1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
/*
* The Sleuth Kit
*
*/
/* sha1c.c : Implementation of the Secure Hash Algorithm */
/* SHA: NIST's Secure Hash Algorithm */
/* This version written November 2000 by David Ireland of
DI Management Services Pty Limited <code@di-mgt.com.au>
Adapted from code in the Python Cryptography Toolkit,
version 1.0.0 by A.M. Kuchling 1995.
*/
/* AM Kuchling's posting:-
Based on SHA code originally posted to sci.crypt by Peter Gutmann
in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
Modified to test for endianness on creation of SHA objects by AMK.
Also, the original specification of SHA was found to have a weakness
by NSA/NIST. This code implements the fixed version of SHA.
*/
/* Here's the first paragraph of Peter Gutmann's posting:
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
what's changed in the new version. The fix is a simple change which involves
adding a single rotate in the initial expansion function. It is unknown
whether this is an optimal solution to the problem which was discovered in the
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
effort (for example the reengineering of a great many Capstone chips).
*/
/** \file sha1c.c
* Local copy of the public domain SHA-1 library code by David Ireland.
*/
#include "tsk_base_i.h"
/* The SHS block size and message digest sizes, in bytes */
#define SHS_DATASIZE 64
#define SHS_DIGESTSIZE 20
/* The SHS f()-functions. The f1 and f3 functions can be optimized to
save one boolean operation each - thanks to Rich Schroeppel,
rcs@cs.arizona.edu for discovering this */
/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) // Rounds 0-19 */
#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) // Rounds 40-59 */
#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
/* The SHS Mysterious Constants */
#define K1 0x5A827999UL /* Rounds 0-19 */
#define K2 0x6ED9EBA1UL /* Rounds 20-39 */
#define K3 0x8F1BBCDCUL /* Rounds 40-59 */
#define K4 0xCA62C1D6UL /* Rounds 60-79 */
/* SHS initial values */
#define h0init 0x67452301UL
#define h1init 0xEFCDAB89UL
#define h2init 0x98BADCFEUL
#define h3init 0x10325476UL
#define h4init 0xC3D2E1F0UL
/* Note that it may be necessary to add parentheses to these macros if they
are to be called with expressions as arguments */
/* 32-bit rotate left - kludged with shifts */
#define ROTL(n,X) ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )
/* The initial expanding function. The hash function is defined over an
80-UINT2 expanded input array W, where the first 16 are copies of the input
data, and the remaining 64 are defined by
W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
This implementation generates these values on the fly in a circular
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
optimization.
The updated SHS changes the expanding function by adding a rotate of 1
bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
for this information */
#define expand(W,i) ( W[ i & 15 ] = ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
/* The prototype SHS sub-round. The fundamental sub-round is:
a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
b' = a;
c' = ROTL( 30, b );
d' = c;
e' = d;
but this is implemented by unrolling the loop 5 times and renaming the
variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
This code is then replicated 20 times for each of the 4 functions, using
the next 20 values from the W[] array each time */
#define subRound(a, b, c, d, e, f, k, data) \
( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
/* endian.c */
static void
endianTest(int *endian_ness)
{
if ((*(unsigned short *) ("#S") >> 8) == '#') {
/* printf("Big endian = no change\n"); */
*endian_ness = !(0);
}
else {
/* printf("Little endian = swap\n"); */
*endian_ness = 0;
}
}
/**
* \ingroup baselib
* Initialize a SHA-1 context so that data can be added to it.
* @param shsInfo Pointer to context structure to initialize
*/
void
TSK_SHA_Init(TSK_SHA_CTX * shsInfo)
{
endianTest(&shsInfo->Endianness);
/* Set the h-vars to their initial values */
shsInfo->digest[0] = h0init;
shsInfo->digest[1] = h1init;
shsInfo->digest[2] = h2init;
shsInfo->digest[3] = h3init;
shsInfo->digest[4] = h4init;
/* Initialise bit count */
shsInfo->countLo = shsInfo->countHi = 0;
}
/* Perform the SHS transformation. Note that this code, like MD5, seems to
break some optimizing compilers due to the complexity of the expressions
and the size of the basic block. It may be necessary to split it into
sections, e.g. based on the four subrounds
Note that this corrupts the shsInfo->data area */
static void
SHSTransform(digest, data)
UINT4 *digest, *data;
{
UINT4 A, B, C, D, E; /* Local vars */
UINT4 eData[16]; /* Expanded data */
/* Set up first buffer and local data buffer */
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
memcpy((POINTER) eData, (POINTER) data, SHS_DATASIZE);
/* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
subRound(A, B, C, D, E, f1, K1, eData[0]);
subRound(E, A, B, C, D, f1, K1, eData[1]);
subRound(D, E, A, B, C, f1, K1, eData[2]);
subRound(C, D, E, A, B, f1, K1, eData[3]);
subRound(B, C, D, E, A, f1, K1, eData[4]);
subRound(A, B, C, D, E, f1, K1, eData[5]);
subRound(E, A, B, C, D, f1, K1, eData[6]);
subRound(D, E, A, B, C, f1, K1, eData[7]);
subRound(C, D, E, A, B, f1, K1, eData[8]);
subRound(B, C, D, E, A, f1, K1, eData[9]);
subRound(A, B, C, D, E, f1, K1, eData[10]);
subRound(E, A, B, C, D, f1, K1, eData[11]);
subRound(D, E, A, B, C, f1, K1, eData[12]);
subRound(C, D, E, A, B, f1, K1, eData[13]);
subRound(B, C, D, E, A, f1, K1, eData[14]);
subRound(A, B, C, D, E, f1, K1, eData[15]);
subRound(E, A, B, C, D, f1, K1, expand(eData, 16));
subRound(D, E, A, B, C, f1, K1, expand(eData, 17));
subRound(C, D, E, A, B, f1, K1, expand(eData, 18));
subRound(B, C, D, E, A, f1, K1, expand(eData, 19));
subRound(A, B, C, D, E, f2, K2, expand(eData, 20));
subRound(E, A, B, C, D, f2, K2, expand(eData, 21));
subRound(D, E, A, B, C, f2, K2, expand(eData, 22));
subRound(C, D, E, A, B, f2, K2, expand(eData, 23));
subRound(B, C, D, E, A, f2, K2, expand(eData, 24));
subRound(A, B, C, D, E, f2, K2, expand(eData, 25));
subRound(E, A, B, C, D, f2, K2, expand(eData, 26));
subRound(D, E, A, B, C, f2, K2, expand(eData, 27));
subRound(C, D, E, A, B, f2, K2, expand(eData, 28));
subRound(B, C, D, E, A, f2, K2, expand(eData, 29));
subRound(A, B, C, D, E, f2, K2, expand(eData, 30));
subRound(E, A, B, C, D, f2, K2, expand(eData, 31));
subRound(D, E, A, B, C, f2, K2, expand(eData, 32));
subRound(C, D, E, A, B, f2, K2, expand(eData, 33));
subRound(B, C, D, E, A, f2, K2, expand(eData, 34));
subRound(A, B, C, D, E, f2, K2, expand(eData, 35));
subRound(E, A, B, C, D, f2, K2, expand(eData, 36));
subRound(D, E, A, B, C, f2, K2, expand(eData, 37));
subRound(C, D, E, A, B, f2, K2, expand(eData, 38));
subRound(B, C, D, E, A, f2, K2, expand(eData, 39));
subRound(A, B, C, D, E, f3, K3, expand(eData, 40));
subRound(E, A, B, C, D, f3, K3, expand(eData, 41));
subRound(D, E, A, B, C, f3, K3, expand(eData, 42));
subRound(C, D, E, A, B, f3, K3, expand(eData, 43));
subRound(B, C, D, E, A, f3, K3, expand(eData, 44));
subRound(A, B, C, D, E, f3, K3, expand(eData, 45));
subRound(E, A, B, C, D, f3, K3, expand(eData, 46));
subRound(D, E, A, B, C, f3, K3, expand(eData, 47));
subRound(C, D, E, A, B, f3, K3, expand(eData, 48));
subRound(B, C, D, E, A, f3, K3, expand(eData, 49));
subRound(A, B, C, D, E, f3, K3, expand(eData, 50));
subRound(E, A, B, C, D, f3, K3, expand(eData, 51));
subRound(D, E, A, B, C, f3, K3, expand(eData, 52));
subRound(C, D, E, A, B, f3, K3, expand(eData, 53));
subRound(B, C, D, E, A, f3, K3, expand(eData, 54));
subRound(A, B, C, D, E, f3, K3, expand(eData, 55));
subRound(E, A, B, C, D, f3, K3, expand(eData, 56));
subRound(D, E, A, B, C, f3, K3, expand(eData, 57));
subRound(C, D, E, A, B, f3, K3, expand(eData, 58));
subRound(B, C, D, E, A, f3, K3, expand(eData, 59));
subRound(A, B, C, D, E, f4, K4, expand(eData, 60));
subRound(E, A, B, C, D, f4, K4, expand(eData, 61));
subRound(D, E, A, B, C, f4, K4, expand(eData, 62));
subRound(C, D, E, A, B, f4, K4, expand(eData, 63));
subRound(B, C, D, E, A, f4, K4, expand(eData, 64));
subRound(A, B, C, D, E, f4, K4, expand(eData, 65));
subRound(E, A, B, C, D, f4, K4, expand(eData, 66));
subRound(D, E, A, B, C, f4, K4, expand(eData, 67));
subRound(C, D, E, A, B, f4, K4, expand(eData, 68));
subRound(B, C, D, E, A, f4, K4, expand(eData, 69));
subRound(A, B, C, D, E, f4, K4, expand(eData, 70));
subRound(E, A, B, C, D, f4, K4, expand(eData, 71));
subRound(D, E, A, B, C, f4, K4, expand(eData, 72));
subRound(C, D, E, A, B, f4, K4, expand(eData, 73));
subRound(B, C, D, E, A, f4, K4, expand(eData, 74));
subRound(A, B, C, D, E, f4, K4, expand(eData, 75));
subRound(E, A, B, C, D, f4, K4, expand(eData, 76));
subRound(D, E, A, B, C, f4, K4, expand(eData, 77));
subRound(C, D, E, A, B, f4, K4, expand(eData, 78));
subRound(B, C, D, E, A, f4, K4, expand(eData, 79));
/* Build message digest */
digest[0] += A;
digest[1] += B;
digest[2] += C;
digest[3] += D;
digest[4] += E;
}
/* When run on a little-endian CPU we need to perform byte reversal on an
array of long words. */
static void
longReverse(UINT4 * buffer, int byteCount, int Endianness)
{
UINT4 value;
if (Endianness == TRUE)
return;
byteCount /= sizeof(UINT4);
while (byteCount--) {
value = *buffer;
value = ((value & 0xFF00FF00UL) >> 8) |
((value & 0x00FF00FFUL) << 8);
*buffer++ = (value << 16) | (value >> 16);
}
}
/**
* \ingroup baselib
* Add data to an initialized SHA-1 context.
* @param shsInfo Context to add data to
* @param buffer Data to process
* @param count Number of bytes in buffer
*/
void
TSK_SHA_Update(TSK_SHA_CTX * shsInfo, BYTE * buffer, int count)
{
UINT4 tmp;
int dataCount;
/* Update bitcount */
tmp = shsInfo->countLo;
if ((shsInfo->countLo = tmp + ((UINT4) count << 3)) < tmp)
shsInfo->countHi++; /* Carry from low to high */
shsInfo->countHi += count >> 29;
/* Get count of bytes already in data */
dataCount = (int) (tmp >> 3) & 0x3F;
/* Handle any leading odd-sized chunks */
if (dataCount) {
BYTE *p = (BYTE *) shsInfo->data + dataCount;
dataCount = SHS_DATASIZE - dataCount;
if (count < dataCount) {
memcpy(p, buffer, count);
return;
}
memcpy(p, buffer, dataCount);
longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
SHSTransform(shsInfo->digest, shsInfo->data);
buffer += dataCount;
count -= dataCount;
}
/* Process data in SHS_DATASIZE chunks */
while (count >= SHS_DATASIZE) {
memcpy((POINTER) shsInfo->data, (POINTER) buffer, SHS_DATASIZE);
longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
SHSTransform(shsInfo->digest, shsInfo->data);
buffer += SHS_DATASIZE;
count -= SHS_DATASIZE;
}
/* Handle any remaining bytes of data. */
memcpy((POINTER) shsInfo->data, (POINTER) buffer, count);
}
static void
SHAtoByte(BYTE output[SHS_DIGESTSIZE], UINT4 * input)
{ /* Output SHA digest in byte array */
unsigned int i, j;
for (i = 0, j = 0; j < SHS_DIGESTSIZE; i++, j += 4) {
output[j + 3] = (BYTE) (input[i] & 0xff);
output[j + 2] = (BYTE) ((input[i] >> 8) & 0xff);
output[j + 1] = (BYTE) ((input[i] >> 16) & 0xff);
output[j] = (BYTE) ((input[i] >> 24) & 0xff);
}
}
/**
* \ingroup baselib
* Calculate the hash of the data added to the context.
* @param output Buffer to store hash value
* @param shsInfo Context that has data added to it.
*/
void
TSK_SHA_Final(BYTE output[SHS_DIGESTSIZE], TSK_SHA_CTX * shsInfo)
{
int count;
BYTE *dataPtr;
/* Compute number of bytes mod 64 */
count = (int) shsInfo->countLo;
count = (count >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
dataPtr = (BYTE *) shsInfo->data + count;
*dataPtr++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = SHS_DATASIZE - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(dataPtr, 0, count);
longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
SHSTransform(shsInfo->digest, shsInfo->data);
/* Now fill the next block with 56 bytes */
memset((POINTER) shsInfo->data, 0, SHS_DATASIZE - 8);
}
else
/* Pad block to 56 bytes */
memset(dataPtr, 0, count - 8);
/* Append length in bits and transform */
shsInfo->data[14] = shsInfo->countHi;
shsInfo->data[15] = shsInfo->countLo;
longReverse(shsInfo->data, SHS_DATASIZE - 8, shsInfo->Endianness);
SHSTransform(shsInfo->digest, shsInfo->data);
/* Output to an array of bytes */
SHAtoByte(output, shsInfo->digest);
/* Zeroise sensitive stuff */
memset((POINTER) shsInfo, 0, sizeof(shsInfo));
}
|