = -h/6.0
            J[n-1,n-1] = -h/3.0-c*c

        J.assemble()
        return PETSc.Mat.Structure.SAME_NONZERO_PATTERN

    def checkSolution(self, mu, y):
        nu = sqrt(mu)
        u = y.duplicate()
        n = u.getSize()
        Istart, Iend = J.getOwnershipRange()
        h = self.h
        for i in range(Istart,Iend):
            x = (i+1)*h
            u[i] = sin(nu*x);
        u.assemble()
        u.normalize()
        u.axpy(-1.0,y)
        return u.norm()

# We use an auxiliary function ``FixSign`` to force the computed
# eigenfunction to be real and positive, since some eigensolvers may
# return the eigenvector multiplied by a complex number of modulus one.

def FixSign(x):
    comm = x.getComm()
    rank = comm.getRank()
    n = 1 if rank == 0 else 0
    aux = PETSc.Vec().createMPI((n, PETSc.DECIDE), comm=comm)
    if rank == 0: aux[0] = x[0]
    aux.assemble()
    x0 = aux.sum()
    sign = x0/abs(x0)
    x.scale(1.0/sign)

# The main program processes two command-line options, ``n`` (size of the
# grid) and ``kappa`` (the parameter of the PDE), then creates an object
# of the class we have defined previously.

opts = PETSc.Options()
n = opts.getInt('n', 128)
kappa = opts.getReal('kappa', 1.0)
pde = MyPDE(kappa, 1.0/n)

# In order to set up the solver we have to pass the two callback functions
# (methods of the class) together with the matrix objects that will be
# used every time these methods are called. In this simple example we can
# do a preallocation of the matrices, although this is not necessary.

nep = SLEPc.NEP().create()
F = PETSc.Mat().create()
F.setSizes([n, n])
F.setType('aij')
F.setPreallocationNNZ(3)
nep.setFunction(pde.formFunction, F)

J = PETSc.Mat().create()
J.setSizes([n, n])
J.setType('aij')
J.setPreallocationNNZ(3)
nep.setJacobian(pde.formJacobian, J)

# After setting some options, we can solve the problem. Here we also
# illustrate how to pass an initial guess to the solver.

nep.setTolerances(tol=1e-9)
nep.setDimensions(1)
nep.setFromOptions()

x = F.createVecs('right')
x.set(1.0)
nep.setInitialSpace(x)
nep.solve()

# Once the solver has finished, we print some information together with
# the computed solution. For each computed eigenpair, we print the
# residual norm and also the error estimated with the class method
# ``checkSolution``.

its = nep.getIterationNumber()
Print("Number of iterations of the method: %i" % its)
sol_type = nep.getType()
Print("Solution method: %s" % sol_type)
nev, ncv, mpd = nep.getDimensions()
Print("")
Print("Subspace dimension: %i" % ncv)
tol, maxit = nep.getTolerances()
Print("Stopping condition: tol=%.4g" % tol)
Print("")

nconv = nep.getConverged()
Print( "Number of converged eigenpairs %d" % nconv )

if nconv > 0:
  Print()
  Print("        k              ||T(k)x||          error ")
  Print("----------------- ------------------ ------------------")
  for i in range(nconv):
    k = nep.getEigenpair(i, x)
    FixSign(x)
    res = nep.computeError(i)
    error = pde.checkSolution(k.real, x)
    if k.imag != 0.0:
      Print( " %9f%+9f j %12g     %12g" % (k.real, k.imag, res, error) )
    else:
      Print( " %12f       %12g     %12g" % (k.real, res, error) )
  Print()