File: crypto.cpp

package info (click to toggle)
sleuthkit 4.12.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,608 kB
  • sloc: ansic: 143,795; cpp: 52,225; java: 37,892; xml: 2,416; python: 1,076; perl: 874; makefile: 439; sh: 184
file content (211 lines) | stat: -rw-r--r-- 5,824 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
 * The Sleuth Kit
 *
 * Brian Carrier [carrier <at> sleuthkit [dot] org]
 * Copyright (c) 2018-2019 BlackBag Technologies.  All Rights reserved
 *
 * This software is distributed under the Common Public License 1.0
 */

/* This file contains routines used by APFS code.
 * It could probably move into the 'fs' folder.
 * It is XTS wrappers around OpenSSL
 */
#include "crypto.hpp"

#ifdef HAVE_LIBOPENSSL
#include <openssl/aes.h>
#include <openssl/md5.h>
#include <openssl/opensslv.h>
#include <openssl/sha.h>

#include <algorithm>
#include <cstring>
#include <memory>
#include <mutex>
#include <string>
#include <thread>

// This should initialize and cleanup openssl
static struct _openssl_init {
  _openssl_init() noexcept {
    OpenSSL_add_all_algorithms();

// OpenSSL 1.1.0 removed the need for threading callbacks
#if OPENSSL_VERSION_NUMBER < 0x10100000 && defined(TSK_MULTITHREAD_LIB)
    CRYPTO_set_locking_callback([](int mode, int n, const char *, int) {
      static auto mutexes = std::make_unique<std::mutex[]>(CRYPTO_num_locks());

      auto &mutex = mutexes[n];

      if (mode & CRYPTO_LOCK) {
        mutex.lock();
      } else {
        mutex.unlock();
      }
    });

    CRYPTO_THREADID_set_callback([](CRYPTO_THREADID *id) {
      thread_local const auto thread_id =
          std::hash<std::thread::id>()(std::this_thread::get_id());
      CRYPTO_THREADID_set_numeric(id, thread_id);
    });
#endif
  }

  ~_openssl_init() noexcept { EVP_cleanup(); }
} openssl_init{};

aes_xts_decryptor::aes_xts_decryptor(AES_MODE mode, const uint8_t *key1,
                                     const uint8_t *key2,
                                     size_t block_size) noexcept
    : _block_size{block_size} {
  // EVP_CIPHER_CTX was made opaque in OpenSSL 1.1.0.
#if OPENSSL_VERSION_NUMBER < 0x10100000
  _ctx = new EVP_CIPHER_CTX();
#else
  _ctx = EVP_CIPHER_CTX_new();
#endif

  EVP_CIPHER_CTX_init(_ctx);

  if (key2 != nullptr) {
    // We have a 2 part key that must be assembled
    if (mode == AES_128) {
      uint8_t key[32];
      memcpy(key, key1, 16);
      memcpy(key + 16, key2, 16);

      EVP_DecryptInit_ex(_ctx, EVP_aes_128_xts(), nullptr, key, nullptr);
    } else {
      uint8_t key[64];
      memcpy(key, key1, 32);
      memcpy(key + 32, key2, 32);

      EVP_DecryptInit_ex(_ctx, EVP_aes_256_xts(), nullptr, key, nullptr);
    }
  } else {
    // We have a single key that's already assembled
    if (mode == AES_128) {
      EVP_DecryptInit_ex(_ctx, EVP_aes_128_xts(), nullptr, key1, nullptr);
    } else {
      EVP_DecryptInit_ex(_ctx, EVP_aes_256_xts(), nullptr, key1, nullptr);
    }
  }

  EVP_CIPHER_CTX_set_padding(_ctx, 0);
}

aes_xts_decryptor::~aes_xts_decryptor() noexcept {
  // EVP_CIPHER_CTX was made opaque in OpenSSL 1.1.0.
#if OPENSSL_VERSION_NUMBER < 0x10100000
  EVP_CIPHER_CTX_cleanup(_ctx);
  delete _ctx;
#else
  EVP_CIPHER_CTX_free(_ctx);
#endif
}

int aes_xts_decryptor::decrypt_buffer(void *buffer, size_t length,
                                      uint64_t position) noexcept {
  int total_len{0};
  auto buf = static_cast<char *>(buffer);

  while (length > 0) {
    const auto read = decrypt_block(buf, std::min(length, _block_size),
                                    position / _block_size);
    total_len += read;
    position += read;
    buf += read;
    length -= read;
  }

  return total_len;
}

int aes_xts_decryptor::decrypt_block(void *buffer, size_t length,
                                     uint64_t block) noexcept {
#ifdef TSK_MULTITHREAD_LIB
  // Take decryption lock
  std::lock_guard<std::mutex> lock{_ctx_lock};
#endif

  uint8_t tweak[16]{};
  for (int i = 0; i < 8; i++) {
    tweak[i] = (block >> (i * 8)) & 0xFF;
  }

  int outlen;
  EVP_DecryptInit_ex(_ctx, nullptr, nullptr, nullptr, tweak);
  EVP_DecryptUpdate(_ctx, static_cast<uint8_t *>(buffer), &outlen,
                    static_cast<uint8_t *>(buffer), length);

  return outlen;
}

std::unique_ptr<uint8_t[]> pbkdf2_hmac_sha256(const std::string &password,
                                              const void *salt, size_t salt_len,
                                              int iterations,
                                              size_t key_len) noexcept {
  auto out = std::make_unique<uint8_t[]>(key_len);

  const auto ret = PKCS5_PBKDF2_HMAC(
      password.c_str(), password.length(), (const uint8_t *)salt, salt_len,
      iterations, EVP_sha256(), key_len, out.get());

  if (ret == 0) {
    return nullptr;
  }

  return out;
}

std::unique_ptr<uint8_t[]> rfc3394_key_unwrap(const uint8_t *key,
                                              size_t key_len, const void *input,
                                              size_t input_len,
                                              const void *iv) noexcept {
  AES_KEY aes_key;
  AES_set_decrypt_key(key, key_len * 8, &aes_key);

  const int output_len = input_len - 8;

  auto out = std::make_unique<uint8_t[]>(output_len);

  const auto ret = AES_unwrap_key(&aes_key, (const uint8_t *)iv, out.get(),
                                  (const uint8_t *)input, input_len);

  if (ret != output_len) {
    return nullptr;
  }

  return out;
}

std::unique_ptr<uint8_t[]> hash_buffer_md5(const void *input,
                                           size_t len) noexcept {
  MD5_CTX sha;
  MD5_Init(&sha);

  MD5_Update(&sha, input, len);

  auto hash = std::make_unique<uint8_t[]>(MD5_DIGEST_LENGTH);

  MD5_Final(hash.get(), &sha);

  return hash;
}

std::unique_ptr<uint8_t[]> hash_buffer_sha256(const void *input,
                                              size_t len) noexcept {
  SHA256_CTX sha;
  SHA256_Init(&sha);

  SHA256_Update(&sha, input, len);

  auto hash = std::make_unique<uint8_t[]>(SHA256_DIGEST_LENGTH);

  SHA256_Final(hash.get(), &sha);

  return hash;
}
#endif