1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
;;;;"array.scm" Arrays for Scheme
; Copyright (C) 1993 Alan Bawden
;
; Permission to copy this software, to redistribute it, and to use it
; for any purpose is granted, subject to the following restrictions and
; understandings.
;
; 1. Any copy made of this software must include this copyright notice
; in full.
;
; 2. Users of this software agree to make their best efforts (a) to
; return to me any improvements or extensions that they make, so that
; these may be included in future releases; and (b) to inform me of
; noteworthy uses of this software.
;
; 3. I have made no warrantee or representation that the operation of
; this software will be error-free, and I am under no obligation to
; provide any services, by way of maintenance, update, or otherwise.
;
; 4. In conjunction with products arising from the use of this material,
; there shall be no use of my name in any advertising, promotional, or
; sales literature without prior written consent in each case.
;
; Alan Bawden
; MIT Room NE43-510
; 545 Tech. Sq.
; Cambridge, MA 02139
; Alan@LCS.MIT.EDU
(require 'record)
;(declare (usual-integrations))
(define array:rtd
(make-record-type "Array"
'(indexer ; Must be a -linear- function!
shape ; Inclusive bounds: ((lower upper) ...)
vector ; The actual contents
)))
(define array:indexer (record-accessor array:rtd 'indexer))
(define array-shape (record-accessor array:rtd 'shape))
(define array:vector (record-accessor array:rtd 'vector))
(define array? (record-predicate array:rtd))
(define (array-rank obj)
(if (array? obj) (length (array-shape obj)) 0))
(define (array-dimensions ra)
(map (lambda (ind) (if (zero? (car ind)) (+ 1 (cadr ind)) ind))
(array-shape ra)))
(define array:construct
(record-constructor array:rtd '(shape vector indexer)))
(define (array:compute-shape specs)
(map (lambda (spec)
(cond ((and (integer? spec)
(< 0 spec))
(list 0 (- spec 1)))
((and (pair? spec)
(pair? (cdr spec))
(null? (cddr spec))
(integer? (car spec))
(integer? (cadr spec))
(<= (car spec) (cadr spec)))
spec)
(else (slib:error "array: Bad array dimension: " spec))))
specs))
(define (make-array initial-value . specs)
(let ((shape (array:compute-shape specs)))
(let loop ((size 1)
(indexer (lambda () 0))
(l (reverse shape)))
(if (null? l)
(array:construct shape
(make-vector size initial-value)
(array:optimize-linear-function indexer shape))
(loop (* size (+ 1 (- (cadar l) (caar l))))
(lambda (first-index . rest-of-indices)
(+ (* size (- first-index (caar l)))
(apply indexer rest-of-indices)))
(cdr l))))))
(define (make-shared-array array mapping . specs)
(let ((new-shape (array:compute-shape specs))
(old-indexer (array:indexer array)))
(let check ((indices '())
(bounds (reverse new-shape)))
(cond ((null? bounds)
(array:check-bounds array (apply mapping indices)))
(else
(check (cons (caar bounds) indices) (cdr bounds))
(check (cons (cadar bounds) indices) (cdr bounds)))))
(array:construct new-shape
(array:vector array)
(array:optimize-linear-function
(lambda indices
(apply old-indexer (apply mapping indices)))
new-shape))))
(define (array:in-bounds? array indices)
(let loop ((indices indices)
(shape (array-shape array)))
(if (null? indices)
(null? shape)
(let ((index (car indices)))
(and (not (null? shape))
(integer? index)
(<= (caar shape) index (cadar shape))
(loop (cdr indices) (cdr shape)))))))
(define (array:check-bounds array indices)
(or (array:in-bounds? array indices)
(slib:error "array: Bad indices for " array indices)))
(define (array-ref array . indices)
(array:check-bounds array indices)
(vector-ref (array:vector array)
(apply (array:indexer array) indices)))
(define (array-set! array new-value . indices)
(array:check-bounds array indices)
(vector-set! (array:vector array)
(apply (array:indexer array) indices)
new-value))
(define (array-in-bounds? array . indices)
(array:in-bounds? array indices))
; Fast versions of ARRAY-REF and ARRAY-SET! that do no error checking,
; and don't cons intermediate lists of indices:
(define (array-1d-ref a i0)
(vector-ref (array:vector a) ((array:indexer a) i0)))
(define (array-2d-ref a i0 i1)
(vector-ref (array:vector a) ((array:indexer a) i0 i1)))
(define (array-3d-ref a i0 i1 i2)
(vector-ref (array:vector a) ((array:indexer a) i0 i1 i2)))
(define (array-1d-set! a v i0)
(vector-set! (array:vector a) ((array:indexer a) i0) v))
(define (array-2d-set! a v i0 i1)
(vector-set! (array:vector a) ((array:indexer a) i0 i1) v))
(define (array-3d-set! a v i0 i1 i2)
(vector-set! (array:vector a) ((array:indexer a) i0 i1 i2) v))
; STOP! Do not read beyond this point on your first reading of
; this code -- you should simply assume that the rest of this file
; contains only the following single definition:
;
; (define (array:optimize-linear-function f l) f)
;
; Of course everything would be pretty inefficient if this were really the
; case, but it isn't. The following code takes advantage of the fact that
; you can learn everything there is to know from a linear function by
; simply probing around in its domain and observing its values -- then a
; more efficient equivalent can be constructed.
(define (array:optimize-linear-function f l)
(let ((d (length l)))
(cond
((= d 0)
(array:0d-c (f)))
((= d 1)
(let ((c (f 0)))
(array:1d-c0 c (- (f 1) c))))
((= d 2)
(let ((c (f 0 0)))
(array:2d-c01 c (- (f 1 0) c) (- (f 0 1) c))))
((= d 3)
(let ((c (f 0 0 0)))
(array:3d-c012 c (- (f 1 0 0) c) (- (f 0 1 0) c) (- (f 0 0 1) c))))
(else
(let* ((v (map (lambda (x) 0) l))
(c (apply f v)))
(let loop ((p v)
(old-val c)
(coefs '()))
(cond ((null? p)
(array:Nd-c* c (reverse coefs)))
(else
(set-car! p 1)
(let ((new-val (apply f v)))
(loop (cdr p)
new-val
(cons (- new-val old-val) coefs)))))))))))
; 0D cases:
(define (array:0d-c c)
(lambda () c))
; 1D cases:
(define (array:1d-c c)
(lambda (i0) (+ c i0)))
(define (array:1d-0 n0)
(cond ((= 1 n0) +)
(else (lambda (i0) (* n0 i0)))))
(define (array:1d-c0 c n0)
(cond ((= 0 c) (array:1d-0 n0))
((= 1 n0) (array:1d-c c))
(else (lambda (i0) (+ c (* n0 i0))))))
; 2D cases:
(define (array:2d-0 n0)
(lambda (i0 i1) (+ (* n0 i0) i1)))
(define (array:2d-1 n1)
(lambda (i0 i1) (+ i0 (* n1 i1))))
(define (array:2d-c0 c n0)
(lambda (i0 i1) (+ c (* n0 i0) i1)))
(define (array:2d-c1 c n1)
(lambda (i0 i1) (+ c i0 (* n1 i1))))
(define (array:2d-01 n0 n1)
(cond ((= 1 n0) (array:2d-1 n1))
((= 1 n1) (array:2d-0 n0))
(else (lambda (i0 i1) (+ (* n0 i0) (* n1 i1))))))
(define (array:2d-c01 c n0 n1)
(cond ((= 0 c) (array:2d-01 n0 n1))
((= 1 n0) (array:2d-c1 c n1))
((= 1 n1) (array:2d-c0 c n0))
(else (lambda (i0 i1) (+ c (* n0 i0) (* n1 i1))))))
; 3D cases:
(define (array:3d-01 n0 n1)
(lambda (i0 i1 i2) (+ (* n0 i0) (* n1 i1) i2)))
(define (array:3d-02 n0 n2)
(lambda (i0 i1 i2) (+ (* n0 i0) i1 (* n2 i2))))
(define (array:3d-12 n1 n2)
(lambda (i0 i1 i2) (+ i0 (* n1 i1) (* n2 i2))))
(define (array:3d-c12 c n1 n2)
(lambda (i0 i1 i2) (+ c i0 (* n1 i1) (* n2 i2))))
(define (array:3d-c02 c n0 n2)
(lambda (i0 i1 i2) (+ c (* n0 i0) i1 (* n2 i2))))
(define (array:3d-c01 c n0 n1)
(lambda (i0 i1 i2) (+ c (* n0 i0) (* n1 i1) i2)))
(define (array:3d-012 n0 n1 n2)
(cond ((= 1 n0) (array:3d-12 n1 n2))
((= 1 n1) (array:3d-02 n0 n2))
((= 1 n2) (array:3d-01 n0 n1))
(else (lambda (i0 i1 i2) (+ (* n0 i0) (* n1 i1) (* n2 i2))))))
(define (array:3d-c012 c n0 n1 n2)
(cond ((= 0 c) (array:3d-012 n0 n1 n2))
((= 1 n0) (array:3d-c12 c n1 n2))
((= 1 n1) (array:3d-c02 c n0 n2))
((= 1 n2) (array:3d-c01 c n0 n1))
(else (lambda (i0 i1 i2) (+ c (* n0 i0) (* n1 i1) (* n2 i2))))))
; ND cases:
(define (array:Nd-* coefs)
(lambda indices (apply + (map * coefs indices))))
(define (array:Nd-c* c coefs)
(cond ((= 0 c) (array:Nd-* coefs))
(else (lambda indices (apply + c (map * coefs indices))))))
|