1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
# ex7.py: Nonlinear eigenproblem with callback functions
# ======================================================
#
# This example solves a nonlinear eigenvalue problem arising from the
# the discretization of a PDE on a one-dimensional domain with finite
# differences. The nonlinearity comes from the boundary conditions.
# The PDE is
#
# .. math::
#
# -u'' = \lambda u
#
# defined on the interval [0,1] and subject to the boundary conditions
#
# .. math::
#
# u(0)=0, u'(1)=u(1)\lambda\frac{\kappa}{\kappa-\lambda},
#
# where :math:`\lambda` is the eigenvalue and :math:`\kappa` is a parameter.
#
# The full source code for this demo can be `downloaded here
# <../_static/ex7.py>`__.
# Initialization is similar to previous examples.
import sys, slepc4py
slepc4py.init(sys.argv)
from petsc4py import PETSc
from slepc4py import SLEPc
from numpy import sqrt, sin
Print = PETSc.Sys.Print
# When implementing a nonlinear eigenproblem with callback functions we
# must provide code that builds the function matrix :math:`T(\lambda)`
# for a given :math:`\lambda` and optionally the Jacobian matrix
# :math:`T'(\lambda)`, i.e., the derivative with respect to the eigenvalue.
#
# In slepc4py the callbacks are integrated in a class. In this example,
# apart from the constructor, we have three methods:
#
# + ``formFunction`` to fill the function matrix ``F``. Note that ``F``
# is received as an argument and we just need to fill its entries using
# the value of the parameter ``mu``. Matrix ``B`` is used to build
# the preconditioner, and is usually equal to ``F``.
# + ``formJacobian`` to fill the Jacobian matrix ``J``. Some eigensolvers
# do not need this, but it is recommended to implement it.
# + ``checkSolution`` is just a convenience method to check that a given
# solution satisfies the PDE.
class MyPDE(object):
def __init__(self, kappa, h):
self.kappa = kappa
self.h = h
def formFunction(self, nep, mu, F, B):
n, m = F.getSize()
Istart, Iend = F.getOwnershipRange()
i1 = Istart
if Istart==0: i1 = i1 + 1
i2 = Iend
if Iend==n: i2 = i2 - 1
h = self.h
c = self.kappa/(mu-self.kappa)
d = n
# Interior grid points
for i in range(i1,i2):
val = -d-mu*h/6.0
F[i,i-1] = val
F[i,i] = 2.0*(d-mu*h/3.0)
F[i,i+1] = val
# Boundary points
if Istart==0:
F[0,0] = 2.0*(d-mu*h/3.0)
F[0,1] = -d-mu*h/6.0
if Iend==n:
F[n-1,n-2] = -d-mu*h/6.0
F[n-1,n-1] = d-mu*h/3.0+mu*c
F.assemble()
if B != F: B.assemble()
return PETSc.Mat.Structure.SAME_NONZERO_PATTERN
def formJacobian(self, nep, mu, J):
n, m = J.getSize()
Istart, Iend = J.getOwnershipRange()
i1 = Istart
if Istart==0: i1 = i1 + 1
i2 = Iend
if Iend==n: i2 = i2 - 1
h = self.h
c = self.kappa/(mu-self.kappa)
# Interior grid points
for i in range(i1,i2):
J[i,i-1] = -h/6.0
J[i,i] = -2.0*h/3.0
J[i,i+1] = -h/6.0
# Boundary points
if Istart==0:
J[0,0] = -2.0*h/3.0
J[0,1] = -h/6.0
if Iend==n:
J[n-1,n-2] = -h/6.0
J[n-1,n-1] = -h/3.0-c*c
J.assemble()
return PETSc.Mat.Structure.SAME_NONZERO_PATTERN
def checkSolution(self, mu, y):
nu = sqrt(mu)
u = y.duplicate()
n = u.getSize()
Istart, Iend = J.getOwnershipRange()
h = self.h
for i in range(Istart,Iend):
x = (i+1)*h
u[i] = sin(nu*x);
u.assemble()
u.normalize()
u.axpy(-1.0,y)
return u.norm()
# We use an auxiliary function ``FixSign`` to force the computed
# eigenfunction to be real and positive, since some eigensolvers may
# return the eigenvector multiplied by a complex number of modulus one.
def FixSign(x):
comm = x.getComm()
rank = comm.getRank()
n = 1 if rank == 0 else 0
aux = PETSc.Vec().createMPI((n, PETSc.DECIDE), comm=comm)
if rank == 0: aux[0] = x[0]
aux.assemble()
x0 = aux.sum()
sign = x0/abs(x0)
x.scale(1.0/sign)
# The main program processes two command-line options, ``n`` (size of the
# grid) and ``kappa`` (the parameter of the PDE), then creates an object
# of the class we have defined previously.
opts = PETSc.Options()
n = opts.getInt('n', 128)
kappa = opts.getReal('kappa', 1.0)
pde = MyPDE(kappa, 1.0/n)
# In order to set up the solver we have to pass the two callback functions
# (methods of the class) together with the matrix objects that will be
# used every time these methods are called. In this simple example we can
# do a preallocation of the matrices, although this is not necessary.
nep = SLEPc.NEP().create()
F = PETSc.Mat().create()
F.setSizes([n, n])
F.setType('aij')
F.setPreallocationNNZ(3)
nep.setFunction(pde.formFunction, F)
J = PETSc.Mat().create()
J.setSizes([n, n])
J.setType('aij')
J.setPreallocationNNZ(3)
nep.setJacobian(pde.formJacobian, J)
# After setting some options, we can solve the problem. Here we also
# illustrate how to pass an initial guess to the solver.
nep.setTolerances(tol=1e-9)
nep.setDimensions(1)
nep.setFromOptions()
x = F.createVecs('right')
x.set(1.0)
nep.setInitialSpace(x)
nep.solve()
# Once the solver has finished, we print some information together with
# the computed solution. For each computed eigenpair, we print the
# residual norm and also the error estimated with the class method
# ``checkSolution``.
its = nep.getIterationNumber()
Print("Number of iterations of the method: %i" % its)
sol_type = nep.getType()
Print("Solution method: %s" % sol_type)
nev, ncv, mpd = nep.getDimensions()
Print("")
Print("Subspace dimension: %i" % ncv)
tol, maxit = nep.getTolerances()
Print("Stopping condition: tol=%.4g" % tol)
Print("")
nconv = nep.getConverged()
Print( "Number of converged eigenpairs %d" % nconv )
if nconv > 0:
Print()
Print(" k ||T(k)x|| error ")
Print("----------------- ------------------ ------------------")
for i in range(nconv):
k = nep.getEigenpair(i, x)
FixSign(x)
res = nep.computeError(i)
error = pde.checkSolution(k.real, x)
if k.imag != 0.0:
Print( " %9f%+9f j %12g %12g" % (k.real, k.imag, res, error) )
else:
Print( " %12f %12g %12g" % (k.real, res, error) )
Print()
|