File: sha1c.c

package info (click to toggle)
sleuthkit 4.12.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,608 kB
  • sloc: ansic: 143,795; cpp: 52,225; java: 37,892; xml: 2,416; python: 1,076; perl: 874; makefile: 439; sh: 184
file content (400 lines) | stat: -rw-r--r-- 14,285 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
 * The Sleuth Kit 
 *
 */

/* sha1c.c : Implementation of the Secure Hash Algorithm */

/* SHA: NIST's Secure Hash Algorithm */

/*	This version written November 2000 by David Ireland of 
	DI Management Services Pty Limited <code@di-mgt.com.au>

	Adapted from code in the Python Cryptography Toolkit, 
	version 1.0.0 by A.M. Kuchling 1995.
*/

/* AM Kuchling's posting:- 
   Based on SHA code originally posted to sci.crypt by Peter Gutmann
   in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
   Modified to test for endianness on creation of SHA objects by AMK.
   Also, the original specification of SHA was found to have a weakness
   by NSA/NIST.  This code implements the fixed version of SHA.
*/

/* Here's the first paragraph of Peter Gutmann's posting:
   
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
what's changed in the new version.  The fix is a simple change which involves
adding a single rotate in the initial expansion function.  It is unknown
whether this is an optimal solution to the problem which was discovered in the
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
effort (for example the reengineering of a great many Capstone chips).
*/

/** \file sha1c.c
 * Local copy of the  public domain SHA-1 library code by David Ireland.
 */

#include "tsk_base_i.h"


/* The SHS block size and message digest sizes, in bytes */

#define SHS_DATASIZE    64
#define SHS_DIGESTSIZE  20


/* The SHS f()-functions.  The f1 and f3 functions can be optimized to
   save one boolean operation each - thanks to Rich Schroeppel,
   rcs@cs.arizona.edu for discovering this */

/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) )          // Rounds  0-19 */
#define f1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )   /* Rounds  0-19 */
#define f2(x,y,z)   ( x ^ y ^ z )       /* Rounds 20-39 */
/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) )   // Rounds 40-59 */
#define f3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )   /* Rounds 40-59 */
#define f4(x,y,z)   ( x ^ y ^ z )       /* Rounds 60-79 */

/* The SHS Mysterious Constants */

#define K1  0x5A827999UL        /* Rounds  0-19 */
#define K2  0x6ED9EBA1UL        /* Rounds 20-39 */
#define K3  0x8F1BBCDCUL        /* Rounds 40-59 */
#define K4  0xCA62C1D6UL        /* Rounds 60-79 */

/* SHS initial values */

#define h0init  0x67452301UL
#define h1init  0xEFCDAB89UL
#define h2init  0x98BADCFEUL
#define h3init  0x10325476UL
#define h4init  0xC3D2E1F0UL

/* Note that it may be necessary to add parentheses to these macros if they
   are to be called with expressions as arguments */
/* 32-bit rotate left - kludged with shifts */

#define ROTL(n,X)  ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )

/* The initial expanding function.  The hash function is defined over an
   80-UINT2 expanded input array W, where the first 16 are copies of the input
   data, and the remaining 64 are defined by

        W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]

   This implementation generates these values on the fly in a circular
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
   optimization.

   The updated SHS changes the expanding function by adding a rotate of 1
   bit.  Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
   for this information */

#define expand(W,i) ( W[ i & 15 ] = ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
                                                 W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )


/* The prototype SHS sub-round.  The fundamental sub-round is:

        a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
        b' = a;
        c' = ROTL( 30, b );
        d' = c;
        e' = d;

   but this is implemented by unrolling the loop 5 times and renaming the
   variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
   This code is then replicated 20 times for each of the 4 functions, using
   the next 20 values from the W[] array each time */

#define subRound(a, b, c, d, e, f, k, data) \
    ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )



/* endian.c */
static void
endianTest(int *endian_ness)
{
    if ((*(unsigned short *) ("#S") >> 8) == '#') {
        /* printf("Big endian = no change\n"); */
        *endian_ness = !(0);
    }
    else {
        /* printf("Little endian = swap\n"); */
        *endian_ness = 0;
    }
}

/**
 * \ingroup baselib
 * Initialize a SHA-1 context so that data can be added to it. 
 * @param shsInfo Pointer to context structure to initialize
 */
void
TSK_SHA_Init(TSK_SHA_CTX * shsInfo)
{
    endianTest(&shsInfo->Endianness);
    /* Set the h-vars to their initial values */
    shsInfo->digest[0] = h0init;
    shsInfo->digest[1] = h1init;
    shsInfo->digest[2] = h2init;
    shsInfo->digest[3] = h3init;
    shsInfo->digest[4] = h4init;

    /* Initialise bit count */
    shsInfo->countLo = shsInfo->countHi = 0;
}


/* Perform the SHS transformation.  Note that this code, like MD5, seems to
   break some optimizing compilers due to the complexity of the expressions
   and the size of the basic block.  It may be necessary to split it into
   sections, e.g. based on the four subrounds

   Note that this corrupts the shsInfo->data area */

static void
SHSTransform(digest, data)
  UINT4 *digest, *data;
{
    UINT4 A, B, C, D, E;        /* Local vars */
    UINT4 eData[16];            /* Expanded data */

    /* Set up first buffer and local data buffer */
    A = digest[0];
    B = digest[1];
    C = digest[2];
    D = digest[3];
    E = digest[4];
    memcpy((POINTER) eData, (POINTER) data, SHS_DATASIZE);

    /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
    subRound(A, B, C, D, E, f1, K1, eData[0]);
    subRound(E, A, B, C, D, f1, K1, eData[1]);
    subRound(D, E, A, B, C, f1, K1, eData[2]);
    subRound(C, D, E, A, B, f1, K1, eData[3]);
    subRound(B, C, D, E, A, f1, K1, eData[4]);
    subRound(A, B, C, D, E, f1, K1, eData[5]);
    subRound(E, A, B, C, D, f1, K1, eData[6]);
    subRound(D, E, A, B, C, f1, K1, eData[7]);
    subRound(C, D, E, A, B, f1, K1, eData[8]);
    subRound(B, C, D, E, A, f1, K1, eData[9]);
    subRound(A, B, C, D, E, f1, K1, eData[10]);
    subRound(E, A, B, C, D, f1, K1, eData[11]);
    subRound(D, E, A, B, C, f1, K1, eData[12]);
    subRound(C, D, E, A, B, f1, K1, eData[13]);
    subRound(B, C, D, E, A, f1, K1, eData[14]);
    subRound(A, B, C, D, E, f1, K1, eData[15]);
    subRound(E, A, B, C, D, f1, K1, expand(eData, 16));
    subRound(D, E, A, B, C, f1, K1, expand(eData, 17));
    subRound(C, D, E, A, B, f1, K1, expand(eData, 18));
    subRound(B, C, D, E, A, f1, K1, expand(eData, 19));

    subRound(A, B, C, D, E, f2, K2, expand(eData, 20));
    subRound(E, A, B, C, D, f2, K2, expand(eData, 21));
    subRound(D, E, A, B, C, f2, K2, expand(eData, 22));
    subRound(C, D, E, A, B, f2, K2, expand(eData, 23));
    subRound(B, C, D, E, A, f2, K2, expand(eData, 24));
    subRound(A, B, C, D, E, f2, K2, expand(eData, 25));
    subRound(E, A, B, C, D, f2, K2, expand(eData, 26));
    subRound(D, E, A, B, C, f2, K2, expand(eData, 27));
    subRound(C, D, E, A, B, f2, K2, expand(eData, 28));
    subRound(B, C, D, E, A, f2, K2, expand(eData, 29));
    subRound(A, B, C, D, E, f2, K2, expand(eData, 30));
    subRound(E, A, B, C, D, f2, K2, expand(eData, 31));
    subRound(D, E, A, B, C, f2, K2, expand(eData, 32));
    subRound(C, D, E, A, B, f2, K2, expand(eData, 33));
    subRound(B, C, D, E, A, f2, K2, expand(eData, 34));
    subRound(A, B, C, D, E, f2, K2, expand(eData, 35));
    subRound(E, A, B, C, D, f2, K2, expand(eData, 36));
    subRound(D, E, A, B, C, f2, K2, expand(eData, 37));
    subRound(C, D, E, A, B, f2, K2, expand(eData, 38));
    subRound(B, C, D, E, A, f2, K2, expand(eData, 39));

    subRound(A, B, C, D, E, f3, K3, expand(eData, 40));
    subRound(E, A, B, C, D, f3, K3, expand(eData, 41));
    subRound(D, E, A, B, C, f3, K3, expand(eData, 42));
    subRound(C, D, E, A, B, f3, K3, expand(eData, 43));
    subRound(B, C, D, E, A, f3, K3, expand(eData, 44));
    subRound(A, B, C, D, E, f3, K3, expand(eData, 45));
    subRound(E, A, B, C, D, f3, K3, expand(eData, 46));
    subRound(D, E, A, B, C, f3, K3, expand(eData, 47));
    subRound(C, D, E, A, B, f3, K3, expand(eData, 48));
    subRound(B, C, D, E, A, f3, K3, expand(eData, 49));
    subRound(A, B, C, D, E, f3, K3, expand(eData, 50));
    subRound(E, A, B, C, D, f3, K3, expand(eData, 51));
    subRound(D, E, A, B, C, f3, K3, expand(eData, 52));
    subRound(C, D, E, A, B, f3, K3, expand(eData, 53));
    subRound(B, C, D, E, A, f3, K3, expand(eData, 54));
    subRound(A, B, C, D, E, f3, K3, expand(eData, 55));
    subRound(E, A, B, C, D, f3, K3, expand(eData, 56));
    subRound(D, E, A, B, C, f3, K3, expand(eData, 57));
    subRound(C, D, E, A, B, f3, K3, expand(eData, 58));
    subRound(B, C, D, E, A, f3, K3, expand(eData, 59));

    subRound(A, B, C, D, E, f4, K4, expand(eData, 60));
    subRound(E, A, B, C, D, f4, K4, expand(eData, 61));
    subRound(D, E, A, B, C, f4, K4, expand(eData, 62));
    subRound(C, D, E, A, B, f4, K4, expand(eData, 63));
    subRound(B, C, D, E, A, f4, K4, expand(eData, 64));
    subRound(A, B, C, D, E, f4, K4, expand(eData, 65));
    subRound(E, A, B, C, D, f4, K4, expand(eData, 66));
    subRound(D, E, A, B, C, f4, K4, expand(eData, 67));
    subRound(C, D, E, A, B, f4, K4, expand(eData, 68));
    subRound(B, C, D, E, A, f4, K4, expand(eData, 69));
    subRound(A, B, C, D, E, f4, K4, expand(eData, 70));
    subRound(E, A, B, C, D, f4, K4, expand(eData, 71));
    subRound(D, E, A, B, C, f4, K4, expand(eData, 72));
    subRound(C, D, E, A, B, f4, K4, expand(eData, 73));
    subRound(B, C, D, E, A, f4, K4, expand(eData, 74));
    subRound(A, B, C, D, E, f4, K4, expand(eData, 75));
    subRound(E, A, B, C, D, f4, K4, expand(eData, 76));
    subRound(D, E, A, B, C, f4, K4, expand(eData, 77));
    subRound(C, D, E, A, B, f4, K4, expand(eData, 78));
    subRound(B, C, D, E, A, f4, K4, expand(eData, 79));

    /* Build message digest */
    digest[0] += A;
    digest[1] += B;
    digest[2] += C;
    digest[3] += D;
    digest[4] += E;
}

/* When run on a little-endian CPU we need to perform byte reversal on an
   array of long words. */

static void
longReverse(UINT4 * buffer, int byteCount, int Endianness)
{
    UINT4 value;

    if (Endianness == TRUE)
        return;
    byteCount /= sizeof(UINT4);
    while (byteCount--) {
        value = *buffer;
        value = ((value & 0xFF00FF00UL) >> 8) |
            ((value & 0x00FF00FFUL) << 8);
        *buffer++ = (value << 16) | (value >> 16);
    }
}

/**
* \ingroup baselib
 * Add data to an initialized SHA-1 context.
 * @param shsInfo Context to add data to
 * @param buffer Data to process
 * @param count Number of bytes in buffer
 */
void
TSK_SHA_Update(TSK_SHA_CTX * shsInfo, BYTE * buffer, int count)
{
    UINT4 tmp;
    int dataCount;

    /* Update bitcount */
    tmp = shsInfo->countLo;
    if ((shsInfo->countLo = tmp + ((UINT4) count << 3)) < tmp)
        shsInfo->countHi++;     /* Carry from low to high */
    shsInfo->countHi += count >> 29;

    /* Get count of bytes already in data */
    dataCount = (int) (tmp >> 3) & 0x3F;

    /* Handle any leading odd-sized chunks */
    if (dataCount) {
        BYTE *p = (BYTE *) shsInfo->data + dataCount;

        dataCount = SHS_DATASIZE - dataCount;
        if (count < dataCount) {
            memcpy(p, buffer, count);
            return;
        }
        memcpy(p, buffer, dataCount);
        longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
        SHSTransform(shsInfo->digest, shsInfo->data);
        buffer += dataCount;
        count -= dataCount;
    }

    /* Process data in SHS_DATASIZE chunks */
    while (count >= SHS_DATASIZE) {
        memcpy((POINTER) shsInfo->data, (POINTER) buffer, SHS_DATASIZE);
        longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
        SHSTransform(shsInfo->digest, shsInfo->data);
        buffer += SHS_DATASIZE;
        count -= SHS_DATASIZE;
    }

    /* Handle any remaining bytes of data. */
    memcpy((POINTER) shsInfo->data, (POINTER) buffer, count);
}

static void
SHAtoByte(BYTE output[SHS_DIGESTSIZE], UINT4 * input)
{                               /* Output SHA digest in byte array */
    unsigned int i, j;

    for (i = 0, j = 0; j < SHS_DIGESTSIZE; i++, j += 4) {
        output[j + 3] = (BYTE) (input[i] & 0xff);
        output[j + 2] = (BYTE) ((input[i] >> 8) & 0xff);
        output[j + 1] = (BYTE) ((input[i] >> 16) & 0xff);
        output[j] = (BYTE) ((input[i] >> 24) & 0xff);
    }
}

/**
 * \ingroup baselib
 * Calculate the hash of the data added to the context.
 * @param output Buffer to store hash value
 * @param shsInfo Context that has data added to it.
 */
void
TSK_SHA_Final(BYTE output[SHS_DIGESTSIZE], TSK_SHA_CTX * shsInfo)
{
    int count;
    BYTE *dataPtr;

    /* Compute number of bytes mod 64 */
    count = (int) shsInfo->countLo;
    count = (count >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    dataPtr = (BYTE *) shsInfo->data + count;
    *dataPtr++ = 0x80;

    /* Bytes of padding needed to make 64 bytes */
    count = SHS_DATASIZE - 1 - count;

    /* Pad out to 56 mod 64 */
    if (count < 8) {
        /* Two lots of padding:  Pad the first block to 64 bytes */
        memset(dataPtr, 0, count);
        longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
        SHSTransform(shsInfo->digest, shsInfo->data);

        /* Now fill the next block with 56 bytes */
        memset((POINTER) shsInfo->data, 0, SHS_DATASIZE - 8);
    }
    else
        /* Pad block to 56 bytes */
        memset(dataPtr, 0, count - 8);

    /* Append length in bits and transform */
    shsInfo->data[14] = shsInfo->countHi;
    shsInfo->data[15] = shsInfo->countLo;

    longReverse(shsInfo->data, SHS_DATASIZE - 8, shsInfo->Endianness);
    SHSTransform(shsInfo->digest, shsInfo->data);

    /* Output to an array of bytes */
    SHAtoByte(output, shsInfo->digest);

    /* Zeroise sensitive stuff */
    memset((POINTER) shsInfo, 0, sizeof(shsInfo));
}