File: ex14.rst

package info (click to toggle)
slepc4py 3.24.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,760 kB
  • sloc: python: 6,916; makefile: 129; ansic: 98; sh: 58
file content (128 lines) | stat: -rw-r--r-- 3,811 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
ex14.py: Lyapunov equation with the shifted 2-D Laplacian
=========================================================

This example illustrates the use of slepc4py linear matrix equations
solver object. In particular, a Lyapunov equation is solved, where
the coefficient matrix is the shifted 2-D Laplacian.

The full source code for this demo can be `downloaded here
<../_static/ex14.py>`__.

Initialization is similar to previous examples.

::

  import sys, slepc4py
  slepc4py.init(sys.argv)

  from petsc4py import PETSc
  from slepc4py import SLEPc

  Print = PETSc.Sys.Print

Once again, a function to build the discretized Laplacian operator
in two dimensions. In this case, we build the shifted negative
Laplacian because the Lyapunov equation requires the coefficient
matrix being stable.

::

  def Laplacian2D(m, n, sigma):
      # Create matrix for 2D Laplacian operator
      A = PETSc.Mat().create()
      A.setSizes([m*n, m*n])
      A.setFromOptions()
      # Fill matrix
      Istart, Iend = A.getOwnershipRange()
      for I in range(Istart, Iend):
          A[I,I] = -4.0-sigma
          i = I//n    # map row number to
          j = I - i*n # grid coordinates
          if i> 0  : J = I-n; A[I,J] = 1.0
          if i< m-1: J = I+n; A[I,J] = 1.0
          if j> 0  : J = I-1; A[I,J] = 1.0
          if j< n-1: J = I+1; A[I,J] = 1.0
      A.assemble()
      return A

The following function solves the continuous-time Lyapunov equation

.. math::
   AX + XA^* = -C

where :math:`C` is supposed to have low rank. The solution :math:`X`
also has low rank, which will be restricted to ``rk`` if it was
provided as an argument of the function. After solving the equation,
this function computes and prints a residual norm.

::

  def solve_lyap(A, C, rk=0):
      # Setup the solver
      L = SLEPc.LME().create()
      L.setProblemType(SLEPc.LME.ProblemType.LYAPUNOV)
      L.setCoefficients(A)
      L.setRHS(C)

      N = C.size[0]
      if rk>0:
          X1 = PETSc.Mat().createDense((N,rk))
          X1.assemble()
          X = PETSc.Mat().createLRC(None, X1, None, None)
          L.setSolution(X)

      L.setTolerances(1e-7)
      L.setFromOptions()

      # Solve the problem
      L.solve()

      if rk==0:
          X = L.getSolution()

      its = L.getIterationNumber()
      Print(f'Number of iterations of the method: {its}')
      sol_type = L.getType()
      Print(f'Solution method: {sol_type}')
      tol, maxit = L.getTolerances()
      Print(f'Stopping condition: tol={tol}, maxit={maxit}')
      Print(f'Error estimate reported by the solver: {L.getErrorEstimate()}')
      if N<500:
          Print(f'Computed residual norm: {L.computeError()}')
      Print('')

      return X

The main function processes several command-line arguments such as
the grid dimension (``n``, ``m``), the shift ``sigma`` and the rank
of the solution, ``rank``.

The coefficient matrix ``A`` is built with the function above, while
the right-hand side matrix ``C`` must be built as a low-rank matrix
using `Mat.createLRC() <petsc4py.PETSc.Mat.createLRC>`.

::

  if __name__ == '__main__':
      opts = PETSc.Options()
      n = opts.getInt('n', 15)
      m = opts.getInt('m', n)
      N = m*n
      sigma = opts.getScalar('sigma', 0.0)
      rk = opts.getInt('rank', 0)

      # Coefficient matrix A
      A = Laplacian2D(m, n, sigma)

      # Create a low-rank Mat to store the right-hand side C = C1*C1'
      C1 = PETSc.Mat().createDense((N,2))
      rstart, rend = C1.getOwnershipRange()
      v = C1.getDenseArray()
      for i in range(rstart,rend):
          if i<N//2: v[i-rstart,0] = 1.0
          if i==0: v[i-rstart,1] = -2.0
          if i==1 or i==2: v[i-rstart,1] = -1.0
      C1.assemble()
      C = PETSc.Mat().createLRC(None, C1, None, None)

      X = solve_lyap(A, C, rk)