1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
|
#pragma once
#include "../base/tsk_base.h"
#include "../img/tsk_img.h"
#include "../pool/tsk_apfs.hpp"
#include "../util/lw_shared_ptr.hpp"
#include "../util/span.hpp"
#include "tsk_apfs.h"
#include <algorithm>
#include <array>
#include <memory>
#include <mutex>
#include <new>
#include <stack>
#include <stdexcept>
#include <type_traits>
#include <vector>
#include "../auto/guid.h"
// Helper function to see if a bitfield flag is set
template <typename T, typename U,
typename = std::enable_if_t<std::numeric_limits<T>::is_integer &&
std::numeric_limits<U>::is_integer>>
constexpr bool bit_is_set(T bitfield, U bitmask) noexcept {
return ((bitfield & static_cast<T>(bitmask)) != 0);
}
// Helper function to extract bitfield value
template <typename T,
typename = std::enable_if_t<std::numeric_limits<T>::is_integer>>
constexpr T bitfield_value(T bitfield, int bits, int shift) noexcept {
return (bitfield >> shift) & ((T{1} << bits) - 1);
}
class APFSPool;
class APFSObject : public APFSBlock {
protected:
inline const apfs_obj_header *obj() const noexcept {
return reinterpret_cast<const apfs_obj_header *>(_storage.data());
}
public:
// Use the constructors from APFSBlock
using APFSBlock::APFSBlock;
bool validate_checksum() const noexcept;
inline APFS_OBJ_TYPE_ENUM obj_type() const noexcept {
return APFS_OBJ_TYPE_ENUM(obj()->type);
}
inline uint32_t obj_type_and_flags() const noexcept {
return obj()->type_and_flags;
}
inline uint64_t oid() const noexcept { return obj()->oid; }
inline uint64_t xid() const noexcept { return obj()->xid; }
inline uint32_t subtype() const noexcept { return obj()->subtype; }
};
class APFSOmap : public APFSObject {
protected:
inline const apfs_omap *omap() const noexcept {
return reinterpret_cast<const apfs_omap *>(_storage.data());
}
public:
// Use constructors from APFSObject
using APFSObject::APFSObject;
APFSOmap(const APFSPool &pool, const apfs_block_num block_num);
inline uint32_t snapshot_count() const noexcept {
return omap()->snapshot_count;
}
inline APFS_OMAP_TREE_TYPE_ENUM tree_type() const noexcept {
return APFS_OMAP_TREE_TYPE_ENUM(omap()->tree_type);
}
inline apfs_block_num root_block() const noexcept { return omap()->tree_oid; }
struct node_tag {}; ///< Tag used to identify OMAP nodes
template <typename T,
typename = std::enable_if_t<std::is_base_of<node_tag, T>::value>>
T root() const {
return {_pool, root_block()};
}
};
class APFSJObjBtreeNode;
template <typename Node>
class APFSBtreeNodeIterator {
public:
using iterator_category = std::forward_iterator_tag;
using difference_type = uint32_t;
using value_type = struct {
typename Node::key_type key;
typename Node::value_type value;
};
using reference = const value_type &;
using pointer = const value_type *;
protected:
lw_shared_ptr<Node> _node{};
uint32_t _index{0};
// Leaf nodes will have values and non-leaf nodes will have iterators
// to the child node.
//
// TODO(JTS): If we ever switch to c++17 then we can use a std::variant
std::unique_ptr<typename Node::iterator> _child_it{};
value_type _val{};
inline lw_shared_ptr<Node> own_node(const Node *node) {
return own_node(node, node->block_num());
}
inline lw_shared_ptr<Node> own_node(const Node *node,
apfs_block_num block_num) {
return node->_pool.template get_block<Node>(
block_num, node->_pool, block_num, node->_decryption_key);
}
template <typename Void = void>
auto init_value(int recursion_depth)
-> std::enable_if_t<Node::is_variable_kv_node::value, Void> {
if ((recursion_depth < 0) || (recursion_depth > 64)) {
throw std::runtime_error("init_value exceeds recursion depth");
}
if (this->_node->has_fixed_kv_size()) {
throw std::runtime_error("btree does not have variable sized keys");
}
const auto &t = _node->_table_data.toc.variable[_index];
const auto key_data = _node->_table_data.koff + t.key_offset;
const auto val_data = _node->_table_data.voff - t.val_offset;
if (key_data > _node->_storage.data() + _node->_storage.size()) {
throw std::runtime_error("init_value: invalid key_offset");
}
if (val_data < _node->_storage.data()) {
throw std::runtime_error("init_value: invalid val_offset");
}
memory_view key{key_data, t.key_length};
if (_node->is_leaf()) {
memory_view value{val_data, t.val_length};
_val = {key, value};
} else {
const auto block_num = *((apfs_block_num *)val_data);
_child_it = std::make_unique<typename Node::iterator>(
own_node(_node.get(), block_num), 0, recursion_depth);
}
}
template <typename Void = void>
auto init_value(int recursion_depth) -> std::enable_if_t<Node::is_fixed_kv_node::value, Void> {
if ((recursion_depth < 0) || (recursion_depth > 64)) {
throw std::runtime_error("init_value exceeds recursion depth");
}
if (!this->_node->has_fixed_kv_size()) {
throw std::runtime_error("btree does not have fixed sized keys");
}
const auto &t = _node->_table_data.toc.fixed[_index];
const auto key_data = _node->_table_data.koff + t.key_offset;
const auto val_data = _node->_table_data.voff - t.val_offset;
if (key_data > _node->_storage.data() + _node->_storage.size()) {
throw std::runtime_error("init_value: invalid key_offset");
}
if (val_data < _node->_storage.data()) {
throw std::runtime_error("init_value: invalid val_offset");
}
if (_node->is_leaf()) {
_val = {(typename Node::key_type)key_data,
(typename Node::value_type)val_data};
} else {
const auto block_num = *((apfs_block_num *)val_data);
_child_it = std::make_unique<typename Node::iterator>(
own_node(_node.get(), block_num), 0, recursion_depth);
}
}
public:
// Forward iterators must be DefaultConstructible
APFSBtreeNodeIterator() = default;
APFSBtreeNodeIterator(const Node *node, uint32_t index, int recursion_depth);
APFSBtreeNodeIterator(lw_shared_ptr<Node> &&node, uint32_t index, int recursion_depth);
APFSBtreeNodeIterator(const Node *node, uint32_t index,
typename Node::iterator &&child);
virtual ~APFSBtreeNodeIterator() = default;
APFSBtreeNodeIterator(const APFSBtreeNodeIterator &rhs) noexcept
: _node{rhs._node}, _index{rhs._index} {
if (_node->is_leaf()) {
_val = rhs._val;
} else if (rhs._child_it != nullptr) {
_child_it = std::make_unique<typename Node::iterator>(*rhs._child_it);
}
}
APFSBtreeNodeIterator &operator=(const APFSBtreeNodeIterator &rhs) noexcept {
if (this != &rhs) {
this->~APFSBtreeNodeIterator();
new (this) APFSBtreeNodeIterator(rhs);
}
return (*this);
};
APFSBtreeNodeIterator(APFSBtreeNodeIterator &&rhs) noexcept
: _node{std::move(rhs._node)}, _index{std::move(rhs._index)} {
if (_node->is_leaf()) {
_val = std::move(rhs._val);
} else {
_child_it = std::move(rhs._child_it);
}
};
APFSBtreeNodeIterator &operator=(APFSBtreeNodeIterator &&rhs) noexcept {
if (this != &rhs) {
this->~APFSBtreeNodeIterator();
new (this)
APFSBtreeNodeIterator(std::forward<APFSBtreeNodeIterator>(rhs));
}
return (*this);
}
bool is_valid() const noexcept {
if (_node == nullptr) {
return false;
}
return (_index < _node->key_count());
}
reference operator*() const noexcept {
if (_index >= _node->key_count()) {
return _val;
}
// Leaf nodes return the value
if (_node->is_leaf()) {
return _val;
}
// Non-Leaf nodes return the pointer
return _child_it->operator*();
}
pointer operator->() const noexcept {
if (_index >= _node->key_count()) {
return nullptr;
}
// Leaf nodes return the value
if (_node->is_leaf()) {
return &_val;
}
// Non-Leaf nodes return the pointer
return _child_it->operator->();
}
virtual APFSBtreeNodeIterator &operator++() {
// If we're a leaf node then we just need to iterate the count
if (_node->is_leaf()) {
if (_index < _node->key_count()) {
_index++;
auto node{std::move(_node)};
auto index{_index};
this->~APFSBtreeNodeIterator();
new (this) APFSBtreeNodeIterator(std::move(node), index, 0);
}
return (*this);
}
_child_it->operator++();
if (*_child_it != _child_it->_node->end()) {
return (*this);
}
_index++;
auto node{std::move(_node)};
auto index{_index};
this->~APFSBtreeNodeIterator();
new (this) APFSBtreeNodeIterator(std::move(node), index, 0);
return (*this);
}
APFSBtreeNodeIterator operator++(int) {
APFSBtreeNodeIterator it{(*this)};
this->operator++();
return it;
}
bool operator==(const APFSBtreeNodeIterator &rhs) const noexcept {
// Self check
if (this == &rhs) {
return true;
}
// If only one of the nodes is nullptr then we're not a match, but if they
// both are then we are a match
if (_node == nullptr || rhs._node == nullptr) {
return (_node == rhs._node);
}
// Ensure we have equivalent nodes and indexes
if (*_node != *rhs._node || _index != rhs._index) {
return false;
}
// If we're leaves then we're good.
if (_node->is_leaf()) {
return true;
}
// Otherwise, let's compare the child iterators.
return (*_child_it == *rhs._child_it);
}
bool operator!=(const APFSBtreeNodeIterator &rhs) const noexcept {
return !this->operator==(rhs);
}
friend Node;
friend APFSJObjBtreeNode;
};
template <typename Key = memory_view, typename Value = memory_view>
class APFSBtreeNode : public APFSObject, public APFSOmap::node_tag {
using is_variable_kv_node = std::is_same<APFSBtreeNode, APFSBtreeNode<>>;
using is_fixed_kv_node =
std::integral_constant<bool, !is_variable_kv_node::value>;
using key_type =
std::conditional_t<is_variable_kv_node::value, Key, const Key *>;
using value_type =
std::conditional_t<is_variable_kv_node::value, Value, const Value *>;
;
protected:
struct {
union {
void *v;
apfs_btentry_fixed *fixed;
apfs_btentry_variable *variable;
} toc;
char *voff;
char *koff;
} _table_data;
const uint8_t *_decryption_key{};
inline const apfs_btree_node *bn() const noexcept {
return reinterpret_cast<const apfs_btree_node *>(_storage.data());
}
inline ptrdiff_t toffset() const noexcept {
// The table space offset is relative to the end of the header
return sizeof(apfs_btree_node) + bn()->table_space_offset;
}
inline ptrdiff_t koffset() const noexcept {
// The keys table is immediately after the table space.
return toffset() + bn()->table_space_length;
}
inline ptrdiff_t voffset() const noexcept {
// The value table is a negative index relative to the end of the block
// unless the node is a root node then it's relative to the footer
ptrdiff_t off = _pool.block_size();
if (is_root()) {
off -= sizeof(apfs_btree_info);
}
return off;
}
template <typename KeyType = key_type>
inline auto key(uint32_t index) const
-> std::enable_if_t<is_variable_kv_node::value, KeyType> {
const auto &t = _table_data.toc.variable[index];
const auto key_data = _table_data.koff + t.key_offset;
return {key_data, t.key_length};
}
template <typename KeyType = key_type>
inline auto key(uint32_t index) const
-> std::enable_if_t<is_fixed_kv_node::value, KeyType> {
const auto &t = _table_data.toc.fixed[index];
const auto key_data = _table_data.koff + t.key_offset;
return reinterpret_cast<KeyType>(key_data);
}
template <typename Compare>
inline uint32_t contains_key(const key_type &key, Compare comp) const {
for (auto i = 0U; i < key_count(); i++) {
const auto k = this->key(i);
if (comp(k, key) > 0) {
if (i == 0) {
break;
}
return i - 1;
}
}
return key_count();
}
public:
APFSBtreeNode(const APFSPool &pool, const apfs_block_num block_num,
const uint8_t *key = nullptr)
: APFSObject(pool, block_num), _decryption_key{key} {
// Decrypt node if needed
if (key != nullptr) {
decrypt(key);
}
if (obj_type() != APFS_OBJ_TYPE_BTREE_NODE &&
obj_type() != APFS_OBJ_TYPE_BTREE_ROOTNODE) {
throw std::runtime_error("APFSBtreeNode: invalid object type");
}
_table_data.toc = {_storage.data() + toffset()};
if ((uintptr_t)_table_data.toc.v - (uintptr_t)_storage.data() > _storage.size()) {
throw std::runtime_error("APFSBtreeNode: invalid toffset");
}
_table_data.voff = _storage.data() + voffset();
if (_table_data.voff > _storage.data() + _storage.size()) {
throw std::runtime_error("APFSBtreeNode: invalid voffset");
}
_table_data.koff = _storage.data() + koffset();
if (_table_data.koff > _storage.data() + _storage.size()) {
throw std::runtime_error("APFSBtreeNode: invalid koffset");
}
}
inline bool is_root() const noexcept {
return bit_is_set(bn()->flags, APFS_BTNODE_ROOT);
}
inline bool is_leaf() const noexcept {
return bit_is_set(bn()->flags, APFS_BTNODE_LEAF);
}
inline bool has_fixed_kv_size() const noexcept {
return bit_is_set(bn()->flags, APFS_BTNODE_FIXED_KV_SIZE);
}
inline uint16_t level() const noexcept { return bn()->level; }
inline uint32_t key_count() const noexcept { return bn()->key_count; }
inline auto entries() const {
const auto vec = [&] {
std::vector<typename iterator::value_type> v{};
std::for_each(begin(), end(), [&v](const auto e) { v.push_back(e); });
return v;
}();
return vec;
}
inline const apfs_btree_info *info() const noexcept {
// Only root nodes contain the info struct
if (!is_root()) {
return nullptr;
}
// The info structure is at the end of the object
const auto ptr =
_storage.data() + _storage.size() - sizeof(apfs_btree_info);
return reinterpret_cast<const apfs_btree_info *>(ptr);
}
// Iterators
public:
using iterator = APFSBtreeNodeIterator<APFSBtreeNode>;
iterator begin() const { return {this, 0, 0}; }
iterator end() const { return {this, key_count(), 0}; }
template <typename T, typename Compare>
iterator find(const T &value, Compare comp) const {
// TODO(JTS): It turns out, when a disk has snapshots, there can be more
// than one entry in the objects tree that corresponds to the same oid.
// Since we do not currently support snapshots, we're always returning the
// last object with the id, because that should always be the newest object.
// When we support snapshots, this logic likely needs to change.
// For leaf nodes we can just search the entries directly
if (is_leaf()) {
// Search for key that's equal to the value
for (auto i = key_count(); i > 0; i--) {
const auto &k = key(i - 1);
const auto res = comp(k, value);
if (res == 0) {
// We've found it!
return {this, i - 1, 0};
}
if (res < 0) {
// We've gone too far
break;
}
}
// Not found
return end();
}
// For non-leaf nodes we can be more efficient by skipping searches of
// sub-trees that don't contain the object
// Search for the last key that's <= the value
for (auto i = key_count(); i > 0; i--) {
const auto &k = key(i - 1);
if (comp(k, value) <= 0) {
iterator it{this, i - 1, 0};
auto ret = it._child_it->_node->find(value, comp);
if (ret == it._child_it->_node->end()) {
return end();
}
return {this, i - 1, std::move(ret)};
}
}
// Not Found
return end();
}
friend iterator;
template <typename T>
friend class APFSBtreeNodeIterator;
};
class APFSObjectBtreeNode
: public APFSBtreeNode<apfs_omap_key, apfs_omap_value> {
uint64_t _xid;
public:
APFSObjectBtreeNode(const APFSPool &pool, apfs_block_num block_num);
APFSObjectBtreeNode(const APFSPool &pool, apfs_block_num block_num,
uint64_t snap_xid);
iterator find(uint64_t oid) const;
inline void snapshot(uint64_t snap_xid) { _xid = snap_xid; }
};
class APFSSnapshotMetaBtreeNode : public APFSBtreeNode<> {
public:
APFSSnapshotMetaBtreeNode(const APFSPool &pool, apfs_block_num block_num);
};
class APFSJObjBtreeNode : public APFSBtreeNode<> {
const APFSObjectBtreeNode *_obj_root;
public:
APFSJObjBtreeNode(const APFSObjectBtreeNode *obj_root,
apfs_block_num block_num, const uint8_t *key);
APFSJObjBtreeNode(APFSJObjBtreeNode &&) = default;
using iterator = APFSBtreeNodeIterator<APFSJObjBtreeNode>;
inline bool is_leaf() const noexcept { return (bn()->level == 0); }
inline iterator begin() const { return {this, 0, 0}; }
inline iterator end() const { return {this, key_count(), 0}; }
template <typename T, typename Compare>
inline iterator find(const T &value, Compare comp) const {
// For leaf nodes we can just search the entries directly
if (is_leaf()) {
// Search for key that's equal to the value
for (auto i = 0U; i < key_count(); i++) {
const auto &k = key(i);
const auto res = comp(k, value);
if (res == 0) {
// We've found it!
return {this, i, 0};
}
if (res > 0) {
// We've gone too far
break;
}
}
// Not found
return end();
}
// For non-leaf nodes we can be more efficient by skipping searches of
// sub-trees that don't contain the object
uint32_t last = std::numeric_limits<uint32_t>::max();
// Search for key that's <= the value
for (auto i = 0U; i < key_count(); i++) {
const auto &k = key(i);
const auto v = comp(k, value);
if (v > 0) {
break;
}
last = i;
if (v == 0) {
// We need to see if the jobj might be in the last node
if (last != 0) {
iterator it{this, last - 1, 0};
auto ret = it._child_it->_node->find(value, comp);
if (ret != it._child_it->_node->end()) {
return {this, last - 1, std::move(ret)};
}
}
break;
}
}
if (last == std::numeric_limits<uint32_t>::max()) {
// Not Found
return end();
}
iterator it{this, last, 0};
auto ret = it._child_it->_node->find(value, comp);
if (ret == it._child_it->_node->end()) {
return end();
}
return {this, last, std::move(ret)};
}
template <typename T, typename Compare>
inline std::pair<iterator, iterator> find_range(const T &value,
Compare comp) const {
auto s = find(value, comp);
if (s == end()) {
// Not found
return {end(), end()};
}
auto e = std::find_if(
s, end(), [&](const auto &a) noexcept(noexcept(comp(a.key, value))) {
return comp(a.key, value) != 0;
});
return std::make_pair(std::move(s), std::move(e));
}
friend iterator;
};
class APFSSpacemanCIB : public APFSObject {
protected:
inline const apfs_spaceman_cib *cib() const noexcept {
return reinterpret_cast<const apfs_spaceman_cib *>(_storage.data());
}
public:
using APFSObject::APFSObject;
APFSSpacemanCIB(const APFSPool &pool, const apfs_block_num block_num);
using bm_entry = struct {
uint64_t offset;
uint32_t total_blocks;
uint32_t free_blocks;
apfs_block_num bm_block;
};
const std::vector<bm_entry> bm_entries() const;
};
class APFSSpacemanCAB : public APFSObject {
protected:
inline const apfs_spaceman_cab *cab() const noexcept {
return reinterpret_cast<const apfs_spaceman_cab *>(_storage.data());
}
public:
using APFSObject::APFSObject;
APFSSpacemanCAB(const APFSPool &pool, const apfs_block_num block_num);
inline uint32_t index() const noexcept { return cab()->index; }
inline uint32_t cib_count() const noexcept { return cab()->cib_count; }
const std::vector<apfs_block_num> cib_blocks() const;
};
class APFSSpaceman : public APFSObject {
mutable std::vector<APFSSpacemanCIB::bm_entry> _bm_entries{};
#ifdef TSK_MULTITHREAD_LIB
mutable std::mutex _bm_entries_init_lock;
#endif
protected:
inline const apfs_spaceman *sm() const noexcept {
return reinterpret_cast<const apfs_spaceman *>(_storage.data());
}
inline const apfs_block_num *entries() const noexcept {
return reinterpret_cast<const apfs_block_num *>(
(uintptr_t)sm() + sm()->devs[APFS_SD_MAIN].addr_offset);
}
public:
using APFSObject::APFSObject;
APFSSpaceman(const APFSPool &pool, const apfs_block_num block_num);
const std::vector<APFSSpacemanCIB::bm_entry> &bm_entries() const;
using range = APFSPool::range;
inline uint64_t num_free_blocks() const noexcept {
return sm()->devs[APFS_SD_MAIN].free_count;
}
const std::vector<range> unallocated_ranges() const;
};
class APFSBitmapBlock : public APFSBlock {
enum class mode {
unset,
set,
};
// A special return value for next that is returned when there are no more
// bits to scan.
static constexpr auto no_bits_left = std::numeric_limits<uint32_t>::max();
// Number of bits in cache
static constexpr uint32_t cached_bits = sizeof(uintptr_t) * 8;
const APFSSpacemanCIB::bm_entry _entry;
uint32_t _hint{};
mode _mode{mode::unset};
uintptr_t _cache{};
inline bool done() const noexcept { return (_hint >= _entry.total_blocks); }
inline void reset() noexcept { _hint = 0; }
// Find the index of the next scanned bit. If the scan mode is
// set to "set" then this will be a 1 bit and if the mode is
// "unset" then it will be a zero bit. If no more bits are found
// then no_bits_left is returned.
//
// Returns the index of the next scanned bit or no_bits_left
//
uint32_t next() noexcept;
// Cache the next set of bits from the buffer.
inline void cache_next() noexcept {
//
// Interpret the buffer as an array of 32-bit ints.
//
const auto array = reinterpret_cast<uintptr_t *>(_storage.data());
//
// Fetch the next integer to the cache.
//
_cache = array[_hint / cached_bits];
//
// If we're scanning for unset bits then we need to invert the cached
// bits, since we only actually have logic for searching for set bits.
//
if (_mode == mode::unset) {
_cache = ~_cache;
}
}
//
// Toggles the scan mode from set to unset or vice-versa.
//
// Returns the new scan mode
//
inline void toggle_mode() noexcept {
// Toggle the scan mode based on the current mode.
if (_mode == mode::set) {
_mode = mode::unset;
} else {
_mode = mode::set;
}
// Invert the cached bits
_cache = ~_cache;
}
public:
using APFSBlock::APFSBlock;
APFSBitmapBlock(const APFSPool &pool, const APFSSpacemanCIB::bm_entry &entry);
const std::vector<APFSSpaceman::range> unallocated_ranges();
};
class APFSKeybag : public APFSObject {
protected:
inline const apfs_keybag *kb() const noexcept {
return reinterpret_cast<const apfs_keybag *>(_storage.data());
}
using key = struct {
TSKGuid uuid;
std::unique_ptr<uint8_t[]> data;
uint16_t type;
};
public:
APFSKeybag(const APFSPool &pool, const apfs_block_num block_num,
const uint8_t *key, const uint8_t *key2 = nullptr);
std::unique_ptr<uint8_t[]> get_key(const TSKGuid &uuid, uint16_t type) const;
std::vector<key> get_keys() const;
};
class APFSSuperblock : public APFSObject {
mutable std::unique_ptr<APFSSpaceman> _spaceman{};
#ifdef TSK_MULTITHREAD_LIB
mutable std::mutex _spaceman_init_lock;
#endif
protected:
inline const apfs_nx_superblock *sb() const noexcept {
return reinterpret_cast<const apfs_nx_superblock *>(_storage.data());
}
inline APFSOmap omap() const { return {_pool, sb()->omap_oid}; };
const APFSSpaceman &spaceman() const;
class Keybag : public APFSKeybag {
public:
Keybag(const APFSSuperblock &sb);
};
public:
using APFSObject::APFSObject;
APFSSuperblock(const APFSPool &pool, const apfs_block_num block_num);
inline uint32_t block_size() const noexcept { return sb()->block_size; }
inline uint64_t num_blocks() const noexcept { return sb()->block_count; }
inline uint64_t num_free_blocks() const {
return spaceman().num_free_blocks();
}
inline TSKGuid uuid() const { return {sb()->uuid}; }
const std::vector<apfs_block_num> volume_blocks() const;
const std::vector<apfs_block_num> sm_bitmap_blocks() const;
inline const std::vector<APFSSpaceman::range> unallocated_ranges() const {
return spaceman().unallocated_ranges();
}
const std::vector<uint64_t> volume_oids() const;
apfs_block_num checkpoint_desc_block() const;
Keybag keybag() const;
friend APFSPool;
};
class APFSCheckpointMap : public APFSObject {
protected:
inline const apfs_checkpoint_map *map() const noexcept {
return reinterpret_cast<const apfs_checkpoint_map *>(_storage.data());
}
public:
using APFSObject::APFSObject;
APFSCheckpointMap(const APFSPool &pool, const apfs_block_num block_num);
apfs_block_num get_object_block(uint64_t oid, APFS_OBJ_TYPE_ENUM type) const;
};
// Object representation of an APFS Physical Extent Reference
#pragma pack(push, 1)
struct APFSPhysicalExtentRef : apfs_phys_extent {
inline apfs_phys_extent_kind kind() const noexcept {
return static_cast<apfs_phys_extent_kind>(bitfield_value(
len_and_kind, APFS_PHYS_EXTENT_KIND_BITS, APFS_PHYS_EXTENT_KIND_SHIFT));
}
inline uint64_t block_count() const noexcept {
return bitfield_value(len_and_kind, APFS_PHYS_EXTENT_LEN_BITS,
APFS_PHYS_EXTENT_LEN_SHIFT);
}
inline uint64_t owner_oid() const noexcept { return owning_obj_id; }
inline uint32_t ref_count() const noexcept { return refcnt; }
};
static_assert(sizeof(APFSPhysicalExtentRef) == sizeof(apfs_phys_extent),
"No member fields can be added to APFSPhysicalExtentRef");
struct APFSPhysicalExtentKey : apfs_phys_extent_key {
inline apfs_block_num start_block() const noexcept {
return bitfield_value(start_block_and_type,
APFS_PHYS_EXTENT_START_BLOCK_BITS,
APFS_PHYS_EXTENT_START_BLOCK_SHIFT);
}
};
static_assert(sizeof(APFSPhysicalExtentKey) == sizeof(apfs_phys_extent_key),
"No member fields can be added to APFSPhysicalExtentKey");
#pragma pack(pop)
class APFSExtentRefBtreeNode : public APFSBtreeNode<> {
public:
APFSExtentRefBtreeNode(const APFSPool &pool, apfs_block_num block_num);
iterator find(apfs_block_num) const;
};
class APFSJObjTree;
class APFSFileSystem : public APFSObject {
public:
using unmount_log_t = struct {
uint64_t timestamp;
std::string logstr;
uint64_t last_xid;
};
using snapshot_t = struct {
std::string name;
uint64_t timestamp;
uint64_t snap_xid;
bool dataless;
};
struct wrapped_kek {
TSKGuid uuid;
uint8_t data[0x28];
uint64_t iterations;
uint64_t flags;
uint8_t salt[0x10];
wrapped_kek(TSKGuid &&uuid, const std::unique_ptr<uint8_t[]> &);
inline bool hw_crypt() const noexcept {
// If this bit is set, some sort of hardware encryption is used.
return bit_is_set(flags, 1ULL << 56);
}
inline bool cs() const noexcept {
// If this bit is set the KEK is 0x10 bytes instead of 0x20
return bit_is_set(flags, 1ULL << 57);
}
};
struct crypto_info_t {
apfs_block_num recs_block_num{};
std::string password_hint{};
std::string password{};
std::vector<wrapped_kek> wrapped_keks{};
uint64_t vek_flags{};
uint8_t wrapped_vek[0x28]{};
uint8_t vek_uuid[0x10]{};
uint8_t vek[0x20]{};
bool unlocked{};
inline uint64_t unk16() const noexcept {
// If this byte is not zero (1) then some other sort of decryption is used
return bitfield_value(vek_flags, 8, 16);
}
inline bool hw_crypt() const noexcept {
// If this bit is set, some sort of hardware encryption is used.
return bit_is_set(vek_flags, 1ULL << 56);
}
inline bool cs() const noexcept {
// If this bit is set the VEK is 0x10 bytes instead of 0x20
return bit_is_set(vek_flags, 1ULL << 57);
}
};
protected:
class Keybag : public APFSKeybag {
public:
Keybag(const APFSFileSystem &, apfs_block_num);
};
inline const apfs_superblock *fs() const noexcept {
return reinterpret_cast<const apfs_superblock *>(_storage.data());
}
inline uint64_t rdo() const noexcept { return fs()->root_tree_oid; }
void init_crypto_info();
crypto_info_t _crypto{};
public:
using APFSObject::APFSObject;
APFSFileSystem(const APFSPool &pool, const apfs_block_num block_num);
APFSFileSystem(const APFSPool &pool, const apfs_block_num block_num,
const std::string &password);
const std::vector<snapshot_t> snapshots() const;
bool unlock(const std::string &password) noexcept;
inline TSKGuid uuid() const noexcept { return {fs()->uuid}; }
inline std::string name() const { return {fs()->name}; }
inline std::string formatted_by() const { return {fs()->formatted_by}; }
inline const std::string &password_hint() const noexcept {
return _crypto.password_hint;
}
inline const auto &crypto_info() const noexcept { return _crypto; }
inline const uint8_t *decryption_key() const noexcept {
if (_crypto.unlocked) {
return _crypto.vek;
}
return nullptr;
}
inline APFS_VOLUME_ROLE role() const noexcept {
return APFS_VOLUME_ROLE(fs()->role);
}
inline uint64_t reserved() const noexcept {
return fs()->reserve_blocks * _pool.block_size();
}
inline uint64_t quota() const noexcept {
return fs()->quota_blocks * _pool.block_size();
}
inline uint64_t used() const noexcept {
return fs()->alloc_blocks * _pool.block_size();
}
inline uint64_t reserved_blocks() const noexcept {
return fs()->reserve_blocks;
}
inline uint64_t quota_blocks() const noexcept { return fs()->quota_blocks; }
inline uint64_t alloc_blocks() const noexcept { return fs()->alloc_blocks; }
inline uint64_t last_inum() const noexcept { return fs()->next_inum - 1; }
inline bool encrypted() const noexcept {
return !bit_is_set(fs()->flags, APFS_SB_UNENCRYPTED);
}
inline bool case_sensitive() const noexcept {
return !bit_is_set(fs()->incompatible_features,
APFS_SB_INCOMPAT_CASE_INSENSITIVE);
}
inline uint64_t created() const noexcept { return fs()->created_timestamp; }
inline uint64_t changed() const noexcept { return fs()->last_mod_time; }
const std::vector<unmount_log_t> unmount_log() const;
apfs_block_num omap_root() const;
APFSJObjTree root_jobj_tree() const;
APFSExtentRefBtreeNode extent_ref_tree() const {
return {pool(), fs()->extentref_tree_oid};
}
APFSSnapshotMetaBtreeNode snap_meta_tree() const {
return {pool(), fs()->snap_meta_tree_oid};
}
friend APFSJObjTree;
};
struct APFSJObjKey {
uint64_t oid_and_type;
inline uint64_t oid() const noexcept {
return bitfield_value(oid_and_type, 60, 0);
}
inline uint64_t type() const noexcept {
return bitfield_value(oid_and_type, 4, 60);
}
};
static_assert(sizeof(APFSJObjKey) == 0x08, "invalid struct padding");
// Template Specializations
// Initializes the value for variable-sized key/values
template <>
inline lw_shared_ptr<APFSJObjBtreeNode>
APFSBtreeNodeIterator<APFSJObjBtreeNode>::own_node(
const APFSJObjBtreeNode *node, apfs_block_num block_num) {
return node->_pool.template get_block<APFSJObjBtreeNode>(
block_num, node->_obj_root, block_num, node->_decryption_key);
}
template <>
template <>
inline void APFSBtreeNodeIterator<APFSJObjBtreeNode>::init_value<void>(int recursion_depth) {
const auto &t = _node->_table_data.toc.variable[_index];
const auto key_data = _node->_table_data.koff + t.key_offset;
const auto val_data = _node->_table_data.voff - t.val_offset;
if (key_data > _node->_storage.data() + _node->_storage.size()) {
throw std::runtime_error("APFSBtreeNodeIterator<APFSJObjBtreeNode>::init_value: invalid key_offset");
}
if (val_data < _node->_storage.data()) {
throw std::runtime_error("APFSBtreeNodeIterator<APFSJObjBtreeNode>::init_value: invalid val_offset");
}
memory_view key{key_data, t.key_length};
if (_node->is_leaf()) {
memory_view value{val_data, t.val_length};
_val = {key, value};
} else {
const auto obj_num = *((uint64_t *)val_data);
const auto it = _node->_obj_root->find(obj_num);
if (it == _node->_obj_root->end()) {
throw std::runtime_error("can not find jobj");
}
_child_it = std::make_unique<typename APFSJObjBtreeNode::iterator>(
own_node(_node.get(), it->value->paddr), 0, recursion_depth);
}
}
template <typename Node>
APFSBtreeNodeIterator<Node>::APFSBtreeNodeIterator(const Node *node,
uint32_t index, int recursion_depth)
: _node{own_node(node)}, _index{index} {
// If we're the end, then there's nothing to do
if (index >= _node->key_count()) {
return;
}
init_value(recursion_depth + 1);
}
template <typename Node>
APFSBtreeNodeIterator<Node>::APFSBtreeNodeIterator(lw_shared_ptr<Node> &&node,
uint32_t index, int recursion_depth)
: _node{std::forward<lw_shared_ptr<Node>>(node)}, _index{index} {
// If we're the end, then there's nothing to do
if (index >= _node->key_count()) {
return;
}
init_value(recursion_depth + 1);
}
template <typename Node>
APFSBtreeNodeIterator<Node>::APFSBtreeNodeIterator(
const Node *node, uint32_t index, typename Node::iterator &&child)
: _node{own_node(node)}, _index{index} {
_child_it = std::make_unique<typename Node::iterator>(
std::forward<typename Node::iterator>(child));
}
|