1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
|
/*
* The Sleuth Kit
*
* Brian Carrier [carrier <at> sleuthkit [dot] org]
* Copyright (c) 2019-2020 Brian Carrier. All Rights reserved
* Copyright (c) 2018-2019 BlackBag Technologies. All Rights reserved
*
* This software is distributed under the Common Public License 1.0
*/
#include "../util/crypto.hpp"
#include "apfs_fs.hpp"
#include "tsk_apfs.hpp"
#include <cstring>
// MSVC doesn't define ffs/ffsll.
#ifdef _MSC_VER
#include <intrin.h>
#ifdef _M_X64 // 64-bit
#pragma intrinsic(_BitScanForward64)
static __forceinline int lsbset(unsigned __int64 x) {
unsigned long i;
if (_BitScanForward64(&i, x)) {
return i + 1;
}
return 0;
}
#else // 32-bit
#pragma intrinsic(_BitScanForward)
static __forceinline int lsbset(long x) {
unsigned long i;
if (_BitScanForward(&i, x)) {
return i + 1;
}
return 0;
}
#endif // _M_X64
#else // gcc or clang
#ifdef __x86_64__
#define lsbset(x) __builtin_ffsll(x)
#else // 32-bit
#define lsbset(x) __builtin_ffs(x)
#endif // __x86_64__
#endif // _MSC_VER
class wrapped_key_parser {
// TODO(JTS): This code assume a well-formed input. It needs some sanity
// checking!
using tag = uint8_t;
using view = span<const uint8_t>;
const uint8_t* _data;
size_t get_length(const uint8_t** pos) const noexcept {
auto data = *pos;
size_t len = *data++;
if (len & 0x80) {
len = 0;
auto enc_len = len & 0x7F;
while (enc_len--) {
len <<= 8;
len |= *data++;
}
}
*pos = data;
return len;
}
const view get_tag(tag t) const noexcept {
auto data = _data;
while (true) {
const auto tag = *data++;
const auto len = get_length(&data);
if (tag == t) {
return {data, len};
}
data += len;
}
}
// Needed for the recursive variadic to compile, but should never be
// called. TODO(JTS): Use constexpr if when we enforce C++17
const view get_data(void) const {
throw std::logic_error("this should be unreachable");
}
public:
wrapped_key_parser(const void* data) noexcept : _data{(const uint8_t*)data} {}
template <typename... Args>
const view get_data(tag t, Args... args) const noexcept {
const auto data = get_tag(t);
if (sizeof...(args) == 0 || !data.valid()) {
return data;
}
return wrapped_key_parser{data.data()}.get_data(args...);
}
template <typename... Args>
uint64_t get_number(tag t, Args... args) const noexcept {
const auto data = get_data(t, args...);
uint64_t n = 0;
for (auto p = data.data(); p < data.data() + data.count(); p++) {
n <<= 8;
n |= *p;
}
return n;
}
};
APFSBlock::APFSBlock(const APFSPool& pool, const apfs_block_num block_num)
: _storage{}, _pool{pool}, _block_num{block_num} {
const auto sz =
pool.read(block_num * APFS_BLOCK_SIZE, _storage.data(), APFS_BLOCK_SIZE);
if (sz != APFS_BLOCK_SIZE) {
throw std::runtime_error("could not read APFSBlock");
}
}
void APFSBlock::decrypt(const uint8_t* key, const uint8_t* key2) noexcept {
#ifdef HAVE_LIBOPENSSL
// If the data is encrypted via the T2 chip, we can't decrypt it. This means
// that if the data wasn't decrypted at acquisition time, then processing will
// likely fail. Either way, there is no need to decrypt.
if (_pool.hardware_crypto()) {
return;
}
aes_xts_decryptor dec{ aes_xts_decryptor::AES_128, key, key2,
APFS_CRYPTO_SW_BLKSIZE };
dec.decrypt_buffer(_storage.data(), _storage.size(),
_block_num * APFS_BLOCK_SIZE);
#else
return;
#endif
}
void APFSBlock::dump() const noexcept {
// Dump contents of block to stdout for debugging
for (const auto byte : _storage) {
putchar(byte);
}
}
bool APFSObject::validate_checksum() const noexcept {
if (obj()->cksum == std::numeric_limits<uint64_t>::max()) {
return false;
}
// Calculate the checksum using the modified fletcher's algorithm
const auto checksum = [&]() -> uint64_t {
const auto data =
reinterpret_cast<const uint32_t*>(_storage.data() + sizeof(uint64_t));
const auto len = (_storage.size() - sizeof(uint64_t)) / sizeof(uint32_t);
constexpr uint64_t mod = std::numeric_limits<uint32_t>::max();
uint64_t sum1{0};
uint64_t sum2{0};
for (size_t i = 0; i < len; i++) {
sum1 = (sum1 + data[i]) % mod;
sum2 = (sum2 + sum1) % mod;
}
const auto ck_low = mod - ((sum1 + sum2) % mod);
const auto ck_high = mod - ((sum1 + ck_low) % mod);
return (ck_high << 32) | ck_low;
}();
// Compare calculated checksum with the value in the object header
return (checksum == obj()->cksum);
}
APFSSuperblock::APFSSuperblock(const APFSPool& pool,
const apfs_block_num block_num)
: APFSObject(pool, block_num), _spaceman{} {
if (obj_type() != APFS_OBJ_TYPE_SUPERBLOCK) {
throw std::runtime_error("APFSSuperblock: invalid object type");
}
if (sb()->magic != APFS_NXSUPERBLOCK_MAGIC) {
throw std::runtime_error("APFSSuperblock: invalid magic");
}
if (bit_is_set(sb()->incompatible_features, APFS_NXSB_INCOMPAT_VERSION1)) {
throw std::runtime_error(
"APFSSuperblock: Pre-release versions of APFS are not supported");
}
if (bit_is_set(sb()->incompatible_features, APFS_NXSB_INCOMPAT_FUSION)) {
if (tsk_verbose) {
tsk_fprintf(stderr,
"WARNING: APFS fusion drives may not be fully supported\n");
}
}
if (block_size() != APFS_BLOCK_SIZE) {
throw std::runtime_error(
"APFSSuperblock: invalid or unsupported block size");
}
}
const std::vector<apfs_block_num> APFSSuperblock::volume_blocks() const {
std::vector<apfs_block_num> vec{};
const auto root = omap().root<APFSObjectBtreeNode>();
for (const auto& e : root.entries()) {
vec.emplace_back(e.value->paddr);
}
return vec;
}
const std::vector<apfs_block_num> APFSSuperblock::sm_bitmap_blocks() const {
const auto entries = spaceman().bm_entries();
std::vector<apfs_block_num> v{};
v.reserve(entries.size());
for (const auto& entry : entries) {
if (entry.bm_block != 0) {
v.emplace_back(entry.bm_block);
}
}
return v;
}
const std::vector<uint64_t> APFSSuperblock::volume_oids() const {
std::vector<uint64_t> v{};
for (auto i = 0U; i < sb()->max_fs_count; i++) {
const auto oid = sb()->fs_oids[i];
if (oid == 0) {
break;
}
v.emplace_back(oid);
}
return v;
}
apfs_block_num APFSSuperblock::checkpoint_desc_block() const {
for (auto i = 0U; i < sb()->chkpt_desc_block_count; i++) {
const auto block_num = sb()->chkpt_desc_base_addr + i;
const auto block = APFSObject(_pool, block_num);
if (!block.validate_checksum()) {
if (tsk_verbose) {
tsk_fprintf(stderr,
"APFSSuperblock::checkpoint_desc_block: Block %lld did not "
"validate.\n",
block_num);
}
continue;
}
if (block.xid() == xid() &&
block.obj_type() == APFS_OBJ_TYPE_CHECKPOINT_DESC) {
return block_num;
}
}
// We didn't find anything so return 0;
return 0;
}
const APFSSpaceman& APFSSuperblock::spaceman() const {
if (_spaceman != nullptr) {
return *_spaceman;
}
#ifdef TSK_MULTITHREAD_LIB
// Since this function is const, and const methods generally are assumed to be
// thread safe, we ideally want to it be thread safe so multiple threads
// aren't trying to initialize at the same time.
std::lock_guard<std::mutex> lock{_spaceman_init_lock};
// Check again to make sure someone else didn't already beat us to this.
if (_spaceman != nullptr) {
return *_spaceman;
}
#endif
const APFSCheckpointMap cd{_pool, checkpoint_desc_block()};
_spaceman = std::make_unique<APFSSpaceman>(
_pool, cd.get_object_block(sb()->spaceman_oid, APFS_OBJ_TYPE_SPACEMAN));
return *_spaceman;
}
APFSSuperblock::Keybag APFSSuperblock::keybag() const {
if (sb()->keylocker.start_paddr == 0) {
throw std::runtime_error("no keybag found");
}
return {(*this)};
}
APFSOmap::APFSOmap(const APFSPool& pool, const apfs_block_num block_num)
: APFSObject(pool, block_num) {
if (obj_type() != APFS_OBJ_TYPE_OMAP) {
throw std::runtime_error("APFSOmap: invalid object type");
}
}
APFSFileSystem::APFSFileSystem(const APFSPool& pool,
const apfs_block_num block_num)
: APFSObject(pool, block_num) {
if (obj_type() != APFS_OBJ_TYPE_FS) {
throw std::runtime_error("APFSFileSystem: invalid object type");
}
if (fs()->magic != APFS_FS_MAGIC) {
throw std::runtime_error("APFSFileSystem: invalid magic");
}
if (encrypted() && pool.hardware_crypto() == false) {
init_crypto_info();
}
}
APFSFileSystem::wrapped_kek::wrapped_kek(TSKGuid&& id,
const std::unique_ptr<uint8_t[]>& kp)
: uuid{std::forward<TSKGuid>(id)} {
// Parse KEK
wrapped_key_parser wp{kp.get()};
// Get flags
flags = wp.get_number(0x30, 0xA3, 0x82);
// Get wrapped KEK
auto kek_data = wp.get_data(0x30, 0xA3, 0x83);
if (kek_data.count() != sizeof(data)) {
throw std::runtime_error("invalid KEK size");
}
std::memcpy(data, kek_data.data(), sizeof(data));
// Get iterations
iterations = wp.get_number(0x30, 0xA3, 0x84);
// Get salt
kek_data = wp.get_data(0x30, 0xA3, 0x85);
if (kek_data.count() != sizeof(salt)) {
throw std::runtime_error("invalid salt size");
}
std::memcpy(salt, kek_data.data(), sizeof(salt));
}
APFSFileSystem::APFSFileSystem(const APFSPool& pool,
const apfs_block_num block_num,
const std::string& password)
: APFSFileSystem(pool, block_num) {
if (encrypted()) {
unlock(password);
}
}
// These are the known special recovery UUIDs. The ones that are commented out
// are currently supported.
static const auto unsupported_recovery_keys = {
TSKGuid{"c064ebc6-0000-11aa-aa11-00306543ecac"}, // Institutional Recovery
TSKGuid{"2fa31400-baff-4de7-ae2a-c3aa6e1fd340"}, // Institutional User
// TSKGuid{"ebc6C064-0000-11aa-aa11-00306543ecac"}, // Personal Recovery
TSKGuid{"64c0c6eb-0000-11aa-aa11-00306543ecac"}, // iCould Recovery
TSKGuid{"ec1c2ad9-b618-4ed6-bd8d-50f361c27507"}, // iCloud User
};
void APFSFileSystem::init_crypto_info() {
try {
// Get container keybag
const auto container_kb = _pool.nx()->keybag();
auto data = container_kb.get_key(uuid(), APFS_KB_TYPE_VOLUME_KEY);
if (data == nullptr) {
throw std::runtime_error(
"APFSFileSystem: can not find volume encryption key");
}
wrapped_key_parser wp{ data.get() };
// Get Wrapped VEK
auto kek_data = wp.get_data(0x30, 0xA3, 0x83);
if (kek_data.count() != sizeof(_crypto.wrapped_vek)) {
throw std::runtime_error("invalid VEK size");
}
std::memcpy(_crypto.wrapped_vek, kek_data.data(),
sizeof(_crypto.wrapped_vek));
// Get VEK Flags
_crypto.vek_flags = wp.get_number(0x30, 0xA3, 0x82);
// Get VEK UUID
kek_data = wp.get_data(0x30, 0xA3, 0x81);
if (kek_data.count() != sizeof(_crypto.vek_uuid)) {
throw std::runtime_error("invalid UUID size");
}
std::memcpy(_crypto.vek_uuid, kek_data.data(), sizeof(_crypto.vek_uuid));
data = container_kb.get_key(uuid(), APFS_KB_TYPE_UNLOCK_RECORDS);
if (data == nullptr) {
throw std::runtime_error(
"APFSFileSystem: can not find volume recovery key");
}
const auto rec =
reinterpret_cast<const apfs_volrec_keybag_value*>(data.get());
if (rec->num_blocks != 1) {
throw std::runtime_error(
"only single block keybags are currently supported");
}
_crypto.recs_block_num = rec->start_block;
Keybag recs{ (*this), _crypto.recs_block_num };
data = recs.get_key(uuid(), APFS_KB_TYPE_PASSPHRASE_HINT);
if (data != nullptr) {
_crypto.password_hint = std::string((const char*)data.get());
}
// Get KEKs
auto keks = recs.get_keys();
if (keks.empty()) {
throw std::runtime_error("could not find any KEKs");
}
for (auto& k : keks) {
if (k.type != APFS_KB_TYPE_UNLOCK_RECORDS) {
continue;
}
if (std::find(unsupported_recovery_keys.begin(),
unsupported_recovery_keys.end(),
k.uuid) != unsupported_recovery_keys.end()) {
// Skip unparsable recovery KEKs
if (tsk_verbose) {
tsk_fprintf(stderr, "apfs: skipping unsupported KEK type: %s\n",
k.uuid.str().c_str());
}
continue;
}
_crypto.wrapped_keks.emplace_back(wrapped_kek{ std::move(k.uuid), k.data });
}
}
catch (std::exception& e) {
if (tsk_verbose) {
tsk_fprintf(stderr, "APFSFileSystem::init_crypto_info: %s", e.what());
}
}
}
bool APFSFileSystem::unlock(const std::string& password) noexcept {
#ifdef HAVE_LIBOPENSSL
if (_crypto.unlocked) {
// Already unlocked
return true;
}
// TODO(JTS): If bits 32:16 are set to 1, some other sort of KEK decryption is
// used (see _fv_decrypt_vek in AppleKeyStore).
if (_crypto.unk16()) {
if (tsk_verbose) {
tsk_fprintf(stderr,
"apfs: UNK16 is set in VEK. Decryption will likely fail.\n");
}
}
// Check the password against all possible KEKs
for (const auto& wk : _crypto.wrapped_keks) {
// If the 57th bit of the KEK flags is set, then the kek is a CoreStorage
// KEK
const auto kek_len = (wk.cs()) ? 0x10 : 0x20;
// TODO(JTS): If the 56th bit of the KEK flags is set, some sort of hardware
// decryption is needed
if (wk.hw_crypt()) {
if (tsk_verbose) {
tsk_fprintf(
stderr,
"apfs: hardware decryption is not yet supported. KEK decryption "
"will likely fail\n");
}
}
const auto user_key = pbkdf2_hmac_sha256(password, wk.salt, sizeof(wk.salt),
wk.iterations, kek_len);
if (user_key == nullptr) {
if (tsk_verbose) {
tsk_fprintf(stderr, "apfs: can not generate user key\n");
}
continue;
}
const auto kek =
rfc3394_key_unwrap(user_key.get(), kek_len, wk.data, kek_len + 8);
if (kek == nullptr) {
if (tsk_verbose) {
tsk_fprintf(stderr,
"apfs: KEK %s can not be unwrapped with given password\n",
wk.uuid.str().c_str());
}
continue;
}
// If the 57th bit of the VEK flags is set, then the VEK is a
// CoreStorage VEK
const auto vek_len = (_crypto.cs()) ? 0x10 : 0x20;
// If a 128 bit VEK is wrapped with a 256 bit KEK then only the first 128
// bits of the KEK are used.
const auto vek = rfc3394_key_unwrap(kek.get(), std::min(kek_len, vek_len),
_crypto.wrapped_vek, vek_len + 8);
if (vek == nullptr) {
if (tsk_verbose) {
tsk_fprintf(stderr, "apfs: failed to unwrap VEK\n");
}
continue;
}
_crypto.password = password;
std::memcpy(_crypto.vek, vek.get(), vek_len);
if (_crypto.cs()) {
// For volumes that were converted from CoreStorage, the tweak is the
// first 128-bits of SHA256(vek + vekuuid)
std::memcpy(_crypto.vek + 0x10, _crypto.vek_uuid,
sizeof(_crypto.vek_uuid));
const auto hash = hash_buffer_sha256(_crypto.vek, sizeof(_crypto.vek));
std::memcpy(_crypto.vek + 0x10, hash.get(), 0x10);
}
_crypto.unlocked = true;
return true;
}
return false;
#else
if (tsk_verbose) {
tsk_fprintf(stderr, "apfs: crypto library not loaded\n");
}
return false;
#endif
}
const std::vector<APFSFileSystem::unmount_log_t> APFSFileSystem::unmount_log()
const {
std::vector<unmount_log_t> v{};
for (auto i = 0; i < 8; i++) {
const auto& log = fs()->unmount_logs[i];
if (log.timestamp == 0) {
return v;
}
v.emplace_back(
unmount_log_t{log.timestamp, log.kext_ver_str, log.last_xid});
}
return v;
}
const std::vector<APFSFileSystem::snapshot_t> APFSFileSystem::snapshots()
const {
std::vector<snapshot_t> v{};
const APFSSnapshotMetaBtreeNode snap_tree{_pool, fs()->snap_meta_tree_oid};
struct key_type {
uint64_t xid_and_type;
inline uint64_t snap_xid() const noexcept {
return bitfield_value(xid_and_type, 60, 0);
}
inline uint64_t type() const noexcept {
return bitfield_value(xid_and_type, 4, 60);
}
};
using value_type = apfs_snap_metadata;
std::for_each(snap_tree.begin(), snap_tree.end(), [&](const auto& entry) {
const auto key = entry.key.template as<key_type>();
const auto value = entry.value.template as<value_type>();
if (key->type() != APFS_JOBJTYPE_SNAP_METADATA) {
return;
}
v.emplace_back(snapshot_t{
{value->name, value->name_length - 1U}, // name
value->create_time, // timestamp
key->snap_xid(), // snap_xid
(value->extentref_tree_oid == 0), // dataless
});
});
return v;
}
APFSJObjTree APFSFileSystem::root_jobj_tree() const {
return {_pool, omap_root(), rdo(), crypto_info()};
}
apfs_block_num APFSFileSystem::omap_root() const {
return APFSOmap{_pool, fs()->omap_oid}.root_block();
}
APFSJObjBtreeNode::APFSJObjBtreeNode(const APFSObjectBtreeNode* obj_root,
apfs_block_num block_num,
const uint8_t* key)
#ifdef HAVE_LIBOPENSSL
: APFSBtreeNode(obj_root->pool(), block_num, key), _obj_root{obj_root} {
#else
: APFSBtreeNode(obj_root->pool(), block_num, nullptr), _obj_root{ obj_root } {
#endif
if (subtype() != APFS_OBJ_TYPE_FSTREE) {
throw std::runtime_error("APFSJObjBtreeNode: invalid subtype");
}
}
APFSObjectBtreeNode::iterator APFSObjectBtreeNode::find(uint64_t oid) const {
return APFSBtreeNode::find(
oid, [xid = this->_xid](const auto& key,
const auto oid) noexcept->int64_t {
if ((key->oid == oid) && (key->xid > xid)) {
return key->xid - xid;
}
return (key->oid - oid);
});
}
APFSObjectBtreeNode::APFSObjectBtreeNode(const APFSPool& pool,
apfs_block_num block_num)
: APFSBtreeNode(pool, block_num), _xid{xid()} {
if (subtype() != APFS_OBJ_TYPE_OMAP) {
throw std::runtime_error("APFSObjectBtreeNode: invalid subtype");
}
}
APFSObjectBtreeNode::APFSObjectBtreeNode(const APFSPool& pool,
apfs_block_num block_num,
uint64_t snap_xid)
: APFSBtreeNode(pool, block_num), _xid{snap_xid} {
if (subtype() != APFS_OBJ_TYPE_OMAP) {
throw std::runtime_error("APFSObjectBtreeNode: invalid subtype");
}
}
APFSSnapshotMetaBtreeNode::APFSSnapshotMetaBtreeNode(const APFSPool& pool,
apfs_block_num block_num)
: APFSBtreeNode(pool, block_num) {
if (subtype() != APFS_OBJ_TYPE_SNAPMETATREE) {
throw std::runtime_error("APFSSnapshotMetaBtreeNode: invalid subtype");
}
}
APFSExtentRefBtreeNode::APFSExtentRefBtreeNode(const APFSPool& pool,
apfs_block_num block_num)
: APFSBtreeNode(pool, block_num) {
if (subtype() != APFS_OBJ_TYPE_BLOCKREFTREE) {
throw std::runtime_error("APFSExtentRefBtreeNode: invalid subtype");
}
}
APFSCheckpointMap::APFSCheckpointMap(const APFSPool& pool,
const apfs_block_num block_num)
: APFSObject(pool, block_num) {
if (obj_type() != APFS_OBJ_TYPE_CHECKPOINT_DESC) {
throw std::runtime_error("APFSCheckpointMap: invalid object type");
}
}
apfs_block_num APFSCheckpointMap::get_object_block(
uint64_t oid, APFS_OBJ_TYPE_ENUM type) const {
const auto entries = map()->entries;
for (auto i = 0U; i < map()->count; i++) {
const auto& entry = entries[i];
if (entry.oid == oid && entry.type == type) {
return entry.paddr;
}
}
// Not found
throw std::runtime_error(
"APFSCheckpointMap::get_object_block: object not found");
}
APFSSpaceman::APFSSpaceman(const APFSPool& pool, const apfs_block_num block_num)
: APFSObject(pool, block_num), _bm_entries{} {
if (obj_type() != APFS_OBJ_TYPE_SPACEMAN) {
throw std::runtime_error("APFSSpaceman: invalid object type");
}
}
const std::vector<APFSSpacemanCIB::bm_entry>& APFSSpaceman::bm_entries() const {
if (!_bm_entries.empty()) {
return _bm_entries;
}
#ifdef TSK_MULTITHREAD_LIB
// Since this function is const, and const methods generally are assumed to be
// thread safe, we ideally want to it be thread safe so multiple threads
// aren't trying to initialize at the same time.
std::lock_guard<std::mutex> lock{_bm_entries_init_lock};
// Check again to make sure someone else didn't already beat us to this.
if (!_bm_entries.empty()) {
return _bm_entries;
}
// Our above checks would not prevent someone from accessing the member while
// the initialization is in progress, so let's initialize a temporary and them
// move it into the member instead.
decltype(_bm_entries) bm_entries{};
#else
// There's no possibility for contention, so let's just initialize the member
// directly so that we can save the move.
auto& bm_entries = _bm_entries;
#endif
bm_entries.reserve(sm()->devs[APFS_SD_MAIN].cib_count);
const auto cib_blocks = [&] {
std::vector<apfs_block_num> v{};
v.reserve(sm()->devs[APFS_SD_MAIN].cib_count);
const auto entries = this->entries();
// Is the next level cib?
if (sm()->devs[APFS_SD_MAIN].cab_count == 0) {
// Our entires contain the cib blocks
for (auto i = 0U; i < sm()->devs[APFS_SD_MAIN].cib_count; i++) {
v.emplace_back(entries[i]);
}
return v;
}
// The next level is cab, not cib so we need to recurse them
for (auto i = 0U; i < sm()->devs[APFS_SD_MAIN].cab_count; i++) {
const APFSSpacemanCAB cab(_pool, entries[i]);
const auto cab_entries = cab.cib_blocks();
// Append the blocks to the vector
std::copy(cab_entries.begin(), cab_entries.end(), std::back_inserter(v));
}
return v;
}();
for (const auto block : cib_blocks) {
const APFSSpacemanCIB cib(_pool, block);
const auto entries = cib.bm_entries();
// Append the entries to the vector
std::copy(entries.begin(), entries.end(), std::back_inserter(bm_entries));
}
// Sort the entries by offset
std::sort(bm_entries.begin(), bm_entries.end(),
[](const auto& a, const auto& b) { return (a.offset < b.offset); });
#ifdef TSK_MULTITHREAD_LIB
// Now that we're fully initialized we can now move our initialized vector
// into the member to signal that we're ready for access.
_bm_entries = std::move(bm_entries);
#endif
return _bm_entries;
}
const std::vector<APFSSpaceman::range> APFSSpaceman::unallocated_ranges()
const {
std::vector<range> v{};
for (const auto& entry : bm_entries()) {
if (entry.free_blocks == 0) {
// No free ranges to add
continue;
}
if (entry.total_blocks == entry.free_blocks) {
// The entire bitmap block is free
if (!v.empty() &&
v.back().start_block + v.back().num_blocks == entry.offset) {
// We're within the same range as the last one, so just update the
// count
v.back().num_blocks += entry.free_blocks;
} else {
// We're not contiguous with the last range, so add a new one
v.emplace_back(range{entry.offset, entry.free_blocks});
}
continue;
}
// We've got to enumerate the bitmap block for it's ranges
const auto ranges = APFSBitmapBlock{_pool, entry}.unallocated_ranges();
// TODO(JTS): We could possibly de-duplicate the first range if it's
// contiguous with the last range, but the overhead might outweigh the
// convenience
std::copy(ranges.begin(), ranges.end(), std::back_inserter(v));
}
return v;
}
APFSSpacemanCIB::APFSSpacemanCIB(const APFSPool& pool,
const apfs_block_num block_num)
: APFSObject(pool, block_num) {
if (obj_type() != APFS_OBJ_TYPE_SPACEMAN_CIB) {
throw std::runtime_error("APFSSpacemanCIB: invalid object type");
}
}
const std::vector<APFSSpacemanCIB::bm_entry> APFSSpacemanCIB::bm_entries()
const {
std::vector<bm_entry> v{};
v.reserve(cib()->entry_count);
const auto entries = cib()->entries;
for (auto i = 0U; i < cib()->entry_count; i++) {
const auto& entry = entries[i];
v.emplace_back(bm_entry{entry.addr, entry.block_count, entry.free_count,
entry.bm_addr});
}
return v;
}
APFSSpacemanCAB::APFSSpacemanCAB(const APFSPool& pool,
const apfs_block_num block_num)
: APFSObject(pool, block_num) {
if (obj_type() != APFS_OBJ_TYPE_SPACEMAN_CAB) {
throw std::runtime_error("APFSSpacemanCAB: invalid object type");
}
}
const std::vector<apfs_block_num> APFSSpacemanCAB::cib_blocks() const {
std::vector<apfs_block_num> v{};
v.reserve(cib_count());
const auto entries = cab()->cib_blocks;
for (auto i = 0U; i < cib_count(); i++) {
v.emplace_back(entries[i]);
}
return v;
}
APFSBitmapBlock::APFSBitmapBlock(const APFSPool& pool,
const APFSSpacemanCIB::bm_entry& entry)
: APFSBlock(pool, entry.bm_block), _entry{entry} {}
uint32_t APFSBitmapBlock::next() noexcept {
while (!done()) {
// Calculate the index of the bit to be evaluated.
const auto i = _hint % cached_bits;
// If we're evaluating the first bit then we need to cache the next set
// from the array.
if (i == 0) {
cache_next();
// If there are no set bits then there's nothing to scan for, so let's
// try again with the next set of bits.
if (_cache == 0) {
_hint += cached_bits;
continue;
}
}
// Mask the fetched value and count the number of trailing zero bits.
const auto c = lsbset((_cache >> i) << i);
// If c is non-zero then there are set bits.
if (c != 0) {
// There are set bits. We just need to make sure that they're within
// the range we're scanning for.
// Adjust the hint for the next call
_hint += c - i;
// Check to see if we're still in range
if (_hint - 1 < _entry.total_blocks) {
return _hint - 1;
}
// The hit is outside of our scanned range
return no_bits_left;
}
// There are no set bits, so we need to adjust the hint to the next set of
// bits and try again.
_hint += cached_bits - i;
}
return no_bits_left;
}
const std::vector<APFSSpaceman::range> APFSBitmapBlock::unallocated_ranges() {
// Check for special case where all blocks are allocated
if (_entry.free_blocks == 0) {
return {};
}
// Check for special cases where all blocks are free
if (_entry.free_blocks == _entry.total_blocks) {
return {{_entry.offset, _entry.total_blocks}};
}
reset();
_mode = mode::unset;
std::vector<APFSSpaceman::range> v{};
while (!done()) {
// Get the start of the range.
const auto s = next();
// If there's no start then we're done.
if (s == no_bits_left) {
break;
}
// Toggle the scan mode to look for the next type of bit.
toggle_mode();
// Get the end of the range.
auto e = next();
// If there's no end then we set the end of the range to the end of the
// bitmap.
if (e == no_bits_left) {
e = _entry.total_blocks;
}
// Add the range description to the vector.
v.emplace_back(APFSSpaceman::range{s + _entry.offset, e - s});
// Toggle the scan mode for the next scan.
toggle_mode();
}
return v;
}
APFSKeybag::APFSKeybag(const APFSPool& pool, const apfs_block_num block_num,
const uint8_t* key, const uint8_t* key2)
: APFSObject(pool, block_num) {
decrypt(key, key2);
if (!validate_checksum()) {
throw std::runtime_error("keybag did not decrypt properly");
}
if (kb()->version != 2) {
throw std::runtime_error("keybag version not supported");
}
}
std::unique_ptr<uint8_t[]> APFSKeybag::get_key(const TSKGuid& uuid,
uint16_t type) const {
if (kb()->num_entries == 0) {
return nullptr;
}
// First key is immediately after the header
auto next_key = kb()->first_key;
for (auto i = 0U; i < kb()->num_entries; i++) {
if (next_key->type == type &&
std::memcmp(next_key->uuid, uuid.bytes().data(), 16) == 0) {
// We've found a matching key. Copy it's data to a pointer and return it.
const auto data = reinterpret_cast<const uint8_t*>(next_key + 1);
// We're padding the data with an extra byte so we can null-terminate
// any data strings. There might be a better way.
auto dp = std::make_unique<uint8_t[]>(next_key->length + 1);
std::memcpy(dp.get(), data, next_key->length);
return dp;
}
// Calculate address of next key (ensuring alignment)
const auto nk_addr =
(uintptr_t)next_key +
((sizeof(*next_key) + next_key->length + 0x0F) & ~0x0FULL);
next_key = reinterpret_cast<const apfs_keybag_key*>(nk_addr);
}
// Not Found
return nullptr;
}
std::vector<APFSKeybag::key> APFSKeybag::get_keys() const {
std::vector<key> keys;
// First key is immediately after the header
auto next_key = kb()->first_key;
for (auto i = 0U; i < kb()->num_entries; i++) {
const auto data = reinterpret_cast<const uint8_t*>(next_key + 1);
// We're padding the data with an extra byte so we can null-terminate
// any data strings. There might be a better way.
auto dp = std::make_unique<uint8_t[]>(next_key->length + 1);
std::memcpy(dp.get(), data, next_key->length);
keys.emplace_back(key{{next_key->uuid}, std::move(dp), next_key->type});
// Calculate address of next key (ensuring alignment)
const auto nk_addr =
(uintptr_t)next_key +
((sizeof(*next_key) + next_key->length + 0x0F) & ~0x0FULL);
next_key = reinterpret_cast<const apfs_keybag_key*>(nk_addr);
}
return keys;
}
APFSSuperblock::Keybag::Keybag(const APFSSuperblock& sb)
: APFSKeybag(sb.pool(), sb.sb()->keylocker.start_paddr, sb.sb()->uuid,
sb.sb()->uuid) {
if (obj_type_and_flags() != APFS_OBJ_TYPE_CONTAINER_KEYBAG) {
throw std::runtime_error("APFSSuperblock::Keybag: invalid object type");
}
if (sb.sb()->keylocker.block_count != 1) {
throw std::runtime_error("only single block keybags are supported");
}
}
APFSExtentRefBtreeNode::iterator APFSExtentRefBtreeNode::find(
apfs_block_num block) const {
return APFSBtreeNode::find(
block, [](const auto& key, const auto block) noexcept->int64_t {
return key.template as<APFSPhysicalExtentKey>()->start_block() - block;
});
}
APFSFileSystem::Keybag::Keybag(const APFSFileSystem& vol,
apfs_block_num block_num)
: APFSKeybag(vol.pool(), block_num, vol.fs()->uuid, vol.fs()->uuid) {
if (obj_type_and_flags() != APFS_OBJ_TYPE_VOLUME_RECOVERY_KEYBAG) {
throw std::runtime_error("APFSFileSystem::Keybag: invalid object type");
}
}
|