1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719
|
\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename slib.info
@settitle SLIB
@setchapternewpage on
@c Choices for setchapternewpage are {on,off,odd}.
@paragraphindent 2
@defcodeindex ft
@syncodeindex ft cp
@syncodeindex tp cp
@c %**end of header
@iftex
@finalout
@c DL: lose the egregious vertical whitespace, esp. around examples
@c but paras in @defun-like things don't have parindent
@parskip 4pt plus 1pt
@end iftex
@ifinfo
This file documents SLIB, the portable Scheme library.
Copyright (C) 1993 Todd R. Eigenschink@*
Copyright (C) 1993, 1994, 1995, 1996, 1997 Aubrey Jaffer
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
@ignore
Permission is granted to process this file through TeX and print the
results, provided the printed document carries copying permission
notice identical to this one except for the removal of this paragraph
(this paragraph not being relevant to the printed manual).
@end ignore
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the author.
@end ifinfo
@titlepage
@title SLIB
@subtitle The Portable Scheme Library
@subtitle Version 2c0
@author by Aubrey Jaffer
@page
@vskip 0pt plus 1filll
Copyright @copyright{} 1993 Todd R. Eigenschink@*
Copyright @copyright{} 1993, 1994, 1995, 1996, 1997 Aubrey Jaffer
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the author.
@end titlepage
@node Top, The Library System, (dir), (dir)
@ifinfo
@cindex SLIB
@dfn{SLIB} is a portable library for the programming language
@cindex Scheme
@dfn{Scheme}. It provides a platform independent framework for using
@dfn{packages} of Scheme procedures and syntax.
@cindex packages
@cindex package
As distributed, SLIB contains useful packages for all implementations.
Its catalog can be transparently extended to accomodate packages
specific to a site, implementation, user, or directory.
@quotation
Aubrey Jaffer <jaffer@@ai.mit.edu>@*
@i{Hyperactive Software} -- The Maniac Inside!@*
http://www-swiss.ai.mit.edu/~jaffer/SLIB.html
@end quotation
@end ifinfo
@menu
* The Library System:: How to use and customize.
* Scheme Syntax Extension Packages::
* Textual Conversion Packages::
* Mathematical Packages::
* Database Packages::
* Other Packages::
* About SLIB:: Install, etc.
* Index::
@end menu
@node The Library System, Scheme Syntax Extension Packages, Top, Top
@chapter The Library System
@iftex
@section Introduction
@noindent
@cindex SLIB
@dfn{SLIB} is a portable library for the programming language
@cindex Scheme
@dfn{Scheme}. It provides a platform independent framework for using
@dfn{packages} of Scheme procedures and syntax.
@cindex packages
@cindex package
As distributed, SLIB contains useful packages for all implementations.
Its catalog can be transparently extended to accomodate packages
specific to a site, implementation, user, or directory.
@quotation
Aubrey Jaffer <jaffer@@ai.mit.edu>@*
@i{Hyperactive Software} -- The Maniac Inside!@*
@ifset html
<A HREF="http://www-swiss.ai.mit.edu/~jaffer/SLIB.html">
@end ifset
http://www-swiss.ai.mit.edu/~jaffer/SLIB.html
@ifset html
</A>
@end ifset
@end quotation
@end iftex
@menu
* Feature:: SLIB names.
* Requesting Features::
* Library Catalogs::
* Catalog Compilation::
* Built-in Support::
* About this manual::
@end menu
@node Feature, Requesting Features, The Library System, The Library System
@section Feature
@noindent
@cindex feature
SLIB denotes @dfn{features} by symbols. SLIB maintains a list of
features supported by the Scheme @dfn{session}. The set of features
@cindex session
provided by a session may change over time. Some features are
properties of the Scheme implementation being used. The following
features detail what sort of numbers are available from an
implementation.
@itemize @bullet
@item
'inexact
@item
'rational
@item
'real
@item
'complex
@item
'bignum
@end itemize
@noindent
Other features correspond to the presence of sets of Scheme procedures
or syntax (macros).
@defun provided? feature
Returns @code{#t} if @var{feature} is supported by the current Scheme
session.
@end defun
@deffn Procedure provide feature
Informs SLIB that @var{feature} is supported. Henceforth
@code{(provided? @var{feature})} will return @code{#t}.
@end deffn
@example
(provided? 'foo) @result{} #f
(provide 'foo)
(provided? 'foo) @result{} #t
@end example
@node Requesting Features, Library Catalogs, Feature, The Library System
@section Requesting Features
@noindent
@cindex catalog
SLIB creates and maintains a @dfn{catalog} mapping features to locations
of files introducing procedures and syntax denoted by those features.
@noindent
At the beginning of each section of this manual, there is a line like
@code{(require '@var{feature})}.
@ftindex feature
The Scheme files comprising SLIB are cataloged so that these feature
names map to the corresponding files.
@noindent
SLIB provides a form, @code{require}, which loads the files providing
the requested feature.
@deffn Procedure require feature
@itemize @bullet
@item
If @code{(provided? @var{feature})} is true,
then @code{require} just returns an unspecified value.
@item
Otherwise, if @var{feature} is found in the catalog, then the
corresponding files will be loaded and an unspecified value returned.
Subsequently @code{(provided? @var{feature})} will return @code{#t}.
@item
Otherwise (@var{feature} not found in the catalog), an error is
signaled.
@end itemize
@end deffn
@noindent
The catalog can also be queried using @code{require:feature->path}.
@defun require:feature->path feature
@itemize @bullet
@item
If @var{feature} is already provided, then returns @code{#t}.
@item
Otherwise, if @var{feature} is in the catalog, the path or list of paths
associated with @var{feature} is returned.
@item
Otherwise, returns @code{#f}.
@end itemize
@end defun
@node Library Catalogs, Catalog Compilation, Requesting Features, The Library System
@section Library Catalogs
@noindent
At the start of a session no catalog is present, but is created with the
first catalog inquiry (such as @code{(require 'random)}). Several
sources of catalog information are combined to produce the catalog:
@itemize @bullet
@item
standard SLIB packages.
@item
additional packages of interest to this site.
@item
packages specifically for the variety of Scheme which this
session is running.
@item
packages this user wants to always have available. This catalog is the
file @file{homecat} in the user's @dfn{HOME} directory.
@cindex HOME
@item
packages germane to working in this (current working) directory. This
catalog is the file @file{usercat} in the directory to which it applies.
One would typically @code{cd} to this directory before starting the
Scheme session.
@end itemize
@noindent
Catalog files consist of one or more @dfn{association list}s.
@cindex Catalog File
In the circumstance where a feature symbol appears in more than one
list, the latter list's association is retrieved. Here are the
supported formats for elements of catalog lists:
@table @code
@item (@var{feature} . @i{<symbol>})
Redirects to the feature named @i{<symbol>}.
@item (@var{feature} . "@i{<path>}")
Loads file @i{<path>}.
@item (@var{feature} source "@i{<path>"})
@code{slib:load}s the Scheme source file @i{<path>}.
@item (@var{feature} compiled "@i{<path>"} @dots{})
@code{slib:load-compiled}s the files @i{<path>} @dots{}.
@end table
@noindent
The various macro styles first @code{require} the named macro package,
then just load @i{<path>} or load-and-macro-expand @i{<path>} as
appropriate for the implementation.
@table @code
@item (@var{feature} defmacro "@i{<path>"})
@code{defmacro:load}s the Scheme source file @i{<path>}.
@item (@var{feature} macro-by-example "@i{<path>"})
@code{defmacro:load}s the Scheme source file @i{<path>}.
@end table
@table @code
@item (@var{feature} macro "@i{<path>"})
@code{macro:load}s the Scheme source file @i{<path>}.
@item (@var{feature} macros-that-work "@i{<path>"})
@code{macro:load}s the Scheme source file @i{<path>}.
@item (@var{feature} syntax-case "@i{<path>"})
@code{macro:load}s the Scheme source file @i{<path>}.
@item (@var{feature} syntactic-closures "@i{<path>"})
@code{macro:load}s the Scheme source file @i{<path>}.
@end table
@noindent
Here is an example of a @file{usercat} catalog. A Program in this
directory can invoke the @samp{run} feature with @code{(require 'run)}.
@example
;;; "usercat": SLIB catalog additions for SIMSYNCH. -*-scheme-*-
(
(simsynch . "../synch/simsynch.scm")
(run . "../synch/run.scm")
(schlep . "schlep.scm")
)
@end example
@node Catalog Compilation, Built-in Support, Library Catalogs, The Library System
@section Catalog Compilation
@noindent
SLIB combines the catalog information which doesn't vary per user into
the file @file{slibcat} in the implementation-vicinity. Therefore
@file{slibcat} needs change only when new software is installed or
compiled. Because the actual pathnames of files can differ from
installation to installation, SLIB builds a separate catalog for each
implementation it is used with.
@noindent
The definition of @code{*SLIB-VERSION*} in SLIB file @file{require.scm}
is checked against the catalog association of @code{*SLIB-VERSION*} to
ascertain when versions have changed. I recommend that the definition
of @code{*SLIB-VERSION*} be changed whenever the library is changed. If
multiple implementations of Scheme use SLIB, remember that recompiling
one @file{slibcat} will fix only that implementation's catalog.
@noindent
The compilation scripts of Scheme implementations which work with SLIB
can automatically trigger catalog compilation by deleting
@file{slibcat} or by invoking a special form of @code{require}:
@deffn Procedure require @r{'new-catalog}
This will load @file{mklibcat}, which compiles and writes a new
@file{slibcat}.
@end deffn
@noindent
Another special form of @code{require} erases SLIB's catalog, forcing it
to be reloaded the next time the catalog is queried.
@deffn Procedure require @r{#f}
Removes SLIB's catalog information. This should be done before saving
an executable image so that, when restored, its catalog will be loaded
afresh.
@end deffn
@noindent
Each file in the table below is descibed in terms of its
file-system independent @dfn{vicinity} (@pxref{Vicinity}). The entries
of a catalog in the table override those of catalogs above it in the
table.
@table @asis
@item @code{implementation-vicinity} @file{slibcat}
@cindex slibcat
This file contains the associations for the packages comprising SLIB,
the @file{implcat} and the @file{sitecat}s. The associations in the
other catalogs override those of the standard catalog.
@item @code{library-vicinity} @file{mklibcat.scm}
@cindex mklibcat.scm
creates @file{slibcat}.
@item @code{library-vicinity} @file{sitecat}
@cindex sitecat
This file contains the associations specific to an SLIB installation.
@item @code{implementation-vicinity} @file{implcat}
@cindex implcat
This file contains the associations specific to an implementation of
Scheme. Different implementations of Scheme should have different
@code{implementation-vicinity}.
@item @code{implementation-vicinity} @file{mkimpcat.scm}
@cindex mkimpcat.scm
if present, creates @file{implcat}.
@item @code{implementation-vicinity} @file{sitecat}
@cindex sitecat
This file contains the associations specific to a Scheme implementation
installation.
@item @code{home-vicinity} @file{homecat}
@cindex homecat
This file contains the associations specific to an SLIB user.
@item @code{user-vicinity} @file{usercat}
@cindex usercat
This file contains associations effecting only those sessions whose
@dfn{working directory} is @code{user-vicinity}.
@end table
@node Built-in Support, About this manual, Catalog Compilation, The Library System
@section Built-in Support
@noindent
The procedures described in these sections are supported by all
implementations as part of the @samp{*.init} files or by
@file{require.scm}.
@menu
* Require:: Module Management
* Vicinity:: Pathname Management
* Configuration:: Characteristics of Scheme Implementation
* Input/Output:: Things not provided by the Scheme specs.
* Legacy::
* System:: LOADing, EVALing, ERRORing, and EXITing
@end menu
@node Require, Vicinity, Built-in Support, Built-in Support
@subsection Require
@defvar *features*
Is a list of symbols denoting features supported in this implementation.
@var{*features*} can grow as modules are @code{require}d.
@var{*features*} must be defined by all implementations
(@pxref{Porting}).
Here are features which SLIB (@file{require.scm}) adds to
@var{*features*} when appropriate.
@itemize @bullet
@item
'inexact
@item
'rational
@item
'real
@item
'complex
@item
'bignum
@end itemize
For each item, @code{(provided? '@var{feature})} will return @code{#t}
if that feature is available, and @code{#f} if not.
@end defvar
@defvar *modules*
Is a list of pathnames denoting files which have been loaded.
@end defvar
@defvar *catalog*
Is an association list of features (symbols) and pathnames which will
supply those features. The pathname can be either a string or a pair.
If pathname is a pair then the first element should be a macro feature
symbol, @code{source}, or @code{compiled}. The cdr of the pathname
should be either a string or a list.
@end defvar
@noindent
In the following functions if the argument @var{feature} is not a symbol
it is assumed to be a pathname.@refill
@defun provided? feature
Returns @code{#t} if @var{feature} is a member of @code{*features*} or
@code{*modules*} or if @var{feature} is supported by a file already
loaded and @code{#f} otherwise.@refill
@end defun
@deffn Procedure require feature
@var{feature} is a symbol. If @code{(provided? @var{feature})} is true
@code{require} returns. Otherwise, if @code{(assq @var{feature}
*catalog*)} is not @code{#f}, the associated files will be loaded and
@code{(provided? @var{feature})} will henceforth return @code{#t}. An
unspecified value is returned. If @var{feature} is not found in
@code{*catalog*}, then an error is signaled.
@deffnx Procedure require pathname
@var{pathname} is a string. If @var{pathname} has not already been given as
an argument to @code{require}, @var{pathname} is loaded.
An unspecified value is returned.
@end deffn
@deffn Procedure provide feature
Assures that @var{feature} is contained in @code{*features*} if
@var{feature} is a symbol and @code{*modules*} otherwise.@refill
@end deffn
@defun require:feature->path feature
Returns @code{#t} if @var{feature} is a member of @code{*features*} or
@code{*modules*} or if @var{feature} is supported by a file already
loaded. Returns a path if one was found in @code{*catalog*} under the
feature name, and @code{#f} otherwise. The path can either be a string
suitable as an argument to load or a pair as described above for
*catalog*.
@end defun
@node Vicinity, Configuration, Require, Built-in Support
@subsection Vicinity
@noindent
A vicinity is a descriptor for a place in the file system. Vicinities
hide from the programmer the concepts of host, volume, directory, and
version. Vicinities express only the concept of a file environment
where a file name can be resolved to a file in a system independent
manner. Vicinities can even be used on @dfn{flat} file systems (which
have no directory structure) by having the vicinity express constraints
on the file name. On most systems a vicinity would be a string. All of
these procedures are file system dependent.
@noindent
These procedures are provided by all implementations.
@defun make-vicinity filename
Returns the vicinity of @var{filename} for use by @code{in-vicinity}.
@end defun
@defun program-vicinity
Returns the vicinity of the currently loading Scheme code. For an
interpreter this would be the directory containing source code. For a
compiled system (with multiple files) this would be the directory where
the object or executable files are. If no file is currently loading it
the result is undefined. @strong{Warning:} @code{program-vicinity} can
return incorrect values if your program escapes back into a
@code{load}.@refill
@end defun
@defun library-vicinity
Returns the vicinity of the shared Scheme library.
@end defun
@defun implementation-vicinity
Returns the vicinity of the underlying Scheme implementation. This
vicinity will likely contain startup code and messages and a compiler.
@end defun
@defun user-vicinity
Returns the vicinity of the current directory of the user. On most
systems this is @file{""} (the empty string).
@end defun
@defun home-vicinity
Returns the vicinity of the user's @dfn{HOME} directory, the directory
@cindex HOME
which typically contains files which customize a computer environment
for a user. If scheme is running without a user (eg. a daemon) or if
this concept is meaningless for the platform, then @code{home-vicinity}
returns @code{#f}.
@end defun
@c @defun scheme-file-suffix
@c Returns the default filename suffix for scheme source files. On most
@c systems this is @samp{.scm}.@refill
@c @end defun
@defun in-vicinity vicinity filename
Returns a filename suitable for use by @code{slib:load},
@code{slib:load-source}, @code{slib:load-compiled},
@code{open-input-file}, @code{open-output-file}, etc. The returned
filename is @var{filename} in @var{vicinity}. @code{in-vicinity} should
allow @var{filename} to override @var{vicinity} when @var{filename} is
an absolute pathname and @var{vicinity} is equal to the value of
@code{(user-vicinity)}. The behavior of @code{in-vicinity} when
@var{filename} is absolute and @var{vicinity} is not equal to the value
of @code{(user-vicinity)} is unspecified. For most systems
@code{in-vicinity} can be @code{string-append}.@refill
@end defun
@defun sub-vicinity vicinity name
Returns the vicinity of @var{vicinity} restricted to @var{name}. This
is used for large systems where names of files in subsystems could
conflict. On systems with directory structure @code{sub-vicinity} will
return a pathname of the subdirectory @var{name} of
@var{vicinity}.@refill
@end defun
@node Configuration, Input/Output, Vicinity, Built-in Support
@subsection Configuration
@noindent
These constants and procedures describe characteristics of the Scheme
and underlying operating system. They are provided by all
implementations.
@defvr Constant char-code-limit
An integer 1 larger that the largest value which can be returned by
@code{char->integer}.@refill
@end defvr
@defvr Constant most-positive-fixnum
The immediate integer closest to positive infinity.
@end defvr
@defvr Constant slib:tab
The tab character.
@end defvr
@defvr Constant slib:form-feed
The form-feed character.
@end defvr
@defun software-type
Returns a symbol denoting the generic operating system type. For
instance, @code{unix}, @code{vms}, @code{macos}, @code{amiga}, or
@code{ms-dos}.
@end defun
@defun slib:report-version
Displays the versions of SLIB and the underlying Scheme implementation
and the name of the operating system. An unspecified value is returned.
@example
(slib:report-version) @result{} slib "2c0" on scm "5b1" on unix
@end example
@end defun
@defun slib:report
Displays the information of @code{(slib:report-version)} followed by
almost all the information neccessary for submitting a problem report.
An unspecified value is returned.
@defunx slib:report #t
provides a more verbose listing.
@defunx slib:report filename
Writes the report to file @file{filename}.
@example
(slib:report)
@result{}
slib "2c0" on scm "5b1" on unix
(implementation-vicinity) is "/home/jaffer/scm/"
(library-vicinity) is "/home/jaffer/slib/"
(scheme-file-suffix) is ".scm"
loaded *features* :
trace alist qp sort
common-list-functions macro values getopt
compiled
implementation *features* :
bignum complex real rational
inexact vicinity ed getenv
tmpnam abort transcript with-file
ieee-p1178 rev4-report rev4-optional-procedures hash
object-hash delay eval dynamic-wind
multiarg-apply multiarg/and- logical defmacro
string-port source current-time record
rev3-procedures rev2-procedures sun-dl string-case
array dump char-ready? full-continuation
system
implementation *catalog* :
(i/o-extensions compiled "/home/jaffer/scm/ioext.so")
...
@end example
@end defun
@node Input/Output, Legacy, Configuration, Built-in Support
@subsection Input/Output
@noindent
These procedures are provided by all implementations.
@deffn Procedure file-exists? filename
Returns @code{#t} if the specified file exists. Otherwise, returns
@code{#f}. If the underlying implementation does not support this
feature then @code{#f} is always returned.
@end deffn
@deffn Procedure delete-file filename
Deletes the file specified by @var{filename}. If @var{filename} can not
be deleted, @code{#f} is returned. Otherwise, @code{#t} is
returned.@refill
@end deffn
@deffn Procedure tmpnam
Returns a pathname for a file which will likely not be used by any other
process. Successive calls to @code{(tmpnam)} will return different
pathnames.@refill
@end deffn
@deffn Procedure current-error-port
Returns the current port to which diagnostic and error output is
directed.
@end deffn
@deffn Procedure force-output
@deffnx Procedure force-output port
Forces any pending output on @var{port} to be delivered to the output
device and returns an unspecified value. The @var{port} argument may be
omitted, in which case it defaults to the value returned by
@code{(current-output-port)}.@refill
@end deffn
@deffn Procedure output-port-width
@deffnx Procedure output-port-width port
Returns the width of @var{port}, which defaults to
@code{(current-output-port)} if absent. If the width cannot be
determined 79 is returned.@refill
@end deffn
@deffn Procedure output-port-height
@deffnx Procedure output-port-height port
Returns the height of @var{port}, which defaults to
@code{(current-output-port)} if absent. If the height cannot be
determined 24 is returned.@refill
@end deffn
@node Legacy, System, Input/Output, Built-in Support
@subsection Legacy
These procedures are provided by all implementations.
@defun identity x
@var{identity} returns its argument.
Example:
@lisp
(identity 3)
@result{} 3
(identity '(foo bar))
@result{} (foo bar)
(map identity @var{lst})
@equiv{} (copy-list @var{lst})
@end lisp
@end defun
@noindent
The following procedures were present in Scheme until R4RS
(@pxref{Notes, , Language changes ,r4rs, Revised(4) Scheme}).
They are provided by all SLIB implementations.
@defvr Constant t
Derfined as @code{#t}.
@end defvr
@defvr Constant nil
Defined as @code{#f}.
@end defvr
@defun last-pair l
Returns the last pair in the list @var{l}. Example:
@lisp
(last-pair (cons 1 2))
@result{} (1 . 2)
(last-pair '(1 2))
@result{} (2)
@equiv{} (cons 2 '())
@end lisp
@end defun
@node System, , Legacy, Built-in Support
@subsection System
@noindent
These procedures are provided by all implementations.
@deffn Procedure slib:load-source name
Loads a file of Scheme source code from @var{name} with the default
filename extension used in SLIB. For instance if the filename extension
used in SLIB is @file{.scm} then @code{(slib:load-source "foo")} will
load from file @file{foo.scm}.
@end deffn
@deffn Procedure slib:load-compiled name
On implementations which support separtely loadable compiled modules,
loads a file of compiled code from @var{name} with the implementation's
filename extension for compiled code appended.
@end deffn
@deffn Procedure slib:load name
Loads a file of Scheme source or compiled code from @var{name} with the
appropriate suffixes appended. If both source and compiled code are
present with the appropriate names then the implementation will load
just one. It is up to the implementation to choose which one will be
loaded.
If an implementation does not support compiled code then
@code{slib:load} will be identical to @code{slib:load-source}.
@end deffn
@deffn Procedure slib:eval obj
@code{eval} returns the value of @var{obj} evaluated in the current top
level environment.@refill
@end deffn
@deffn Procedure slib:eval-load filename eval
@var{filename} should be a string. If filename names an existing file,
the Scheme source code expressions and definitions are read from the
file and @var{eval} called with them sequentially. The
@code{slib:eval-load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
@deffn Procedure slib:warn arg1 arg2 @dots{}
Outputs a warning message containing the arguments.
@end deffn
@deffn Procedure slib:error arg1 arg2 @dots{}
Outputs an error message containing the arguments, aborts evaluation of
the current form and responds in a system dependent way to the error.
Typical responses are to abort the program or to enter a read-eval-print
loop.@refill
@end deffn
@deffn Procedure slib:exit n
@deffnx Procedure slib:exit
Exits from the Scheme session returning status @var{n} to the system.
If @var{n} is omitted or @code{#t}, a success status is returned to the
system (if possible). If @var{n} is @code{#f} a failure is returned to
the system (if possible). If @var{n} is an integer, then @var{n} is
returned to the system (if possible). If the Scheme session cannot exit
an unspecified value is returned from @code{slib:exit}.
@end deffn
@node About this manual, , Built-in Support, The Library System
@section About this manual
@itemize @bullet
@item
Entries that are labeled as Functions are called for their return
values. Entries that are labeled as Procedures are called primarily for
their side effects.
@item
Examples in this text were produced using the @code{scm} Scheme
implementation.
@item
At the beginning of each section, there is a line that looks like
@ftindex feature
@code{(require 'feature)}. Include this line in your code prior to
using the package.
@end itemize
@node Scheme Syntax Extension Packages, Textual Conversion Packages, The Library System, Top
@chapter Scheme Syntax Extension Packages
@menu
* Defmacro:: Supported by all implementations
* R4RS Macros:: 'macro
* Macro by Example:: 'macro-by-example
* Macros That Work:: 'macros-that-work
* Syntactic Closures:: 'syntactic-closures
* Syntax-Case Macros:: 'syntax-case
Syntax extensions (macros) included with SLIB. Also @xref{Structures}.
* Fluid-Let:: 'fluid-let
* Yasos:: 'yasos, 'oop, 'collect
@end menu
@node Defmacro, R4RS Macros, Scheme Syntax Extension Packages, Scheme Syntax Extension Packages
@section Defmacro
Defmacros are supported by all implementations.
@c See also @code{gentemp}, in @ref{Macros}.
@defun gentemp
Returns a new (interned) symbol each time it is called. The symbol
names are implementation-dependent
@lisp
(gentemp) @result{} scm:G0
(gentemp) @result{} scm:G1
@end lisp
@end defun
@defun defmacro:eval e
Returns the @code{slib:eval} of expanding all defmacros in scheme
expression @var{e}.
@end defun
@defun defmacro:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{defmacro:load} procedure reads Scheme source code expressions
and definitions from the file and evaluates them sequentially. These
source code expressions and definitions may contain defmacro
definitions. The @code{macro:load} procedure does not affect the values
returned by @code{current-input-port} and
@code{current-output-port}.@refill
@end defun
@defun defmacro? sym
Returns @code{#t} if @var{sym} has been defined by @code{defmacro},
@code{#f} otherwise.
@end defun
@defun macroexpand-1 form
@defunx macroexpand form
If @var{form} is a macro call, @code{macroexpand-1} will expand the
macro call once and return it. A @var{form} is considered to be a macro
call only if it is a cons whose @code{car} is a symbol for which a
@code{defmacr} has been defined.
@code{macroexpand} is similar to @code{macroexpand-1}, but repeatedly
expands @var{form} until it is no longer a macro call.
@end defun
@defmac defmacro name lambda-list form @dots{}
When encountered by @code{defmacro:eval}, @code{defmacro:macroexpand*},
or @code{defmacro:load} defines a new macro which will henceforth be
expanded when encountered by @code{defmacro:eval},
@code{defmacro:macroexpand*}, or @code{defmacro:load}.
@end defmac
@subsection Defmacroexpand
@code{(require 'defmacroexpand)}
@ftindex defmacroexpand
@defun defmacro:expand* e
Returns the result of expanding all defmacros in scheme expression
@var{e}.
@end defun
@node R4RS Macros, Macro by Example, Defmacro, Scheme Syntax Extension Packages
@section R4RS Macros
@code{(require 'macro)} is the appropriate call if you want R4RS
@ftindex macro
high-level macros but don't care about the low level implementation. If
an SLIB R4RS macro implementation is already loaded it will be used.
Otherwise, one of the R4RS macros implemetations is loaded.
The SLIB R4RS macro implementations support the following uniform
interface:
@defun macro:expand sexpression
Takes an R4RS expression, macro-expands it, and returns the result of
the macro expansion.
@end defun
@defun macro:eval sexpression
Takes an R4RS expression, macro-expands it, evals the result of the
macro expansion, and returns the result of the evaluation.
@end defun
@deffn Procedure macro:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{macro:load} procedure reads Scheme source code expressions and
definitions from the file and evaluates them sequentially. These source
code expressions and definitions may contain macro definitions. The
@code{macro:load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
@node Macro by Example, Macros That Work, R4RS Macros, Scheme Syntax Extension Packages
@section Macro by Example
@code{(require 'macro-by-example)}
@ftindex macro-by-example
A vanilla implementation of @cite{Macro by Example} (Eugene Kohlbecker,
R4RS) by Dorai Sitaram, (dorai@@cs.rice.edu) using @code{defmacro}.
@itemize @bullet
@item
generating hygienic global @code{define-syntax} Macro-by-Example macros
@strong{cheaply}.
@item
can define macros which use @code{...}.
@item
needn't worry about a lexical variable in a macro definition
clashing with a variable from the macro use context
@item
don't suffer the overhead of redefining the repl if @code{defmacro}
natively supported (most implementations)
@end itemize
@subsection Caveat
These macros are not referentially transparent (@pxref{Macros, , ,r4rs,
Revised(4) Scheme}). Lexically scoped macros (i.e., @code{let-syntax}
and @code{letrec-syntax}) are not supported. In any case, the problem
of referential transparency gains poignancy only when @code{let-syntax}
and @code{letrec-syntax} are used. So you will not be courting
large-scale disaster unless you're using system-function names as local
variables with unintuitive bindings that the macro can't use. However,
if you must have the full @cite{r4rs} macro functionality, look to the
more featureful (but also more expensive) versions of syntax-rules
available in slib @ref{Macros That Work}, @ref{Syntactic Closures}, and
@ref{Syntax-Case Macros}.
@defmac define-syntax keyword transformer-spec
The @var{keyword} is an identifier, and the @var{transformer-spec}
should be an instance of @code{syntax-rules}.
The top-level syntactic environment is extended by binding the
@var{keyword} to the specified transformer.
@example
(define-syntax let*
(syntax-rules ()
((let* () body1 body2 ...)
(let () body1 body2 ...))
((let* ((name1 val1) (name2 val2) ...)
body1 body2 ...)
(let ((name1 val1))
(let* (( name2 val2) ...)
body1 body2 ...)))))
@end example
@end defmac
@defmac syntax-rules literals syntax-rule @dots{}
@var{literals} is a list of identifiers, and each @var{syntax-rule}
should be of the form
@code{(@var{pattern} @var{template})}
where the @var{pattern} and @var{template} are as in the grammar above.
An instance of @code{syntax-rules} produces a new macro transformer by
specifying a sequence of hygienic rewrite rules. A use of a macro whose
keyword is associated with a transformer specified by
@code{syntax-rules} is matched against the patterns contained in the
@var{syntax-rule}s, beginning with the leftmost @var{syntax-rule}.
When a match is found, the macro use is trancribed hygienically
according to the template.
Each pattern begins with the keyword for the macro. This keyword is not
involved in the matching and is not considered a pattern variable or
literal identifier.
@end defmac
@node Macros That Work, Syntactic Closures, Macro by Example, Scheme Syntax Extension Packages
@section Macros That Work
@code{(require 'macros-that-work)}
@ftindex macros-that-work
@cite{Macros That Work} differs from the other R4RS macro
implementations in that it does not expand derived expression types to
primitive expression types.
@defun macro:expand expression
@defunx macwork:expand expression
Takes an R4RS expression, macro-expands it, and returns the result of
the macro expansion.
@end defun
@defun macro:eval expression
@defunx macwork:eval expression
@code{macro:eval} returns the value of @var{expression} in the current
top level environment. @var{expression} can contain macro definitions.
Side effects of @var{expression} will affect the top level
environment.@refill
@end defun
@deffn Procedure macro:load filename
@deffnx Procedure macwork:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{macro:load} procedure reads Scheme source code expressions and
definitions from the file and evaluates them sequentially. These source
code expressions and definitions may contain macro definitions. The
@code{macro:load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
References:
The @cite{Revised^4 Report on the Algorithmic Language Scheme} Clinger
and Rees [editors]. To appear in LISP Pointers. Also available as a
technical report from the University of Oregon, MIT AI Lab, and
Cornell.@refill
@center Macros That Work. Clinger and Rees. POPL '91.
The supported syntax differs from the R4RS in that vectors are allowed
as patterns and as templates and are not allowed as pattern or template
data.
@example
transformer spec @expansion{} (syntax-rules literals rules)
rules @expansion{} ()
| (rule . rules)
rule @expansion{} (pattern template)
pattern @expansion{} pattern_var ; a symbol not in literals
| symbol ; a symbol in literals
| ()
| (pattern . pattern)
| (ellipsis_pattern)
| #(pattern*) ; extends R4RS
| #(pattern* ellipsis_pattern) ; extends R4RS
| pattern_datum
template @expansion{} pattern_var
| symbol
| ()
| (template2 . template2)
| #(template*) ; extends R4RS
| pattern_datum
template2 @expansion{} template
| ellipsis_template
pattern_datum @expansion{} string ; no vector
| character
| boolean
| number
ellipsis_pattern @expansion{} pattern ...
ellipsis_template @expansion{} template ...
pattern_var @expansion{} symbol ; not in literals
literals @expansion{} ()
| (symbol . literals)
@end example
@subsection Definitions
@table @asis
@item Scope of an ellipsis
Within a pattern or template, the scope of an ellipsis (@code{...}) is
the pattern or template that appears to its left.
@item Rank of a pattern variable
The rank of a pattern variable is the number of ellipses within whose
scope it appears in the pattern.
@item Rank of a subtemplate
The rank of a subtemplate is the number of ellipses within whose scope
it appears in the template.
@item Template rank of an occurrence of a pattern variable
The template rank of an occurrence of a pattern variable within a
template is the rank of that occurrence, viewed as a subtemplate.
@item Variables bound by a pattern
The variables bound by a pattern are the pattern variables that appear
within it.
@item Referenced variables of a subtemplate
The referenced variables of a subtemplate are the pattern variables that
appear within it.
@item Variables opened by an ellipsis template
The variables opened by an ellipsis template are the referenced pattern
variables whose rank is greater than the rank of the ellipsis template.
@end table
@subsection Restrictions
No pattern variable appears more than once within a pattern.
For every occurrence of a pattern variable within a template, the
template rank of the occurrence must be greater than or equal to the
pattern variable's rank.
Every ellipsis template must open at least one variable.
For every ellipsis template, the variables opened by an ellipsis
template must all be bound to sequences of the same length.
The compiled form of a @var{rule} is
@example
rule @expansion{} (pattern template inserted)
pattern @expansion{} pattern_var
| symbol
| ()
| (pattern . pattern)
| ellipsis_pattern
| #(pattern)
| pattern_datum
template @expansion{} pattern_var
| symbol
| ()
| (template2 . template2)
| #(pattern)
| pattern_datum
template2 @expansion{} template
| ellipsis_template
pattern_datum @expansion{} string
| character
| boolean
| number
pattern_var @expansion{} #(V symbol rank)
ellipsis_pattern @expansion{} #(E pattern pattern_vars)
ellipsis_template @expansion{} #(E template pattern_vars)
inserted @expansion{} ()
| (symbol . inserted)
pattern_vars @expansion{} ()
| (pattern_var . pattern_vars)
rank @expansion{} exact non-negative integer
@end example
where V and E are unforgeable values.
The pattern variables associated with an ellipsis pattern are the
variables bound by the pattern, and the pattern variables associated
with an ellipsis template are the variables opened by the ellipsis
template.
If the template contains a big chunk that contains no pattern variables
or inserted identifiers, then the big chunk will be copied
unnecessarily. That shouldn't matter very often.
@node Syntactic Closures, Syntax-Case Macros, Macros That Work, Scheme Syntax Extension Packages
@section Syntactic Closures
@code{(require 'syntactic-closures)}
@ftindex syntactic-closures
@defun macro:expand expression
@defunx synclo:expand expression
Returns scheme code with the macros and derived expression types of
@var{expression} expanded to primitive expression types.@refill
@end defun
@defun macro:eval expression
@defunx synclo:eval expression
@code{macro:eval} returns the value of @var{expression} in the current
top level environment. @var{expression} can contain macro definitions.
Side effects of @var{expression} will affect the top level
environment.@refill
@end defun
@deffn Procedure macro:load filename
@deffnx Procedure synclo:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{macro:load} procedure reads Scheme source code expressions and
definitions from the file and evaluates them sequentially. These
source code expressions and definitions may contain macro definitions.
The @code{macro:load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
@subsection Syntactic Closure Macro Facility
@center A Syntactic Closures Macro Facility
@center by Chris Hanson
@center 9 November 1991
This document describes @dfn{syntactic closures}, a low-level macro
facility for the Scheme programming language. The facility is an
alternative to the low-level macro facility described in the
@cite{Revised^4 Report on Scheme.} This document is an addendum to that
report.
The syntactic closures facility extends the BNF rule for
@var{transformer spec} to allow a new keyword that introduces a
low-level macro transformer:@refill
@example
@var{transformer spec} := (transformer @var{expression})
@end example
Additionally, the following procedures are added:
@lisp
make-syntactic-closure
capture-syntactic-environment
identifier?
identifier=?
@end lisp
The description of the facility is divided into three parts. The first
part defines basic terminology. The second part describes how macro
transformers are defined. The third part describes the use of
@dfn{identifiers}, which extend the syntactic closure mechanism to be
compatible with @code{syntax-rules}.@refill
@subsubsection Terminology
This section defines the concepts and data types used by the syntactic
closures facility.
@itemize @bullet
@item @dfn{Forms} are the syntactic entities out of which programs are
recursively constructed. A form is any expression, any definition, any
syntactic keyword, or any syntactic closure. The variable name that
appears in a @code{set!} special form is also a form. Examples of
forms:@refill
@lisp
17
#t
car
(+ x 4)
(lambda (x) x)
(define pi 3.14159)
if
define
@end lisp
@item An @dfn{alias} is an alternate name for a given symbol. It can
appear anywhere in a form that the symbol could be used, and when quoted
it is replaced by the symbol; however, it does not satisfy the predicate
@code{symbol?}. Macro transformers rarely distinguish symbols from
aliases, referring to both as identifiers.@refill
@item A @dfn{syntactic} environment maps identifiers to their
meanings. More precisely, it determines whether an identifier is a
syntactic keyword or a variable. If it is a keyword, the meaning is an
interpretation for the form in which that keyword appears. If it is a
variable, the meaning identifies which binding of that variable is
referenced. In short, syntactic environments contain all of the
contextual information necessary for interpreting the meaning of a
particular form.@refill
@item A @dfn{syntactic closure} consists of a form, a syntactic
environment, and a list of identifiers. All identifiers in the form
take their meaning from the syntactic environment, except those in the
given list. The identifiers in the list are to have their meanings
determined later. A syntactic closure may be used in any context in
which its form could have been used. Since a syntactic closure is also
a form, it may not be used in contexts where a form would be illegal.
For example, a form may not appear as a clause in the cond special form.
A syntactic closure appearing in a quoted structure is replaced by its
form.@refill
@end itemize
@subsubsection Transformer Definition
This section describes the @code{transformer} special form and the
procedures @code{make-syntactic-closure} and
@code{capture-syntactic-environment}.@refill
@deffn Syntax transformer expression
Syntax: It is an error if this syntax occurs except as a
@var{transformer spec}.@refill
Semantics: The @var{expression} is evaluated in the standard transformer
environment to yield a macro transformer as described below. This macro
transformer is bound to a macro keyword by the special form in which the
@code{transformer} expression appears (for example,
@code{let-syntax}).@refill
A @dfn{macro transformer} is a procedure that takes two arguments, a
form and a syntactic environment, and returns a new form. The first
argument, the @dfn{input form}, is the form in which the macro keyword
occurred. The second argument, the @dfn{usage environment}, is the
syntactic environment in which the input form occurred. The result of
the transformer, the @dfn{output form}, is automatically closed in the
@dfn{transformer environment}, which is the syntactic environment in
which the @code{transformer} expression occurred.@refill
For example, here is a definition of a push macro using
@code{syntax-rules}:@refill
@lisp
(define-syntax push
(syntax-rules ()
((push item list)
(set! list (cons item list)))))
@end lisp
Here is an equivalent definition using @code{transformer}:
@lisp
(define-syntax push
(transformer
(lambda (exp env)
(let ((item
(make-syntactic-closure env '() (cadr exp)))
(list
(make-syntactic-closure env '() (caddr exp))))
`(set! ,list (cons ,item ,list))))))
@end lisp
In this example, the identifiers @code{set!} and @code{cons} are closed
in the transformer environment, and thus will not be affected by the
meanings of those identifiers in the usage environment
@code{env}.@refill
Some macros may be non-hygienic by design. For example, the following
defines a loop macro that implicitly binds @code{exit} to an escape
procedure. The binding of @code{exit} is intended to capture free
references to @code{exit} in the body of the loop, so @code{exit} must
be left free when the body is closed:@refill
@lisp
(define-syntax loop
(transformer
(lambda (exp env)
(let ((body (cdr exp)))
`(call-with-current-continuation
(lambda (exit)
(let f ()
,@@(map (lambda (exp)
(make-syntactic-closure env '(exit)
exp))
body)
(f))))))))
@end lisp
To assign meanings to the identifiers in a form, use
@code{make-syntactic-closure} to close the form in a syntactic
environment.@refill
@end deffn
@defun make-syntactic-closure environment free-names form
@var{environment} must be a syntactic environment, @var{free-names} must
be a list of identifiers, and @var{form} must be a form.
@code{make-syntactic-closure} constructs and returns a syntactic closure
of @var{form} in @var{environment}, which can be used anywhere that
@var{form} could have been used. All the identifiers used in
@var{form}, except those explicitly excepted by @var{free-names}, obtain
their meanings from @var{environment}.@refill
Here is an example where @var{free-names} is something other than the
empty list. It is instructive to compare the use of @var{free-names} in
this example with its use in the @code{loop} example above: the examples
are similar except for the source of the identifier being left
free.@refill
@lisp
(define-syntax let1
(transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(exp (cadddr exp)))
`((lambda (,id)
,(make-syntactic-closure env (list id) exp))
,(make-syntactic-closure env '() init))))))
@end lisp
@code{let1} is a simplified version of @code{let} that only binds a
single identifier, and whose body consists of a single expression. When
the body expression is syntactically closed in its original syntactic
environment, the identifier that is to be bound by @code{let1} must be
left free, so that it can be properly captured by the @code{lambda} in
the output form.@refill
To obtain a syntactic environment other than the usage environment, use
@code{capture-syntactic-environment}.@refill
@end defun
@defun capture-syntactic-environment procedure
@code{capture-syntactic-environment} returns a form that will, when
transformed, call @var{procedure} on the current syntactic environment.
@var{procedure} should compute and return a new form to be transformed,
in that same syntactic environment, in place of the form.@refill
An example will make this clear. Suppose we wanted to define a simple
@code{loop-until} keyword equivalent to@refill
@lisp
(define-syntax loop-until
(syntax-rules ()
((loop-until id init test return step)
(letrec ((loop
(lambda (id)
(if test return (loop step)))))
(loop init)))))
@end lisp
The following attempt at defining @code{loop-until} has a subtle bug:
@lisp
(define-syntax loop-until
(transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(test (cadddr exp))
(return (cadddr (cdr exp)))
(step (cadddr (cddr exp)))
(close
(lambda (exp free)
(make-syntactic-closure env free exp))))
`(letrec ((loop
(lambda (,id)
(if ,(close test (list id))
,(close return (list id))
(loop ,(close step (list id)))))))
(loop ,(close init '())))))))
@end lisp
This definition appears to take all of the proper precautions to prevent
unintended captures. It carefully closes the subexpressions in their
original syntactic environment and it leaves the @code{id} identifier
free in the @code{test}, @code{return}, and @code{step} expressions, so
that it will be captured by the binding introduced by the @code{lambda}
expression. Unfortunately it uses the identifiers @code{if} and
@code{loop} within that @code{lambda} expression, so if the user of
@code{loop-until} just happens to use, say, @code{if} for the
identifier, it will be inadvertently captured.@refill
The syntactic environment that @code{if} and @code{loop} want to be
exposed to is the one just outside the @code{lambda} expression: before
the user's identifier is added to the syntactic environment, but after
the identifier loop has been added.
@code{capture-syntactic-environment} captures exactly that environment
as follows:@refill
@lisp
(define-syntax loop-until
(transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(test (cadddr exp))
(return (cadddr (cdr exp)))
(step (cadddr (cddr exp)))
(close
(lambda (exp free)
(make-syntactic-closure env free exp))))
`(letrec ((loop
,(capture-syntactic-environment
(lambda (env)
`(lambda (,id)
(,(make-syntactic-closure env '() `if)
,(close test (list id))
,(close return (list id))
(,(make-syntactic-closure env '()
`loop)
,(close step (list id)))))))))
(loop ,(close init '())))))))
@end lisp
In this case, having captured the desired syntactic environment, it is
convenient to construct syntactic closures of the identifiers @code{if}
and the @code{loop} and use them in the body of the
@code{lambda}.@refill
A common use of @code{capture-syntactic-environment} is to get the
transformer environment of a macro transformer:@refill
@lisp
(transformer
(lambda (exp env)
(capture-syntactic-environment
(lambda (transformer-env)
...))))
@end lisp
@end defun
@subsubsection Identifiers
This section describes the procedures that create and manipulate
identifiers. Previous syntactic closure proposals did not have an
identifier data type -- they just used symbols. The identifier data
type extends the syntactic closures facility to be compatible with the
high-level @code{syntax-rules} facility.@refill
As discussed earlier, an identifier is either a symbol or an
@dfn{alias}. An alias is implemented as a syntactic closure whose
@dfn{form} is an identifier:@refill
@lisp
(make-syntactic-closure env '() 'a)
@result{} an @dfn{alias}
@end lisp
Aliases are implemented as syntactic closures because they behave just
like syntactic closures most of the time. The difference is that an
alias may be bound to a new value (for example by @code{lambda} or
@code{let-syntax}); other syntactic closures may not be used this way.
If an alias is bound, then within the scope of that binding it is looked
up in the syntactic environment just like any other identifier.@refill
Aliases are used in the implementation of the high-level facility
@code{syntax-rules}. A macro transformer created by @code{syntax-rules}
uses a template to generate its output form, substituting subforms of
the input form into the template. In a syntactic closures
implementation, all of the symbols in the template are replaced by
aliases closed in the transformer environment, while the output form
itself is closed in the usage environment. This guarantees that the
macro transformation is hygienic, without requiring the transformer to
know the syntactic roles of the substituted input subforms.
@defun identifier? object
Returns @code{#t} if @var{object} is an identifier, otherwise returns
@code{#f}. Examples:@refill
@lisp
(identifier? 'a)
@result{} #t
(identifier? (make-syntactic-closure env '() 'a))
@result{} #t
(identifier? "a")
@result{} #f
(identifier? #\a)
@result{} #f
(identifier? 97)
@result{} #f
(identifier? #f)
@result{} #f
(identifier? '(a))
@result{} #f
(identifier? '#(a))
@result{} #f
@end lisp
The predicate @code{eq?} is used to determine if two identifers are
``the same''. Thus @code{eq?} can be used to compare identifiers
exactly as it would be used to compare symbols. Often, though, it is
useful to know whether two identifiers ``mean the same thing''. For
example, the @code{cond} macro uses the symbol @code{else} to identify
the final clause in the conditional. A macro transformer for
@code{cond} cannot just look for the symbol @code{else}, because the
@code{cond} form might be the output of another macro transformer that
replaced the symbol @code{else} with an alias. Instead the transformer
must look for an identifier that ``means the same thing'' in the usage
environment as the symbol @code{else} means in the transformer
environment.@refill
@end defun
@defun identifier=? environment1 identifier1 environment2 identifier2
@var{environment1} and @var{environment2} must be syntactic
environments, and @var{identifier1} and @var{identifier2} must be
identifiers. @code{identifier=?} returns @code{#t} if the meaning of
@var{identifier1} in @var{environment1} is the same as that of
@var{identifier2} in @var{environment2}, otherwise it returns @code{#f}.
Examples:@refill
@lisp
(let-syntax
((foo
(transformer
(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)
(identifier=? transformer-env 'x env 'x)))))))
(list (foo)
(let ((x 3))
(foo))))
@result{} (#t #f)
@end lisp
@lisp
(let-syntax ((bar foo))
(let-syntax
((foo
(transformer
(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)
(identifier=? transformer-env 'foo
env (cadr form))))))))
(list (foo foo)
(foobar))))
@result{} (#f #t)
@end lisp
@end defun
@subsubsection Acknowledgements
The syntactic closures facility was invented by Alan Bawden and Jonathan
Rees. The use of aliases to implement @code{syntax-rules} was invented
by Alan Bawden (who prefers to call them @dfn{synthetic names}). Much
of this proposal is derived from an earlier proposal by Alan
Bawden.@refill
@node Syntax-Case Macros, Fluid-Let, Syntactic Closures, Scheme Syntax Extension Packages
@section Syntax-Case Macros
@code{(require 'syntax-case)}
@ftindex syntax-case
@defun macro:expand expression
@defunx syncase:expand expression
Returns scheme code with the macros and derived expression types of
@var{expression} expanded to primitive expression types.@refill
@end defun
@defun macro:eval expression
@defunx syncase:eval expression
@code{macro:eval} returns the value of @var{expression} in the current
top level environment. @var{expression} can contain macro definitions.
Side effects of @var{expression} will affect the top level
environment.@refill
@end defun
@deffn Procedure macro:load filename
@deffnx Procedure syncase:load filename
@var{filename} should be a string. If filename names an existing file,
the @code{macro:load} procedure reads Scheme source code expressions and
definitions from the file and evaluates them sequentially. These
source code expressions and definitions may contain macro definitions.
The @code{macro:load} procedure does not affect the values returned by
@code{current-input-port} and @code{current-output-port}.@refill
@end deffn
This is version 2.1 of @code{syntax-case}, the low-level macro facility
proposed and implemented by Robert Hieb and R. Kent Dybvig.
This version is further adapted by Harald Hanche-Olsen
<hanche@@imf.unit.no> to make it compatible with, and easily usable
with, SLIB. Mainly, these adaptations consisted of:
@itemize @bullet
@item
Removing white space from @file{expand.pp} to save space in the
distribution. This file is not meant for human readers anyway@dots{}
@item
Removed a couple of Chez scheme dependencies.
@item
Renamed global variables used to minimize the possibility of name
conflicts.
@item
Adding an SLIB-specific initialization file.
@item
Removing a couple extra files, most notably the documentation (but see
below).
@end itemize
If you wish, you can see exactly what changes were done by reading the
shell script in the file @file{syncase.sh}.
The two PostScript files were omitted in order to not burden the SLIB
distribution with them. If you do intend to use @code{syntax-case},
however, you should get these files and print them out on a PostScript
printer. They are available with the original @code{syntax-case}
distribution by anonymous FTP in
@file{cs.indiana.edu:/pub/scheme/syntax-case}.@refill
In order to use syntax-case from an interactive top level, execute:
@lisp
(require 'syntax-case)
@ftindex syntax-case
(require 'repl)
@ftindex repl
(repl:top-level macro:eval)
@end lisp
See the section Repl (@xref{Repl}) for more information.
To check operation of syntax-case get
@file{cs.indiana.edu:/pub/scheme/syntax-case}, and type
@lisp
(require 'syntax-case)
@ftindex syntax-case
(syncase:sanity-check)
@end lisp
Beware that @code{syntax-case} takes a long time to load -- about 20s on
a SPARCstation SLC (with SCM) and about 90s on a Macintosh SE/30 (with
Gambit).
@subsection Notes
All R4RS syntactic forms are defined, including @code{delay}. Along
with @code{delay} are simple definitions for @code{make-promise} (into
which @code{delay} expressions expand) and @code{force}.@refill
@code{syntax-rules} and @code{with-syntax} (described in @cite{TR356})
are defined.@refill
@code{syntax-case} is actually defined as a macro that expands into
calls to the procedure @code{syntax-dispatch} and the core form
@code{syntax-lambda}; do not redefine these names.@refill
Several other top-level bindings not documented in TR356 are created:
@itemize @bullet
@item the ``hooks'' in @file{hooks.ss}
@item the @code{build-} procedures in @file{output.ss}
@item @code{expand-syntax} (the expander)
@end itemize
The syntax of define has been extended to allow @code{(define @var{id})},
which assigns @var{id} to some unspecified value.@refill
We have attempted to maintain R4RS compatibility where possible. The
incompatibilities should be confined to @file{hooks.ss}. Please let us
know if there is some incompatibility that is not flagged as such.@refill
Send bug reports, comments, suggestions, and questions to Kent Dybvig
(dyb@@iuvax.cs.indiana.edu).
@subsection Note from maintainer
Included with the @code{syntax-case} files was @file{structure.scm}
which defines a macro @code{define-structure}. There is no
documentation for this macro and it is not used by any code in SLIB.
@node Fluid-Let, Yasos, Syntax-Case Macros, Scheme Syntax Extension Packages
@section Fluid-Let
@code{(require 'fluid-let)}
@ftindex fluid-let
@deffn Syntax fluid-let @code{(@var{bindings} @dots{})} @var{forms}@dots{}
@end deffn
@lisp
(fluid-let ((@var{variable} @var{init}) @dots{})
@var{expression} @var{expression} @dots{})
@end lisp
The @var{init}s are evaluated in the current environment (in some
unspecified order), the current values of the @var{variable}s are saved,
the results are assigned to the @var{variable}s, the @var{expression}s
are evaluated sequentially in the current environment, the
@var{variable}s are restored to their original values, and the value of
the last @var{expression} is returned.@refill
The syntax of this special form is similar to that of @code{let}, but
@code{fluid-let} temporarily rebinds existing @var{variable}s. Unlike
@code{let}, @code{fluid-let} creates no new bindings; instead it
@emph{assigns} the values of each @var{init} to the binding (determined
by the rules of lexical scoping) of its corresponding
@var{variable}.@refill
@node Yasos, , Fluid-Let, Scheme Syntax Extension Packages
@section Yasos
@c Much of the documentation in this section was written by Dave Love
@c (d.love@dl.ac.uk) -- don't blame Ken Dickey for its faults.
@c but we can blame him for not writing it!
@code{(require 'oop)} or @code{(require 'yasos)}
@ftindex oop
@ftindex yasos
`Yet Another Scheme Object System' is a simple object system for Scheme
based on the paper by Norman Adams and Jonathan Rees: @cite{Object
Oriented Programming in Scheme}, Proceedings of the 1988 ACM Conference
on LISP and Functional Programming, July 1988 [ACM #552880].@refill
Another reference is:
Ken Dickey.
@ifset html
<A HREF="ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/swob.txt">
@end ifset
Scheming with Objects
@ifset html
</A>
@end ifset
@cite{AI Expert} Volume 7, Number 10 (October 1992), pp. 24-33.
@menu
* Yasos terms:: Definitions and disclaimer.
* Yasos interface:: The Yasos macros and procedures.
* Setters:: Dylan-like setters in Yasos.
* Yasos examples:: Usage of Yasos and setters.
@end menu
@node Yasos terms, Yasos interface, Yasos, Yasos
@subsection Terms
@table @asis
@item @dfn{Object}
Any Scheme data object.
@item @dfn{Instance}
An instance of the OO system; an @dfn{object}.
@item @dfn{Operation}
A @var{method}.
@end table
@table @emph
@item Notes:
The object system supports multiple inheritance. An instance can
inherit from 0 or more ancestors. In the case of multiple inherited
operations with the same identity, the operation used is that from the
first ancestor which contains it (in the ancestor @code{let}). An
operation may be applied to any Scheme data object---not just instances.
As code which creates instances is just code, there are no @dfn{classes}
and no meta-@var{anything}. Method dispatch is by a procedure call a la
CLOS rather than by @code{send} syntax a la Smalltalk.@refill
@item Disclaimer:
There are a number of optimizations which can be made. This
implementation is expository (although performance should be quite
reasonable). See the L&FP paper for some suggestions.@refill
@end table
@node Yasos interface, Setters, Yasos terms, Yasos
@subsection Interface
@deffn Syntax define-operation @code{(}opname self arg @dots{}@code{)} @var{default-body}
Defines a default behavior for data objects which don't handle the
operation @var{opname}. The default default behavior (for an empty
@var{default-body}) is to generate an error.@refill
@end deffn
@deffn Syntax define-predicate opname?
Defines a predicate @var{opname?}, usually used for determining the
@dfn{type} of an object, such that @code{(@var{opname?} @var{object})}
returns @code{#t} if @var{object} has an operation @var{opname?} and
@code{#f} otherwise.@refill
@end deffn
@deffn Syntax object @code{((@var{name} @var{self} @var{arg} @dots{}) @var{body})} @dots{}
Returns an object (an instance of the object system) with operations.
Invoking @code{(@var{name} @var{object} @var{arg} @dots{}} executes the
@var{body} of the @var{object} with @var{self} bound to @var{object} and
with argument(s) @var{arg}@dots{}.@refill
@end deffn
@deffn Syntax object-with-ancestors @code{((}ancestor1 init1@code{)} @dots{}@code{)} operation @dots{}
A @code{let}-like form of @code{object} for multiple inheritance. It
returns an object inheriting the behaviour of @var{ancestor1} etc. An
operation will be invoked in an ancestor if the object itself does not
provide such a method. In the case of multiple inherited operations
with the same identity, the operation used is the one found in the first
ancestor in the ancestor list.
@end deffn
@deffn Syntax operate-as component operation self arg @dots{}
Used in an operation definition (of @var{self}) to invoke the
@var{operation} in an ancestor @var{component} but maintain the object's
identity. Also known as ``send-to-super''.@refill
@end deffn
@deffn Procedure print obj port
A default @code{print} operation is provided which is just @code{(format
@var{port} @var{obj})} (@xref{Format}) for non-instances and prints
@var{obj} preceded by @samp{#<INSTANCE>} for instances.
@end deffn
@defun size obj
The default method returns the number of elements in @var{obj} if it is
a vector, string or list, @code{2} for a pair, @code{1} for a character
and by default id an error otherwise. Objects such as collections
(@xref{Collections}) may override the default in an obvious way.@refill
@end defun
@node Setters, Yasos examples, Yasos interface, Yasos
@subsection Setters
@dfn{Setters} implement @dfn{generalized locations} for objects
associated with some sort of mutable state. A @dfn{getter} operation
retrieves a value from a generalized location and the corresponding
setter operation stores a value into the location. Only the getter is
named -- the setter is specified by a procedure call as below. (Dylan
uses special syntax.) Typically, but not necessarily, getters are
access operations to extract values from Yasos objects (@xref{Yasos}).
Several setters are predefined, corresponding to getters @code{car},
@code{cdr}, @code{string-ref} and @code{vector-ref} e.g., @code{(setter
car)} is equivalent to @code{set-car!}.
This implementation of setters is similar to that in Dylan(TM)
(@cite{Dylan: An object-oriented dynamic language}, Apple Computer
Eastern Research and Technology). Common LISP provides similar
facilities through @code{setf}.
@defun setter getter
Returns the setter for the procedure @var{getter}. E.g., since
@code{string-ref} is the getter corresponding to a setter which is
actually @code{string-set!}:
@example
(define foo "foo")
((setter string-ref) foo 0 #\F) ; set element 0 of foo
foo @result{} "Foo"
@end example
@end defun
@deffn Syntax set place new-value
If @var{place} is a variable name, @code{set} is equivalent to
@code{set!}. Otherwise, @var{place} must have the form of a procedure
call, where the procedure name refers to a getter and the call indicates
an accessible generalized location, i.e., the call would return a value.
The return value of @code{set} is usually unspecified unless used with a
setter whose definition guarantees to return a useful value.
@example
(set (string-ref foo 2) #\O) ; generalized location with getter
foo @result{} "FoO"
(set foo "foo") ; like set!
foo @result{} "foo"
@end example
@end deffn
@deffn Procedure add-setter getter setter
Add procedures @var{getter} and @var{setter} to the (inaccessible) list
of valid setter/getter pairs. @var{setter} implements the store
operation corresponding to the @var{getter} access operation for the
relevant state. The return value is unspecified.
@end deffn
@deffn Procedure remove-setter-for getter
Removes the setter corresponding to the specified @var{getter} from the
list of valid setters. The return value is unspecified.
@end deffn
@deffn Syntax define-access-operation getter-name
Shorthand for a Yasos @code{define-operation} defining an operation
@var{getter-name} that objects may support to return the value of some
mutable state. The default operation is to signal an error. The return
value is unspecified.
@end deffn
@node Yasos examples, , Setters, Yasos
@subsection Examples
@lisp
;;; These definitions for PRINT and SIZE are already supplied by
(require 'yasos)
(define-operation (print obj port)
(format port
(if (instance? obj) "#<instance>" "~s")
obj))
(define-operation (size obj)
(cond
((vector? obj) (vector-length obj))
((list? obj) (length obj))
((pair? obj) 2)
((string? obj) (string-length obj))
((char? obj) 1)
(else
(error "Operation not supported: size" obj))))
(define-predicate cell?)
(define-operation (fetch obj))
(define-operation (store! obj newValue))
(define (make-cell value)
(object
((cell? self) #t)
((fetch self) value)
((store! self newValue)
(set! value newValue)
newValue)
((size self) 1)
((print self port)
(format port "#<Cell: ~s>" (fetch self)))))
(define-operation (discard obj value)
(format #t "Discarding ~s~%" value))
(define (make-filtered-cell value filter)
(object-with-ancestors ((cell (make-cell value)))
((store! self newValue)
(if (filter newValue)
(store! cell newValue)
(discard self newValue)))))
(define-predicate array?)
(define-operation (array-ref array index))
(define-operation (array-set! array index value))
(define (make-array num-slots)
(let ((anArray (make-vector num-slots)))
(object
((array? self) #t)
((size self) num-slots)
((array-ref self index) (vector-ref anArray index))
((array-set! self index newValue) (vector-set! anArray index newValue))
((print self port) (format port "#<Array ~s>" (size self))))))
(define-operation (position obj))
(define-operation (discarded-value obj))
(define (make-cell-with-history value filter size)
(let ((pos 0) (most-recent-discard #f))
(object-with-ancestors
((cell (make-filtered-call value filter))
(sequence (make-array size)))
((array? self) #f)
((position self) pos)
((store! self newValue)
(operate-as cell store! self newValue)
(array-set! self pos newValue)
(set! pos (+ pos 1)))
((discard self value)
(set! most-recent-discard value))
((discarded-value self) most-recent-discard)
((print self port)
(format port "#<Cell-with-history ~s>" (fetch self))))))
(define-access-operation fetch)
(add-setter fetch store!)
(define foo (make-cell 1))
(print foo #f)
@result{} "#<Cell: 1>"
(set (fetch foo) 2)
@result{}
(print foo #f)
@result{} "#<Cell: 2>"
(fetch foo)
@result{} 2
@end lisp
@node Textual Conversion Packages, Mathematical Packages, Scheme Syntax Extension Packages, Top
@chapter Textual Conversion Packages
@menu
* Precedence Parsing::
* Format:: Common-Lisp Format
* Standard Formatted I/O:: Posix printf and scanf
* Program Arguments:: Commands and Options.
* Printing Scheme:: Nicely
* Time and Date::
* Vector Graphics::
@end menu
@node Precedence Parsing, Format, Textual Conversion Packages, Textual Conversion Packages
@section Precedence Parsing
@code{(require 'precedence-parse)} or @code{(require 'parse)}
@ftindex parse
@ftindex precedence
@noindent
This package implements:
@itemize @bullet
@item
a Pratt style precedence parser;
@item
a @dfn{tokenizer} which congeals tokens according to assigned classes of
constituent characters;
@item
procedures giving direct control of parser rulesets;
@item
procedures for higher level specification of rulesets.
@end itemize
@menu
* Precedence Parsing Overview::
* Ruleset Definition and Use::
* Token definition::
* Nud and Led Definition::
* Grammar Rule Definition::
@end menu
@node Precedence Parsing Overview, Ruleset Definition and Use, Precedence Parsing, Precedence Parsing
@subsection Precedence Parsing Overview
@noindent
This package offers improvements over previous parsers.
@itemize @bullet
@item
Common computer language constructs are concisely specified.
@item
Grammars can be changed dynamically. Operators can be assigned
different meanings within a lexical context.
@item
Rulesets don't need compilation. Grammars can be changed incrementally.
@item
Operator precedence is specified by integers.
@item
All possibilities of bad input are handled @footnote{How do I know this?
I parsed 250kbyte of random input (an e-mail file) with a non-trivial
grammar utilizing all constructs.} and return as much structure as was
parsed when the error occured; The symbol @code{?} is substituted for
missing input.
@end itemize
@noindent
Here are the higher-level syntax types and an example of each.
Precedence considerations are omitted for clarity. @xref{Grammar
Rule Definition} for full details.
@deftp Grammar nofix bye exit
@example
bye
@end example
calls the function @code{exit} with no arguments.
@end deftp
@deftp Grammar prefix - negate
@example
- 42
@end example
Calls the function @code{negate} with the argument @code{42}.
@end deftp
@deftp Grammar infix - difference
@example
x - y
@end example
Calls the function @code{difference} with arguments @code{x} and @code{y}.
@end deftp
@deftp Grammar nary + sum
@example
x + y + z
@end example
Calls the function @code{sum} with arguments @code{x}, @code{y}, and
@code{y}.
@end deftp
@deftp Grammar postfix ! factorial
@example
5 !
@end example
Calls the function @code{factorial} with the argument @code{5}.
@end deftp
@deftp Grammar prestfix set set!
@example
set foo bar
@end example
Calls the function @code{set!} with the arguments @code{foo} and
@code{bar}.
@end deftp
@deftp Grammar commentfix /* */
@example
/* almost any text here */
@end example
Ignores the comment delimited by @code{/*} and @code{*/}.
@end deftp
@deftp Grammar matchfix @{ list @}
@example
@{0, 1, 2@}
@end example
Calls the function @code{list} with the arguments @code{0}, @code{1},
and @code{2}.
@end deftp
@deftp Grammar inmatchfix ( funcall )
@example
f(x, y)
@end example
Calls the function @code{funcall} with the arguments @code{f}, @code{x},
and @code{y}.
@end deftp
@deftp Grammar delim ;
@example
set foo bar;
@end example
delimits the extent of the restfix operator @code{set}.
@end deftp
@node Ruleset Definition and Use, Token definition, Precedence Parsing Overview, Precedence Parsing
@subsection Ruleset Definition and Use
@defvar *syn-defs*
A grammar is built by one or more calls to @code{prec:define-grammar}.
The rules are appended to @var{*syn-defs*}. The value of
@var{*syn-defs*} is the grammar suitable for passing as an argument to
@code{prec:parse}.
@end defvar
@defvr Constant *syn-ignore-whitespace*
Is a nearly empty grammar with whitespace characters set to group 0,
which means they will not be made into tokens. Most rulesets will want
to start with @code{*syn-ignore-whitespace*}
@end defvr
@noindent
In order to start defining a grammar, either
@example
(set! *syn-defs* '())
@end example
@noindent
or
@example
(set! *syn-defs* *syn-ignore-whitespace*)
@end example
@defun prec:define-grammar rule1 @dots{}
Appends @var{rule1} @dots{} to @var{*syn-defs*}.
@code{prec:define-grammar} is used to define both the character classes
and rules for tokens.
@end defun
@noindent
Once your grammar is defined, save the value of @code{*syn-defs*} in a
variable (for use when calling @code{prec:parse}).
@example
(define my-ruleset *syn-defs*)
@end example
@defun prec:parse ruleset delim
@defunx prec:parse ruleset delim port
The @var{ruleset} argument must be a list of rules as constructed by
@code{prec:define-grammar} and extracted from @var{*syn-defs*}.
The token @var{delim} may be a character, symbol, or string. A
character @var{delim} argument will match only a character token; i.e. a
character for which no token-group is assigned. A symbols or string
will match only a token string; i.e. a token resulting from a token
group.
@code{prec:parse} reads a @var{ruleset} grammar expression delimited
by @var{delim} from the given input @var{port}. @code{prec:parse}
returns the next object parsable from the given input @var{port},
updating @var{port} to point to the first character past the end of the
external representation of the object.
If an end of file is encountered in the input before any characters are
found that can begin an object, then an end of file object is returned.
If a delimiter (such as @var{delim}) is found before any characters are
found that can begin an object, then @code{#f} is returned.
The @var{port} argument may be omitted, in which case it defaults to the
value returned by @code{current-input-port}. It is an error to parse
from a closed port.
@findex current-input-port
@end defun
@node Token definition, Nud and Led Definition, Ruleset Definition and Use, Precedence Parsing
@subsection Token definition
@defun tok:char-group group chars chars-proc
The argument @var{chars} may be a single character, a list of
characters, or a string. Each character in @var{chars} is treated as
though @code{tok:char-group} was called with that character alone.
The argument @var{chars-proc} must be a procedure of one argument, a
list of characters. After @code{tokenize} has finished
accumulating the characters for a token, it calls @var{chars-proc} with
the list of characters. The value returned is the token which
@code{tokenize} returns.
The argument @var{group} may be an exact integer or a procedure of one
character argument. The following discussion concerns the treatment
which the tokenizing routine, @code{tokenize}, will accord to characters
on the basis of their groups.
When @var{group} is a non-zero integer, characters whose group number is
equal to or exactly one less than @var{group} will continue to
accumulate. Any other character causes the accumulation to stop (until
a new token is to be read).
The @var{group} of zero is special. These characters are ignored when
parsed pending a token, and stop the accumulation of token characters
when the accumulation has already begun. Whitespace characters are
usually put in group 0.
If @var{group} is a procedure, then, when triggerd by the occurence of
an initial (no accumulation) @var{chars} character, this procedure will
be repeatedly called with each successive character from the input
stream until the @var{group} procedure returns a non-false value.
@end defun
@noindent
The following convenient constants are provided for use with
@code{tok:char-group}.
@defvr Constant tok:decimal-digits
Is the string @code{"0123456789"}.
@end defvr
@defvr Constant tok:upper-case
Is the string consisting of all upper-case letters
("ABCDEFGHIJKLMNOPQRSTUVWXYZ").
@end defvr
@defvr Constant tok:lower-case
Is the string consisting of all lower-case letters
("abcdefghijklmnopqrstuvwxyz").
@end defvr
@defvr Constant tok:whitespaces
Is the string consisting of all characters between 0 and 255 for which
@code{char-whitespace?} returns true.
@end defvr
@node Nud and Led Definition, Grammar Rule Definition, Token definition, Precedence Parsing
@subsection Nud and Led Definition
This section describes advanced features. You can skip this section on
first reading.
@noindent
The @dfn{Null Denotation} (or @dfn{nud})
@cindex Null Denotation, nud
of a token is the procedure and arguments applying for that token when
@dfn{Left}, an unclaimed parsed expression is not extant.
@noindent
The @dfn{Left Denotation} (or @dfn{led})
@cindex Left Denotation, led
of a token is the procedure, arguments, and lbp applying for that token
when there is a @dfn{Left}, an unclaimed parsed expression.
@noindent
In his paper,
@quotation
Pratt, V. R.
Top Down Operator Precendence.
@cite{SIGACT/SIGPLAN Symposium on Principles of Programming Languages},
Boston, 1973, pages 41-51
@end quotation
the @dfn{left binding power} (or @dfn{lbp}) was an independent property
of tokens. I think this was done in order to allow tokens with NUDs but
not LEDs to also be used as delimiters, which was a problem for
statically defined syntaxes. It turns out that @emph{dynamically
binding} NUDs and LEDs allows them independence.
@noindent
For the rule-defining procedures that follow, the variable @var{tk} may
be a character, string, or symbol, or a list composed of characters,
strings, and symbols. Each element of @var{tk} is treated as though the
procedure were called for each element.
@noindent
Character @var{tk} arguments will match only character tokens;
i.e. characters for which no token-group is assigned. Symbols and
strings will both match token strings; i.e. tokens resulting from token
groups.
@defun prec:make-nud tk sop arg1 @dots{}
Returns a rule specifying that @var{sop} be called when @var{tk} is
parsed. If @var{sop} is a procedure, it is called with @var{tk} and
@var{arg1} @dots{} as its arguments; the resulting value is incorporated
into the expression being built. Otherwise, @code{(list @var{sop}
@var{arg1} @dots{})} is incorporated.
@end defun
@noindent
If no NUD has been defined for a token; then if that token is a string,
it is converted to a symbol and returned; if not a string, the token is
returned.
@defun prec:make-led tk sop arg1 @dots{}
Returns a rule specifying that @var{sop} be called when @var{tk} is
parsed and @var{left} has an unclaimed parsed expression. If @var{sop}
is a procedure, it is called with @var{left}, @var{tk}, and @var{arg1}
@dots{} as its arguments; the resulting value is incorporated into the
expression being built. Otherwise, @var{left} is incorporated.
@end defun
@noindent
If no LED has been defined for a token, and @var{left} is set, the
parser issues a warning.
@node Grammar Rule Definition, , Nud and Led Definition, Precedence Parsing
@subsection Grammar Rule Definition
@noindent
Here are procedures for defining rules for the syntax types introduced
in @ref{Precedence Parsing Overview}.
@noindent
For the rule-defining procedures that follow, the variable @var{tk} may
be a character, string, or symbol, or a list composed of characters,
strings, and symbols. Each element of @var{tk} is treated as though the
procedure were called for each element.
@noindent
For procedures prec:delim, @dots{}, prec:prestfix, if the @var{sop}
argument is @code{#f}, then the token which triggered this rule is
converted to a symbol and returned. A false @var{sop} argument to the
procedures prec:commentfix, prec:matchfix, or prec:inmatchfix has a
different meaning.
@noindent
Character @var{tk} arguments will match only character tokens;
i.e. characters for which no token-group is assigned. Symbols and
strings will both match token strings; i.e. tokens resulting from token
groups.
@defun prec:delim tk
Returns a rule specifying that @var{tk} should not be returned from
parsing; i.e. @var{tk}'s function is purely syntactic. The end-of-file
is always treated as a delimiter.
@end defun
@defun prec:nofix tk sop
Returns a rule specifying the following actions take place when @var{tk}
is parsed:
@itemize @bullet
@item
If @var{sop} is a procedure, it is called with no arguments; the
resulting value is incorporated into the expression being built.
Otherwise, the list of @var{sop} is incorporated.
@end itemize
@end defun
@defun prec:prefix tk sop bp rule1 @dots{}
Returns a rule specifying the following actions take place when @var{tk}
is parsed:
@itemize @bullet
@item
The rules @var{rule1} @dots{} augment and, in case of conflict, override
rules currently in effect.
@item
@code{prec:parse1} is called with binding-power @var{bp}.
@item
If @var{sop} is a procedure, it is called with the expression returned
from @code{prec:parse1}; the resulting value is incorporated into the
expression being built. Otherwise, the list of @var{sop} and the
expression returned from @code{prec:parse1} is incorporated.
@item
The ruleset in effect before @var{tk} was parsed is restored;
@var{rule1} @dots{} are forgotten.
@end itemize
@end defun
@defun prec:infix tk sop lbp bp rule1 @dots{}
Returns a rule declaring the left-binding-precedence of the token
@var{tk} is @var{lbp} and specifying the following actions take place
when @var{tk} is parsed:
@itemize @bullet
@item
The rules @var{rule1} @dots{} augment and, in case of conflict, override
rules currently in effect.
@item
One expression is parsed with binding-power @var{lbp}. If instead a delimiter
is encountered, a warning is issued.
@item
If @var{sop} is a procedure, it is applied to the list of @var{left} and
the parsed expression; the resulting value is incorporated into the
expression being built. Otherwise, the list of @var{sop}, the
@var{left} expression, and the parsed expression is incorporated.
@item
The ruleset in effect before @var{tk} was parsed is restored;
@var{rule1} @dots{} are forgotten.
@end itemize
@end defun
@defun prec:nary tk sop bp
Returns a rule declaring the left-binding-precedence of the token
@var{tk} is @var{bp} and specifying the following actions take place
when @var{tk} is parsed:
@itemize @bullet
@item
Expressions are parsed with binding-power @var{bp} as far as they are
interleaved with the token @var{tk}.
@item
If @var{sop} is a procedure, it is applied to the list of @var{left} and
the parsed expressions; the resulting value is incorporated into the
expression being built. Otherwise, the list of @var{sop}, the
@var{left} expression, and the parsed expressions is incorporated.
@end itemize
@end defun
@defun prec:postfix tk sop lbp
Returns a rule declaring the left-binding-precedence of the token
@var{tk} is @var{lbp} and specifying the following actions take place
when @var{tk} is parsed:
@itemize @bullet
@item
If @var{sop} is a procedure, it is called with the @var{left} expression;
the resulting value is incorporated into the expression being built.
Otherwise, the list of @var{sop} and the @var{left} expression is
incorporated.
@end itemize
@end defun
@defun prec:prestfix tk sop bp rule1 @dots{}
Returns a rule specifying the following actions take place when @var{tk}
is parsed:
@itemize @bullet
@item
The rules @var{rule1} @dots{} augment and, in case of conflict, override
rules currently in effect.
@item
Expressions are parsed with binding-power @var{bp} until a delimiter is
reached.
@item
If @var{sop} is a procedure, it is applied to the list of parsed
expressions; the resulting value is incorporated into the expression
being built. Otherwise, the list of @var{sop} and the parsed
expressions is incorporated.
@item
The ruleset in effect before @var{tk} was parsed is restored;
@var{rule1} @dots{} are forgotten.
@end itemize
@end defun
@defun prec:commentfix tk stp match rule1 @dots{}
Returns rules specifying the following actions take place when @var{tk}
is parsed:
@itemize @bullet
@item
The rules @var{rule1} @dots{} augment and, in case of conflict, override
rules currently in effect.
@item
Characters are read untile and end-of-file or a sequence of characters
is read which matches the @emph{string} @var{match}.
@item
If @var{stp} is a procedure, it is called with the string of all that
was read between the @var{tk} and @var{match} (exclusive).
@item
The ruleset in effect before @var{tk} was parsed is restored;
@var{rule1} @dots{} are forgotten.
@end itemize
Parsing of commentfix syntax differs from the others in several ways.
It reads directly from input without tokenizing; It calls @var{stp} but
does not return its value; nay any value. I added the @var{stp}
argument so that comment text could be echoed.
@end defun
@defun prec:matchfix tk sop sep match rule1 @dots{}
Returns a rule specifying the following actions take place when @var{tk}
is parsed:
@itemize @bullet
@item
The rules @var{rule1} @dots{} augment and, in case of conflict, override
rules currently in effect.
@item
A rule declaring the token @var{match} a delimiter takes effect.
@item
Expressions are parsed with binding-power @code{0} until the token
@var{match} is reached. If the token @var{sep} does not appear between
each pair of expressions parsed, a warning is issued.
@item
If @var{sop} is a procedure, it is applied to the list of parsed
expressions; the resulting value is incorporated into the expression
being built. Otherwise, the list of @var{sop} and the parsed
expressions is incorporated.
@item
The ruleset in effect before @var{tk} was parsed is restored;
@var{rule1} @dots{} are forgotten.
@end itemize
@end defun
@defun prec:inmatchfix tk sop sep match lbp rule1 @dots{}
Returns a rule declaring the left-binding-precedence of the token
@var{tk} is @var{lbp} and specifying the following actions take place
when @var{tk} is parsed:
@itemize @bullet
@item
The rules @var{rule1} @dots{} augment and, in case of conflict, override
rules currently in effect.
@item
A rule declaring the token @var{match} a delimiter takes effect.
@item
Expressions are parsed with binding-power @code{0} until the token
@var{match} is reached. If the token @var{sep} does not appear between
each pair of expressions parsed, a warning is issued.
@item
If @var{sop} is a procedure, it is applied to the list of @var{left} and
the parsed expressions; the resulting value is incorporated into the
expression being built. Otherwise, the list of @var{sop}, the
@var{left} expression, and the parsed expressions is incorporated.
@item
The ruleset in effect before @var{tk} was parsed is restored;
@var{rule1} @dots{} are forgotten.
@end itemize
@end defun
@node Format, Standard Formatted I/O, Precedence Parsing, Textual Conversion Packages
@section Format (version 3.0)
@code{(require 'format)}
@ftindex format
@menu
* Format Interface::
* Format Specification::
@end menu
@node Format Interface, Format Specification, Format, Format
@subsection Format Interface
@defun format destination format-string . arguments
An almost complete implementation of Common LISP format description
according to the CL reference book @cite{Common LISP} from Guy L.
Steele, Digital Press. Backward compatible to most of the available
Scheme format implementations.
Returns @code{#t}, @code{#f} or a string; has side effect of printing
according to @var{format-string}. If @var{destination} is @code{#t},
the output is to the current output port and @code{#t} is returned. If
@var{destination} is @code{#f}, a formatted string is returned as the
result of the call. NEW: If @var{destination} is a string,
@var{destination} is regarded as the format string; @var{format-string} is
then the first argument and the output is returned as a string. If
@var{destination} is a number, the output is to the current error port
if available by the implementation. Otherwise @var{destination} must be
an output port and @code{#t} is returned.@refill
@var{format-string} must be a string. In case of a formatting error
format returns @code{#f} and prints a message on the current output or
error port. Characters are output as if the string were output by the
@code{display} function with the exception of those prefixed by a tilde
(~). For a detailed description of the @var{format-string} syntax
please consult a Common LISP format reference manual. For a test suite
to verify this format implementation load @file{formatst.scm}. Please
send bug reports to @code{lutzeb@@cs.tu-berlin.de}.
Note: @code{format} is not reentrant, i.e. only one @code{format}-call
may be executed at a time.
@end defun
@node Format Specification, , Format Interface, Format
@subsection Format Specification (Format version 3.0)
Please consult a Common LISP format reference manual for a detailed
description of the format string syntax. For a demonstration of the
implemented directives see @file{formatst.scm}.@refill
This implementation supports directive parameters and modifiers
(@code{:} and @code{@@} characters). Multiple parameters must be
separated by a comma (@code{,}). Parameters can be numerical parameters
(positive or negative), character parameters (prefixed by a quote
character (@code{'}), variable parameters (@code{v}), number of rest
arguments parameter (@code{#}), empty and default parameters. Directive
characters are case independent. The general form of a directive
is:@refill
@noindent
@var{directive} ::= ~@{@var{directive-parameter},@}[:][@@]@var{directive-character}
@noindent
@var{directive-parameter} ::= [ [-|+]@{0-9@}+ | '@var{character} | v | # ]
@subsubsection Implemented CL Format Control Directives
Documentation syntax: Uppercase characters represent the corresponding
control directive characters. Lowercase characters represent control
directive parameter descriptions.
@table @asis
@item @code{~A}
Any (print as @code{display} does).
@table @asis
@item @code{~@@A}
left pad.
@item @code{~@var{mincol},@var{colinc},@var{minpad},@var{padchar}A}
full padding.
@end table
@item @code{~S}
S-expression (print as @code{write} does).
@table @asis
@item @code{~@@S}
left pad.
@item @code{~@var{mincol},@var{colinc},@var{minpad},@var{padchar}S}
full padding.
@end table
@item @code{~D}
Decimal.
@table @asis
@item @code{~@@D}
print number sign always.
@item @code{~:D}
print comma separated.
@item @code{~@var{mincol},@var{padchar},@var{commachar}D}
padding.
@end table
@item @code{~X}
Hexadecimal.
@table @asis
@item @code{~@@X}
print number sign always.
@item @code{~:X}
print comma separated.
@item @code{~@var{mincol},@var{padchar},@var{commachar}X}
padding.
@end table
@item @code{~O}
Octal.
@table @asis
@item @code{~@@O}
print number sign always.
@item @code{~:O}
print comma separated.
@item @code{~@var{mincol},@var{padchar},@var{commachar}O}
padding.
@end table
@item @code{~B}
Binary.
@table @asis
@item @code{~@@B}
print number sign always.
@item @code{~:B}
print comma separated.
@item @code{~@var{mincol},@var{padchar},@var{commachar}B}
padding.
@end table
@item @code{~@var{n}R}
Radix @var{n}.
@table @asis
@item @code{~@var{n},@var{mincol},@var{padchar},@var{commachar}R}
padding.
@end table
@item @code{~@@R}
print a number as a Roman numeral.
@item @code{~:R}
print a number as an ordinal English number.
@item @code{~:@@R}
print a number as a cardinal English number.
@item @code{~P}
Plural.
@table @asis
@item @code{~@@P}
prints @code{y} and @code{ies}.
@item @code{~:P}
as @code{~P but jumps 1 argument backward.}
@item @code{~:@@P}
as @code{~@@P but jumps 1 argument backward.}
@end table
@item @code{~C}
Character.
@table @asis
@item @code{~@@C}
prints a character as the reader can understand it (i.e. @code{#\} prefixing).
@item @code{~:C}
prints a character as emacs does (eg. @code{^C} for ASCII 03).
@end table
@item @code{~F}
Fixed-format floating-point (prints a flonum like @var{mmm.nnn}).
@table @asis
@item @code{~@var{width},@var{digits},@var{scale},@var{overflowchar},@var{padchar}F}
@item @code{~@@F}
If the number is positive a plus sign is printed.
@end table
@item @code{~E}
Exponential floating-point (prints a flonum like @var{mmm.nnn}@code{E}@var{ee}).
@table @asis
@item @code{~@var{width},@var{digits},@var{exponentdigits},@var{scale},@var{overflowchar},@var{padchar},@var{exponentchar}E}
@item @code{~@@E}
If the number is positive a plus sign is printed.
@end table
@item @code{~G}
General floating-point (prints a flonum either fixed or exponential).
@table @asis
@item @code{~@var{width},@var{digits},@var{exponentdigits},@var{scale},@var{overflowchar},@var{padchar},@var{exponentchar}G}
@item @code{~@@G}
If the number is positive a plus sign is printed.
@end table
@item @code{~$}
Dollars floating-point (prints a flonum in fixed with signs separated).
@table @asis
@item @code{~@var{digits},@var{scale},@var{width},@var{padchar}$}
@item @code{~@@$}
If the number is positive a plus sign is printed.
@item @code{~:@@$}
A sign is always printed and appears before the padding.
@item @code{~:$}
The sign appears before the padding.
@end table
@item @code{~%}
Newline.
@table @asis
@item @code{~@var{n}%}
print @var{n} newlines.
@end table
@item @code{~&}
print newline if not at the beginning of the output line.
@table @asis
@item @code{~@var{n}&}
prints @code{~&} and then @var{n-1} newlines.
@end table
@item @code{~|}
Page Separator.
@table @asis
@item @code{~@var{n}|}
print @var{n} page separators.
@end table
@item @code{~~}
Tilde.
@table @asis
@item @code{~@var{n}~}
print @var{n} tildes.
@end table
@item @code{~}<newline>
Continuation Line.
@table @asis
@item @code{~:}<newline>
newline is ignored, white space left.
@item @code{~@@}<newline>
newline is left, white space ignored.
@end table
@item @code{~T}
Tabulation.
@table @asis
@item @code{~@@T}
relative tabulation.
@item @code{~@var{colnum,colinc}T}
full tabulation.
@end table
@item @code{~?}
Indirection (expects indirect arguments as a list).
@table @asis
@item @code{~@@?}
extracts indirect arguments from format arguments.
@end table
@item @code{~(@var{str}~)}
Case conversion (converts by @code{string-downcase}).
@table @asis
@item @code{~:(@var{str}~)}
converts by @code{string-capitalize}.
@item @code{~@@(@var{str}~)}
converts by @code{string-capitalize-first}.
@item @code{~:@@(@var{str}~)}
converts by @code{string-upcase}.
@end table
@item @code{~*}
Argument Jumping (jumps 1 argument forward).
@table @asis
@item @code{~@var{n}*}
jumps @var{n} arguments forward.
@item @code{~:*}
jumps 1 argument backward.
@item @code{~@var{n}:*}
jumps @var{n} arguments backward.
@item @code{~@@*}
jumps to the 0th argument.
@item @code{~@var{n}@@*}
jumps to the @var{n}th argument (beginning from 0)
@end table
@item @code{~[@var{str0}~;@var{str1}~;...~;@var{strn}~]}
Conditional Expression (numerical clause conditional).
@table @asis
@item @code{~@var{n}[}
take argument from @var{n}.
@item @code{~@@[}
true test conditional.
@item @code{~:[}
if-else-then conditional.
@item @code{~;}
clause separator.
@item @code{~:;}
default clause follows.
@end table
@item @code{~@{@var{str}~@}}
Iteration (args come from the next argument (a list)).
@table @asis
@item @code{~@var{n}@{}
at most @var{n} iterations.
@item @code{~:@{}
args from next arg (a list of lists).
@item @code{~@@@{}
args from the rest of arguments.
@item @code{~:@@@{}
args from the rest args (lists).
@end table
@item @code{~^}
Up and out.
@table @asis
@item @code{~@var{n}^}
aborts if @var{n} = 0
@item @code{~@var{n},@var{m}^}
aborts if @var{n} = @var{m}
@item @code{~@var{n},@var{m},@var{k}^}
aborts if @var{n} <= @var{m} <= @var{k}
@end table
@end table
@subsubsection Not Implemented CL Format Control Directives
@table @asis
@item @code{~:A}
print @code{#f} as an empty list (see below).
@item @code{~:S}
print @code{#f} as an empty list (see below).
@item @code{~<~>}
Justification.
@item @code{~:^}
(sorry I don't understand its semantics completely)
@end table
@subsubsection Extended, Replaced and Additional Control Directives
@table @asis
@item @code{~@var{mincol},@var{padchar},@var{commachar},@var{commawidth}D}
@item @code{~@var{mincol},@var{padchar},@var{commachar},@var{commawidth}X}
@item @code{~@var{mincol},@var{padchar},@var{commachar},@var{commawidth}O}
@item @code{~@var{mincol},@var{padchar},@var{commachar},@var{commawidth}B}
@item @code{~@var{n},@var{mincol},@var{padchar},@var{commachar},@var{commawidth}R}
@var{commawidth} is the number of characters between two comma characters.
@end table
@table @asis
@item @code{~I}
print a R4RS complex number as @code{~F~@@Fi} with passed parameters for
@code{~F}.
@item @code{~Y}
Pretty print formatting of an argument for scheme code lists.
@item @code{~K}
Same as @code{~?.}
@item @code{~!}
Flushes the output if format @var{destination} is a port.
@item @code{~_}
Print a @code{#\space} character
@table @asis
@item @code{~@var{n}_}
print @var{n} @code{#\space} characters.
@end table
@item @code{~/}
Print a @code{#\tab} character
@table @asis
@item @code{~@var{n}/}
print @var{n} @code{#\tab} characters.
@end table
@item @code{~@var{n}C}
Takes @var{n} as an integer representation for a character. No arguments
are consumed. @var{n} is converted to a character by
@code{integer->char}. @var{n} must be a positive decimal number.@refill
@item @code{~:S}
Print out readproof. Prints out internal objects represented as
@code{#<...>} as strings @code{"#<...>"} so that the format output can always
be processed by @code{read}.
@refill
@item @code{~:A}
Print out readproof. Prints out internal objects represented as
@code{#<...>} as strings @code{"#<...>"} so that the format output can always
be processed by @code{read}.
@item @code{~Q}
Prints information and a copyright notice on the format implementation.
@table @asis
@item @code{~:Q}
prints format version.
@end table
@refill
@item @code{~F, ~E, ~G, ~$}
may also print number strings, i.e. passing a number as a string and
format it accordingly.
@end table
@subsubsection Configuration Variables
Format has some configuration variables at the beginning of
@file{format.scm} to suit the systems and users needs. There should be
no modification necessary for the configuration that comes with SLIB.
If modification is desired the variable should be set after the format
code is loaded. Format detects automatically if the running scheme
system implements floating point numbers and complex numbers.
@table @asis
@item @var{format:symbol-case-conv}
Symbols are converted by @code{symbol->string} so the case type of the
printed symbols is implementation dependent.
@code{format:symbol-case-conv} is a one arg closure which is either
@code{#f} (no conversion), @code{string-upcase}, @code{string-downcase}
or @code{string-capitalize}. (default @code{#f})
@item @var{format:iobj-case-conv}
As @var{format:symbol-case-conv} but applies for the representation of
implementation internal objects. (default @code{#f})
@item @var{format:expch}
The character prefixing the exponent value in @code{~E} printing. (default
@code{#\E})
@end table
@subsubsection Compatibility With Other Format Implementations
@table @asis
@item SLIB format 2.x:
See @file{format.doc}.
@item SLIB format 1.4:
Downward compatible except for padding support and @code{~A}, @code{~S},
@code{~P}, @code{~X} uppercase printing. SLIB format 1.4 uses C-style
@code{printf} padding support which is completely replaced by the CL
@code{format} padding style.
@item MIT C-Scheme 7.1:
Downward compatible except for @code{~}, which is not documented
(ignores all characters inside the format string up to a newline
character). (7.1 implements @code{~a}, @code{~s},
~@var{newline}, @code{~~}, @code{~%}, numerical and variable
parameters and @code{:/@@} modifiers in the CL sense).@refill
@item Elk 1.5/2.0:
Downward compatible except for @code{~A} and @code{~S} which print in
uppercase. (Elk implements @code{~a}, @code{~s}, @code{~~}, and
@code{~%} (no directive parameters or modifiers)).@refill
@item Scheme->C 01nov91:
Downward compatible except for an optional destination parameter: S2C
accepts a format call without a destination which returns a formatted
string. This is equivalent to a #f destination in S2C. (S2C implements
@code{~a}, @code{~s}, @code{~c}, @code{~%}, and @code{~~} (no directive
parameters or modifiers)).@refill
@end table
This implementation of format is solely useful in the SLIB context
because it requires other components provided by SLIB.@refill
@node Standard Formatted I/O, Program Arguments, Format, Textual Conversion Packages
@section Standard Formatted I/O
@menu
* Standard Formatted Output:: 'printf
* Standard Formatted Input:: 'scanf
@end menu
@subsection stdio
@code{(require 'stdio)}
@ftindex stdio
@code{require}s @code{printf} and @code{scanf} and additionally defines
the symbols:
@defvar stdin
Defined to be @code{(current-input-port)}.
@end defvar
@defvar stdout
Defined to be @code{(current-output-port)}.
@end defvar
@defvar stderr
Defined to be @code{(current-error-port)}.
@end defvar
@node Standard Formatted Output, Standard Formatted Input, Standard Formatted I/O, Standard Formatted I/O
@subsection Standard Formatted Output
@code{(require 'printf)}
@ftindex printf
@deffn Procedure printf format arg1 @dots{}
@deffnx Procedure fprintf port format arg1 @dots{}
@deffnx Procedure sprintf str format arg1 @dots{}
Each function converts, formats, and outputs its @var{arg1} @dots{}
arguments according to the control string @var{format} argument and
returns the number of characters output.
@code{printf} sends its output to the port @code{(current-output-port)}.
@code{fprintf} sends its output to the port @var{port}. @code{sprintf}
@code{string-set!}s locations of the non-constant string argument
@var{str} to the output characters.
@quotation
@emph{Note:} sprintf should be changed to a macro so a @code{substring}
expression could be used for the @var{str} argument.
@end quotation
The string @var{format} contains plain characters which are copied to
the output stream, and conversion specifications, each of which results
in fetching zero or more of the arguments @var{arg1} @dots{}. The
results are undefined if there are an insufficient number of arguments
for the format. If @var{format} is exhausted while some of the
@var{arg1} @dots{} arguments remain unused, the excess @var{arg1}
@dots{} arguments are ignored.
The conversion specifications in a format string have the form:
@example
% @r{[} @var{flags} @r{]} @r{[} @var{width} @r{]} @r{[} . @var{precision} @r{]} @r{[} @var{type} @r{]} @var{conversion}
@end example
An output conversion specifications consist of an initial @samp{%}
character followed in sequence by:
@itemize @bullet
@item
Zero or more @dfn{flag characters} that modify the normal behavior of
the conversion specification.
@table @asis
@item @samp{-}
Left-justify the result in the field. Normally the result is
right-justified.
@item @samp{+}
For the signed @samp{%d} and @samp{%i} conversions and all inexact
conversions, prefix a plus sign if the value is positive.
@item @samp{ }
For the signed @samp{%d} and @samp{%i} conversions, if the result
doesn't start with a plus or minus sign, prefix it with a space
character instead. Since the @samp{+} flag ensures that the result
includes a sign, this flag is ignored if both are specified.
@item @samp{#}
For inexact conversions, @samp{#} specifies that the result should
always include a decimal point, even if no digits follow it. For the
@samp{%g} and @samp{%G} conversions, this also forces trailing zeros
after the decimal point to be printed where they would otherwise be
elided.
For the @samp{%o} conversion, force the leading digit to be @samp{0}, as
if by increasing the precision. For @samp{%x} or @samp{%X}, prefix a
leading @samp{0x} or @samp{0X} (respectively) to the result. This
doesn't do anything useful for the @samp{%d}, @samp{%i}, or @samp{%u}
conversions. Using this flag produces output which can be parsed by the
@code{scanf} functions with the @samp{%i} conversion (@pxref{Standard
Formatted Input}).
@item @samp{0}
Pad the field with zeros instead of spaces. The zeros are placed after
any indication of sign or base. This flag is ignored if the @samp{-}
flag is also specified, or if a precision is specified for an exact
converson.
@end table
@item
An optional decimal integer specifying the @dfn{minimum field width}.
If the normal conversion produces fewer characters than this, the field
is padded (with spaces or zeros per the @samp{0} flag) to the specified
width. This is a @emph{minimum} width; if the normal conversion
produces more characters than this, the field is @emph{not} truncated.
@cindex minimum field width (@code{printf})
Alternatively, if the field width is @samp{*}, the next argument in the
argument list (before the actual value to be printed) is used as the
field width. The width value must be an integer. If the value is
negative it is as though the @samp{-} flag is set (see above) and the
absolute value is used as the field width.
@item
An optional @dfn{precision} to specify the number of digits to be
written for numeric conversions and the maximum field width for string
conversions. The precision is specified by a period (@samp{.}) followed
optionally by a decimal integer (which defaults to zero if omitted).
@cindex precision (@code{printf})
Alternatively, if the precision is @samp{.*}, the next argument in the
argument list (before the actual value to be printed) is used as the
precision. The value must be an integer, and is ignored if negative.
If you specify @samp{*} for both the field width and precision, the
field width argument precedes the precision argument. The @samp{.*}
precision is an enhancement. C library versions may not accept this
syntax.
For the @samp{%f}, @samp{%e}, and @samp{%E} conversions, the precision
specifies how many digits follow the decimal-point character. The
default precision is @code{6}. If the precision is explicitly @code{0},
the decimal point character is suppressed.
For the @samp{%g} and @samp{%G} conversions, the precision specifies how
many significant digits to print. Significant digits are the first
digit before the decimal point, and all the digits after it. If the
precision is @code{0} or not specified for @samp{%g} or @samp{%G}, it is
treated like a value of @code{1}. If the value being printed cannot be
expressed accurately in the specified number of digits, the value is
rounded to the nearest number that fits.
For exact conversions, if a precision is supplied it specifies the
minimum number of digits to appear; leading zeros are produced if
necessary. If a precision is not supplied, the number is printed with
as many digits as necessary. Converting an exact @samp{0} with an
explicit precision of zero produces no characters.
@item
An optional one of @samp{l}, @samp{h} or @samp{L}, which is ignored for
numeric conversions. It is an error to specify these modifiers for
non-numeric conversions.
@item
A character that specifies the conversion to be applied.
@end itemize
@subsubsection Exact Conversions
@table @asis
@item @samp{d}, @samp{i}
Print an integer as a signed decimal number. @samp{%d} and @samp{%i}
are synonymous for output, but are different when used with @code{scanf}
for input (@pxref{Standard Formatted Input}).
@item @samp{o}
Print an integer as an unsigned octal number.
@item @samp{u}
Print an integer as an unsigned decimal number.
@item @samp{x}, @samp{X}
Print an integer as an unsigned hexadecimal number. @samp{%x} prints
using the digits @samp{0123456789abcdef}. @samp{%X} prints using the
digits @samp{0123456789ABCDEF}.
@end table
@subsubsection Inexact Conversions
@emph{Note:} Inexact conversions are not supported yet.
@table @asis
@item @samp{f}
Print a floating-point number in fixed-point notation.
@item @samp{e}, @samp{E}
Print a floating-point number in exponential notation. @samp{%e} prints
@samp{e} between mantissa and exponont. @samp{%E} prints @samp{E}
between mantissa and exponont.
@item @samp{g}, @samp{G}
Print a floating-point number in either normal or exponential notation,
whichever is more appropriate for its magnitude. @samp{%g} prints
@samp{e} between mantissa and exponont. @samp{%G} prints @samp{E}
between mantissa and exponont.
@end table
@subsubsection Other Conversions
@table @asis
@item @samp{c}
Print a single character. The @samp{-} flag is the only one which can
be specified. It is an error to specify a precision.
@item @samp{s}
Print a string. The @samp{-} flag is the only one which can be
specified. A precision specifies the maximum number of characters to
output; otherwise all characters in the string are output.
@item @samp{a}, @samp{A}
Print a scheme expression. The @samp{-} flag left-justifies the output.
The @samp{#} flag specifies that strings and characters should be quoted
as by @code{write} (which can be read using @code{read}); otherwise,
output is as @code{display} prints. A precision specifies the maximum
number of characters to output; otherwise as many characters as needed
are output.
@emph{Note:} @samp{%a} and @samp{%A} are SLIB extensions.
@c @item @samp{p}
@c Print the value of a pointer.
@c @item @samp{n}
@c Get the number of characters printed so far. @xref{Other Output Conversions}.
@c Note that this conversion specification never produces any output.
@c @item @samp{m}
@c Print the string corresponding to the value of @code{errno}.
@c (This is a GNU extension.)
@c @xref{Other Output Conversions}.
@item @samp{%}
Print a literal @samp{%} character. No argument is consumed. It is an
error to specifiy flags, field width, precision, or type modifiers with
@samp{%%}.
@end table
@end deffn
@node Standard Formatted Input, , Standard Formatted Output, Standard Formatted I/O
@subsection Standard Formatted Input
@code{(require 'scanf)}
@ftindex scanf
@deffn Function scanf-read-list format
@deffnx Function scanf-read-list format port
@deffnx Function scanf-read-list format string
@end deffn
@defmac scanf format arg1 @dots{}
@defmacx fscanf port format arg1 @dots{}
@defmacx sscanf str format arg1 @dots{}
Each function reads characters, interpreting them according to the
control string @var{format} argument.
@code{scanf-read-list} returns a list of the items specified as far as
the input matches @var{format}. @code{scanf}, @code{fscanf}, and
@code{sscanf} return the number of items successfully matched and
stored. @code{scanf}, @code{fscanf}, and @code{sscanf} also set the
location corresponding to @var{arg1} @dots{} using the methods:
@table @asis
@item symbol
@code{set!}
@item car expression
@code{set-car!}
@item cdr expression
@code{set-cdr!}
@item vector-ref expression
@code{vector-set!}
@item substring expression
@code{substring-move-left!}
@end table
The argument to a @code{substring} expression in @var{arg1} @dots{} must
be a non-constant string. Characters will be stored starting at the
position specified by the second argument to @code{substring}. The
number of characters stored will be limited by either the position
specified by the third argument to @code{substring} or the length of the
matched string, whichever is less.
The control string, @var{format}, contains conversion specifications and
other characters used to direct interpretation of input sequences. The
control string contains:
@itemize @bullet
@item White-space characters (blanks, tabs, newlines, or formfeeds)
that cause input to be read (and discarded) up to the next
non-white-space character.
@item An ordinary character (not @samp{%}) that must match the next
character of the input stream.
@item Conversion specifications, consisting of the character @samp{%}, an
optional assignment suppressing character @samp{*}, an optional
numerical maximum-field width, an optional @samp{l}, @samp{h} or
@samp{L} which is ignored, and a conversion code.
@c @item The conversion specification can alternatively be prefixed by
@c the character sequence @samp{%n$} instead of the character @samp{%},
@c where @var{n} is a decimal integer in the range. The @samp{%n$}
@c construction indicates that the value of the next input field should be
@c placed in the @var{n}th place in the return list, rather than to the next
@c unused one. The two forms of introducing a conversion specification,
@c @samp{%} and @samp{%n$}, must not be mixed within a single format string
@c with the following exception: Skip fields (see below) can be designated
@c as @samp{%*} or @samp{%n$*}. In the latter case, @var{n} is ignored.
@end itemize
Unless the specification contains the @samp{n} conversion character
(described below), a conversion specification directs the conversion of
the next input field. The result of a conversion specification is
returned in the position of the corresponding argument points, unless
@samp{*} indicates assignment suppression. Assignment suppression
provides a way to describe an input field to be skipped. An input field
is defined as a string of characters; it extends to the next
inappropriate character or until the field width, if specified, is
exhausted.
@quotation
@emph{Note:} This specification of format strings differs from the
@cite{ANSI C} and @cite{POSIX} specifications. In SLIB, white space
before an input field is not skipped unless white space appears before
the conversion specification in the format string. In order to write
format strings which work identically with @cite{ANSI C} and SLIB,
prepend whitespace to all conversion specifications except @samp{[} and
@samp{c}.
@end quotation
The conversion code indicates the interpretation of the input field; For
a suppressed field, no value is returned. The following conversion
codes are legal:
@table @asis
@item @samp{%}
A single % is expected in the input at this point; no value is returned.
@item @samp{d}, @samp{D}
A decimal integer is expected.
@item @samp{u}, @samp{U}
An unsigned decimal integer is expected.
@item @samp{o}, @samp{O}
An octal integer is expected.
@item @samp{x}, @samp{X}
A hexadecimal integer is expected.
@item @samp{i}
An integer is expected. Returns the value of the next input item,
interpreted according to C conventions; a leading @samp{0} implies
octal, a leading @samp{0x} implies hexadecimal; otherwise, decimal is
assumed.
@item @samp{n}
Returns the total number of bytes (including white space) read by
@code{scanf}. No input is consumed by @code{%n}.
@item @samp{f}, @samp{F}, @samp{e}, @samp{E}, @samp{g}, @samp{G}
A floating-point number is expected. The input format for
floating-point numbers is an optionally signed string of digits,
possibly containing a radix character @samp{.}, followed by an optional
exponent field consisting of an @samp{E} or an @samp{e}, followed by an
optional @samp{+}, @samp{-}, or space, followed by an integer.
@item @samp{c}, @samp{C}
@var{Width} characters are expected. The normal skip-over-white-space
is suppressed in this case; to read the next non-space character, use
@samp{%1s}. If a field width is given, a string is returned; up to the
indicated number of characters is read.
@item @samp{s}, @samp{S}
A character string is expected The input field is terminated by a
white-space character. @code{scanf} cannot read a null string.
@item @samp{[}
Indicates string data and the normal skip-over-leading-white-space is
suppressed. The left bracket is followed by a set of characters, called
the scanset, and a right bracket; the input field is the maximal
sequence of input characters consisting entirely of characters in the
scanset. @samp{^}, when it appears as the first character in the
scanset, serves as a complement operator and redefines the scanset as
the set of all characters not contained in the remainder of the scanset
string. Construction of the scanset follows certain conventions. A
range of characters may be represented by the construct first-last,
enabling @samp{[0123456789]} to be expressed @samp{[0-9]}. Using this
convention, first must be lexically less than or equal to last;
otherwise, the dash stands for itself. The dash also stands for itself
when it is the first or the last character in the scanset. To include
the right square bracket as an element of the scanset, it must appear as
the first character (possibly preceded by a @samp{^}) of the scanset, in
which case it will not be interpreted syntactically as the closing
bracket. At least one character must match for this conversion to
succeed.
@end table
The @code{scanf} functions terminate their conversions at end-of-file,
at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is
left unread in the input stream.
@end defmac
@node Program Arguments, Printing Scheme, Standard Formatted I/O, Textual Conversion Packages
@section Program Arguments
@menu
* Getopt:: Command Line option parsing
* Command Line:: A command line reader for Scheme shells
* Parameter lists:: 'parameters
* Batch:: 'batch
@end menu
@node Getopt, Command Line, Program Arguments, Program Arguments
@subsection Getopt
@code{(require 'getopt)}
@ftindex getopt
This routine implements Posix command line argument parsing. Notice
that returning values through global variables means that @code{getopt}
is @emph{not} reentrant.
@defvar *optind*
Is the index of the current element of the command line. It is
initially one. In order to parse a new command line or reparse an old
one, @var{*opting*} must be reset.
@end defvar
@defvar *optarg*
Is set by getopt to the (string) option-argument of the current option.
@end defvar
@deffn Procedure getopt argc argv optstring
Returns the next option letter in @var{argv} (starting from
@code{(vector-ref argv *optind*)}) that matches a letter in
@var{optstring}. @var{argv} is a vector or list of strings, the 0th of
which getopt usually ignores. @var{argc} is the argument count, usually
the length of @var{argv}. @var{optstring} is a string of recognized
option characters; if a character is followed by a colon, the option
takes an argument which may be immediately following it in the string or
in the next element of @var{argv}.
@var{*optind*} is the index of the next element of the @var{argv} vector
to be processed. It is initialized to 1 by @file{getopt.scm}, and
@code{getopt} updates it when it finishes with each element of
@var{argv}.
@code{getopt} returns the next option character from @var{argv} that
matches a character in @var{optstring}, if there is one that matches.
If the option takes an argument, @code{getopt} sets the variable
@var{*optarg*} to the option-argument as follows:
@itemize @bullet
@item
If the option was the last character in the string pointed to by an
element of @var{argv}, then @var{*optarg*} contains the next element of
@var{argv}, and @var{*optind*} is incremented by 2. If the resulting
value of @var{*optind*} is greater than or equal to @var{argc}, this
indicates a missing option argument, and @code{getopt} returns an error
indication.
@item
Otherwise, @var{*optarg*} is set to the string following the option
character in that element of @var{argv}, and @var{*optind*} is
incremented by 1.
@end itemize
If, when @code{getopt} is called, the string @code{(vector-ref argv
*optind*)} either does not begin with the character @code{#\-} or is
just @code{"-"}, @code{getopt} returns @code{#f} without changing
@var{*optind*}. If @code{(vector-ref argv *optind*)} is the string
@code{"--"}, @code{getopt} returns @code{#f} after incrementing
@var{*optind*}.
If @code{getopt} encounters an option character that is not contained in
@var{optstring}, it returns the question-mark @code{#\?} character. If
it detects a missing option argument, it returns the colon character
@code{#\:} if the first character of @var{optstring} was a colon, or a
question-mark character otherwise. In either case, @code{getopt} sets
the variable @var{getopt:opt} to the option character that caused the
error.
The special option @code{"--"} can be used to delimit the end of the
options; @code{#f} is returned, and @code{"--"} is skipped.
RETURN VALUE
@code{getopt} returns the next option character specified on the command
line. A colon @code{#\:} is returned if @code{getopt} detects a missing argument
and the first character of @var{optstring} was a colon @code{#\:}.
A question-mark @code{#\?} is returned if @code{getopt} encounters an option
character not in @var{optstring} or detects a missing argument and the first
character of @var{optstring} was not a colon @code{#\:}.
Otherwise, @code{getopt} returns @code{#f} when all command line options have been
parsed.
Example:
@lisp
#! /usr/local/bin/scm
;;;This code is SCM specific.
(define argv (program-arguments))
(require 'getopt)
@ftindex getopt
(define opts ":a:b:cd")
(let loop ((opt (getopt (length argv) argv opts)))
(case opt
((#\a) (print "option a: " *optarg*))
((#\b) (print "option b: " *optarg*))
((#\c) (print "option c"))
((#\d) (print "option d"))
((#\?) (print "error" getopt:opt))
((#\:) (print "missing arg" getopt:opt))
((#f) (if (< *optind* (length argv))
(print "argv[" *optind* "]="
(list-ref argv *optind*)))
(set! *optind* (+ *optind* 1))))
(if (< *optind* (length argv))
(loop (getopt (length argv) argv opts))))
(slib:exit)
@end lisp
@end deffn
@subsection Getopt--
@defun getopt-- argc argv optstring
The procedure @code{getopt--} is an extended version of @code{getopt}
which parses @dfn{long option names} of the form
@samp{--hold-the-onions} and @samp{--verbosity-level=extreme}.
@w{@code{Getopt--}} behaves as @code{getopt} except for non-empty
options beginning with @samp{--}.
Options beginning with @samp{--} are returned as strings rather than
characters. If a value is assigned (using @samp{=}) to a long option,
@code{*optarg*} is set to the value. The @samp{=} and value are
not returned as part of the option string.
No information is passed to @code{getopt--} concerning which long
options should be accepted or whether such options can take arguments.
If a long option did not have an argument, @code{*optarg} will be set to
@code{#f}. The caller is responsible for detecting and reporting
errors.
@example
(define opts ":-:b:")
(define argc 5)
(define argv '("foo" "-b9" "--f1" "--2=" "--g3=35234.342" "--"))
(define *optind* 1)
(define *optarg* #f)
(require 'qp)
@ftindex qp
(do ((i 5 (+ -1 i)))
((zero? i))
(define opt (getopt-- argc argv opts))
(print *optind* opt *optarg*)))
@print{}
2 #\b "9"
3 "f1" #f
4 "2" ""
5 "g3" "35234.342"
5 #f "35234.342"
@end example
@end defun
@node Command Line, Parameter lists, Getopt, Program Arguments
@subsection Command Line
@code{(require 'read-command)}
@ftindex read-command
@defun read-command port
@defunx read-command
@code{read-command} converts a @dfn{command line} into a list of strings
@cindex command line
suitable for parsing by @code{getopt}. The syntax of command lines
supported resembles that of popular @dfn{shell}s. @code{read-command}
updates @var{port} to point to the first character past the command
delimiter.
If an end of file is encountered in the input before any characters are
found that can begin an object or comment, then an end of file object is
returned.
The @var{port} argument may be omitted, in which case it defaults to the
value returned by @code{current-input-port}.
The fields into which the command line is split are delimited by
whitespace as defined by @code{char-whitespace?}. The end of a command
is delimited by end-of-file or unescaped semicolon (@key{;}) or
@key{newline}. Any character can be literally included in a field by
escaping it with a backslach (@key{\}).
The initial character and types of fields recognized are:
@table @asis
@item @samp{\}
The next character has is taken literally and not interpreted as a field
delimiter. If @key{\} is the last character before a @key{newline},
that @key{newline} is just ignored. Processing continues from the
characters after the @key{newline} as though the backslash and
@key{newline} were not there.
@item @samp{"}
The characters up to the next unescaped @key{"} are taken literally,
according to [R4RS] rules for literal strings (@pxref{Strings, , ,r4rs,
Revised(4) Scheme}).
@item @samp{(}, @samp{%'}
One scheme expression is @code{read} starting with this character. The
@code{read} expression is evaluated, converted to a string
(using @code{display}), and replaces the expression in the returned
field.
@item @samp{;}
Semicolon delimits a command. Using semicolons more than one command
can appear on a line. Escaped semicolons and semicolons inside strings
do not delimit commands.
@end table
@noindent
The comment field differs from the previous fields in that it must be
the first character of a command or appear after whitespace in order to
be recognized. @key{#} can be part of fields if these conditions are
not met. For instance, @code{ab#c} is just the field ab#c.
@table @samp
@item #
Introduces a comment. The comment continues to the end of the line on
which the semicolon appears. Comments are treated as whitespace by
@code{read-dommand-line} and backslashes before @key{newline}s in
comments are also ignored.
@end table
@end defun
@defun read-options-file filename
@code{read-options-file} converts an @dfn{options file} into a list of
@cindex options file
strings suitable for parsing by @code{getopt}. The syntax of options
files is the same as the syntax for command
lines, except that @key{newline}s do not terminate reading (only @key{;}
or end of file).
If an end of file is encountered before any characters are found that
can begin an object or comment, then an end of file object is returned.
@end defun
@node Parameter lists, Batch, Command Line, Program Arguments
@subsection Parameter lists
@code{(require 'parameters)}
@ftindex parameters
@noindent
Arguments to procedures in scheme are distinguished from each other by
their position in the procedure call. This can be confusing when a
procedure takes many arguments, many of which are not often used.
@noindent
A @dfn{parameter-list} is a way of passing named information to a
procedure. Procedures are also defined to set unused parameters to
default values, check parameters, and combine parameter lists.
@noindent
A @var{parameter} has the form @code{(@r{parameter-name} @r{value1}
@dots{})}. This format allows for more than one value per
parameter-name.
@noindent
A @var{parameter-list} is a list of @var{parameter}s, each with a
different @var{parameter-name}.
@deffn Function make-parameter-list parameter-names
Returns an empty parameter-list with slots for @var{parameter-names}.
@end deffn
@deffn Function parameter-list-ref parameter-list parameter-name
@var{parameter-name} must name a valid slot of @var{parameter-list}.
@code{parameter-list-ref} returns the value of parameter
@var{parameter-name} of @var{parameter-list}.
@end deffn
@deffn Procedure adjoin-parameters! parameter-list parameter1 @dots{}
Returns @var{parameter-list} with @var{parameter1} @dots{} merged in.
@end deffn
@deffn Procedure parameter-list-expand expanders parameter-list
@var{expanders} is a list of procedures whose order matches the order of
the @var{parameter-name}s in the call to @code{make-parameter-list}
which created @var{parameter-list}. For each non-false element of
@var{expanders} that procedure is mapped over the corresponding
parameter value and the returned parameter lists are merged into
@var{parameter-list}.
This process is repeated until @var{parameter-list} stops growing. The
value returned from @code{parameter-list-expand} is unspecified.
@end deffn
@deffn Function fill-empty-parameters defaulters parameter-list
@var{defaulters} is a list of procedures whose order matches the order
of the @var{parameter-name}s in the call to @code{make-parameter-list}
which created @var{parameter-list}. @code{fill-empty-parameters}
returns a new parameter-list with each empty parameter replaced with the
list returned by calling the corresponding @var{defaulter} with
@var{parameter-list} as its argument.
@end deffn
@deffn Function check-parameters checks parameter-list
@var{checks} is a list of procedures whose order matches the order of
the @var{parameter-name}s in the call to @code{make-parameter-list}
which created @var{parameter-list}.
@code{check-parameters} returns @var{parameter-list} if each @var{check}
of the corresponding @var{parameter-list} returns non-false. If some
@var{check} returns @code{#f} an error is signaled.
@end deffn
@noindent
In the following procedures @var{arities} is a list of symbols. The
elements of @code{arities} can be:
@table @code
@item single
Requires a single parameter.
@item optional
A single parameter or no parameter is acceptable.
@item boolean
A single boolean parameter or zero parameters is acceptable.
@item nary
Any number of parameters are acceptable.
@item nary1
One or more of parameters are acceptable.
@end table
@deffn Function parameter-list->arglist positions arities types parameter-list
Returns @var{parameter-list} converted to an argument list. Parameters
of @var{arity} type @code{single} and @code{boolean} are converted to
the single value associated with them. The other @var{arity} types are
converted to lists of the value(s) of type @var{types}.
@var{positions} is a list of positive integers whose order matches the
order of the @var{parameter-name}s in the call to
@code{make-parameter-list} which created @var{parameter-list}. The
integers specify in which argument position the corresponding parameter
should appear.
@end deffn
@deffn Function getopt->parameter-list argc argv optnames arities types aliases
Returns @var{argv} converted to a parameter-list. @var{optnames} are
the parameter-names. @var{aliases} is a list of lists of strings and
elements of @var{optnames}. Each of these strings which have length of
1 will be treated as a single @key{-} option by @code{getopt}. Longer
strings will be treated as long-named options (@pxref{Getopt, getopt--}).
@end deffn
@deffn Function getopt->arglist argc argv optnames positions arities types defaulters checks aliases
Like @code{getopt->parameter-list}, but converts @var{argv} to an
argument-list as specified by @var{optnames}, @var{positions},
@var{arities}, @var{types}, @var{defaulters}, @var{checks}, and
@var{aliases}.
@end deffn
@noindent
These @code{getopt} functions can be used with SLIB relational
databases. For an example, @xref{Database Utilities,
make-command-server}.
@noindent
If errors are encountered while processing options, directions for using
the options are printed to @code{current-error-port}.
@example
(begin
(set! *optind* 1)
(getopt->parameter-list
2
'("cmd" "-?")
'(flag number symbols symbols string flag2 flag3 num2 num3)
'(boolean optional nary1 nary single boolean boolean nary nary)
'(boolean integer symbol symbol string boolean boolean integer integer)
'(("flag" flag)
("f" flag)
("Flag" flag2)
("B" flag3)
("optional" number)
("o" number)
("nary1" symbols)
("N" symbols)
("nary" symbols)
("n" symbols)
("single" string)
("s" string)
("a" num2)
("Abs" num3))))
@print{}
Usage: cmd [OPTION ARGUMENT ...] ...
-f, --flag
-o, --optional=<number>
-n, --nary=<symbols> ...
-N, --nary1=<symbols> ...
-s, --single=<string>
--Flag
-B
-a <num2> ...
--Abs=<num3> ...
ERROR: getopt->parameter-list "unrecognized option" "-?"
@end example
@node Batch, , Parameter lists, Program Arguments
@subsection Batch
@code{(require 'batch)}
@ftindex batch
@noindent
The batch procedures provide a way to write and execute portable scripts
for a variety of operating systems. Each @code{batch:} procedure takes
as its first argument a parameter-list (@pxref{Parameter lists}). This
parameter-list argument @var{parms} contains named associations. Batch
currently uses 2 of these:
@table @code
@item batch-port
The port on which to write lines of the batch file.
@item batch-dialect
The syntax of batch file to generate. Currently supported are:
@itemize @bullet
@item
unix
@item
dos
@item
vms
@item
system
@item
*unknown*
@end itemize
@end table
@noindent
@file{batch.scm} uses 2 enhanced relational tables (@pxref{Database
Utilities}) to store information linking the names of
@code{operating-system}s to @code{batch-dialect}es.
@defun batch:initialize! database
Defines @code{operating-system} and @code{batch-dialect} tables and adds
the domain @code{operating-system} to the enhanced relational database
@var{database}.
@end defun
@defvar batch:platform
Is batch's best guess as to which operating-system it is running under.
@code{batch:platform} is set to @code{(software-type)}
(@pxref{Configuration}) unless @code{(software-type)} is @code{unix},
in which case finer distinctions are made.
@end defvar
@defun batch:call-with-output-script parms file proc
@var{proc} should be a procedure of one argument. If @var{file} is an
output-port, @code{batch:call-with-output-script} writes an appropriate
header to @var{file} and then calls @var{proc} with @var{file} as the
only argument. If @var{file} is a string,
@code{batch:call-with-output-script} opens a output-file of name
@var{file}, writes an appropriate header to @var{file}, and then calls
@var{proc} with the newly opened port as the only argument. Otherwise,
@code{batch:call-with-output-script} acts as if it was called with the
result of @code{(current-output-port)} as its third argument.
@end defun
@defun batch:apply-chop-to-fit proc arg1 arg2 @dots{} list
The procedure @var{proc} must accept at least one argument and return
@code{#t} if successful, @code{#f} if not.
@code{batch:apply-chop-to-fit} calls @var{proc} with @var{arg1},
@var{arg2}, @dots{}, and @var{chunk}, where @var{chunk} is a subset of
@var{list}. @code{batch:apply-chop-to-fit} tries @var{proc} with
successively smaller subsets of @var{list} until either @var{proc}
returns non-false, or the @var{chunk}s become empty.
@end defun
@noindent
The rest of the @code{batch:} procedures write (or execute if
@code{batch-dialect} is @code{system}) commands to the batch port which
has been added to @var{parms} or @code{(copy-tree @var{parms})} by the
code:
@example
(adjoin-parameters! @var{parms} (list 'batch-port @var{port}))
@end example
@defun batch:system parms string1 string2 @dots{}
Calls @code{batch:try-system} (below) with arguments, but signals an
error if @code{batch:try-system} returns @code{#f}.
@end defun
@noindent
These functions return a non-false value if the command was successfully
translated into the batch dialect and @code{#f} if not. In the case of
the @code{system} dialect, the value is non-false if the operation
suceeded.
@defun batch:try-system parms string1 string2 @dots{}
Writes a command to the @code{batch-port} in @var{parms} which executes
the program named @var{string1} with arguments @var{string2} @dots{}.
@end defun
@defun batch:run-script parms string1 string2 @dots{}
Writes a command to the @code{batch-port} in @var{parms} which executes
the batch script named @var{string1} with arguments @var{string2}
@dots{}.
@emph{Note:} @code{batch:run-script} and @code{batch:try-system} are not the
same for some operating systems (VMS).
@end defun
@defun batch:comment parms line1 @dots{}
Writes comment lines @var{line1} @dots{} to the @code{batch-port} in
@var{parms}.
@end defun
@defun batch:lines->file parms file line1 @dots{}
Writes commands to the @code{batch-port} in @var{parms} which create a
file named @var{file} with contents @var{line1} @dots{}.
@end defun
@defun batch:delete-file parms file
Writes a command to the @code{batch-port} in @var{parms} which deletes
the file named @var{file}.
@end defun
@defun batch:rename-file parms old-name new-name
Writes a command to the @code{batch-port} in @var{parms} which renames
the file @var{old-name} to @var{new-name}.
@end defun
@noindent
In addition, batch provides some small utilities very useful for writing
scripts:
@defun truncate-up-to path char
@defunx truncate-up-to path string
@defunx truncate-up-to path charlist
@var{path} can be a string or a list of strings. Returns @var{path}
sans any prefixes ending with a character of the second argument. This
can be used to derive a filename moved locally from elsewhere.
@example
(truncate-up-to "/usr/local/lib/slib/batch.scm" "/")
@result{} "batch.scm"
@end example
@end defun
@defun replace-suffix str old new
@var{str} can be a string or a list of strings. Returns a new string
(or strings) similar to @code{str} but with the suffix string @var{old}
removed and the suffix string @var{new} appended. If the end of
@var{str} does not match @var{old}, an error is signaled.
@example
(replace-suffix "/usr/local/lib/slib/batch.scm" ".scm" ".c")
@result{} "/usr/local/lib/slib/batch.c"
@end example
@end defun
@defun string-join joiner string1 @dots{}
Returns a new string consisting of all the strings @var{string1} @dots{}
in order appended together with the string @var{joiner} between each
adjacent pair.
@end defun
@defun must-be-first list1 list2
Returns a new list consisting of the elements of @var{list2} ordered so
that if some elements of @var{list1} are @code{equal?} to elements of
@var{list2}, then those elements will appear first and in the order of
@var{list1}.
@end defun
@defun must-be-last list1 list2
Returns a new list consisting of the elements of @var{list1} ordered so
that if some elements of @var{list2} are @code{equal?} to elements of
@var{list1}, then those elements will appear last and in the order of
@var{list2}.
@end defun
@defun os->batch-dialect osname
Returns its best guess for the @code{batch-dialect} to be used for the
operating-system named @var{osname}. @code{os->batch-dialect} uses the
tables added to @var{database} by @code{batch:initialize!}.
@end defun
@noindent
Here is an example of the use of most of batch's procedures:
@example
(require 'database-utilities)
@ftindex database-utilities
(require 'parameters)
@ftindex parameters
(require 'batch)
@ftindex batch
(define batch (create-database #f 'alist-table))
(batch:initialize! batch)
(define my-parameters
(list (list 'batch-dialect (os->batch-dialect batch:platform))
(list 'platform batch:platform)
(list 'batch-port (current-output-port)))) ;gets filled in later
(batch:call-with-output-script
my-parameters
"my-batch"
(lambda (batch-port)
(adjoin-parameters! my-parameters (list 'batch-port batch-port))
(and
(batch:comment my-parameters
"================ Write file with C program.")
(batch:rename-file my-parameters "hello.c" "hello.c~")
(batch:lines->file my-parameters "hello.c"
"#include <stdio.h>"
"int main(int argc, char **argv)"
"@{"
" printf(\"hello world\\n\");"
" return 0;"
"@}" )
(batch:system my-parameters "cc" "-c" "hello.c")
(batch:system my-parameters "cc" "-o" "hello"
(replace-suffix "hello.c" ".c" ".o"))
(batch:system my-parameters "hello")
(batch:delete-file my-parameters "hello")
(batch:delete-file my-parameters "hello.c")
(batch:delete-file my-parameters "hello.o")
(batch:delete-file my-parameters "my-batch")
)))
@end example
@noindent
Produces the file @file{my-batch}:
@example
#!/bin/sh
# "my-batch" build script created Sat Jun 10 21:20:37 1995
# ================ Write file with C program.
mv -f hello.c hello.c~
rm -f hello.c
echo '#include <stdio.h>'>>hello.c
echo 'int main(int argc, char **argv)'>>hello.c
echo '@{'>>hello.c
echo ' printf("hello world\n");'>>hello.c
echo ' return 0;'>>hello.c
echo '@}'>>hello.c
cc -c hello.c
cc -o hello hello.o
hello
rm -f hello
rm -f hello.c
rm -f hello.o
rm -f my-batch
@end example
@noindent
When run, @file{my-batch} prints:
@example
bash$ my-batch
mv: hello.c: No such file or directory
hello world
@end example
@node Printing Scheme, Time and Date, Program Arguments, Textual Conversion Packages
@section Printing Scheme
@menu
* Generic-Write:: 'generic-write
* Object-To-String:: 'object->string
* Pretty-Print:: 'pretty-print, 'pprint-file
@end menu
@node Generic-Write, Object-To-String, Printing Scheme, Printing Scheme
@subsection Generic-Write
@code{(require 'generic-write)}
@ftindex generic-write
@code{generic-write} is a procedure that transforms a Scheme data value
(or Scheme program expression) into its textual representation and
prints it. The interface to the procedure is sufficiently general to
easily implement other useful formatting procedures such as pretty
printing, output to a string and truncated output.@refill
@deffn Procedure generic-write obj display? width output
@table @var
@item obj
Scheme data value to transform.
@item display?
Boolean, controls whether characters and strings are quoted.
@item width
Extended boolean, selects format:
@table @asis
@item #f
single line format
@item integer > 0
pretty-print (value = max nb of chars per line)
@end table
@item output
Procedure of 1 argument of string type, called repeatedly with
successive substrings of the textual representation. This procedure can
return @code{#f} to stop the transformation.
@end table
The value returned by @code{generic-write} is undefined.
Examples:
@lisp
(write obj) @equiv{} (generic-write obj #f #f @var{display-string})
(display obj) @equiv{} (generic-write obj #t #f @var{display-string})
@end lisp
@noindent
where
@lisp
@var{display-string} @equiv{}
(lambda (s) (for-each write-char (string->list s)) #t)
@end lisp
@end deffn
@node Object-To-String, Pretty-Print, Generic-Write, Printing Scheme
@subsection Object-To-String
@code{(require 'object->string)}
@ftindex object->string
@defun object->string obj
Returns the textual representation of @var{obj} as a string.
@end defun
@node Pretty-Print, , Object-To-String, Printing Scheme
@subsection Pretty-Print
@code{(require 'pretty-print)}
@ftindex pretty-print
@deffn Procedure pretty-print obj
@deffnx Procedure pretty-print obj port
@code{pretty-print}s @var{obj} on @var{port}. If @var{port} is not
specified, @code{current-output-port} is used.
Example:
@example
@group
(pretty-print '((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15)
(16 17 18 19 20) (21 22 23 24 25)))
@print{} ((1 2 3 4 5)
@print{} (6 7 8 9 10)
@print{} (11 12 13 14 15)
@print{} (16 17 18 19 20)
@print{} (21 22 23 24 25))
@end group
@end example
@end deffn
@code{(require 'pprint-file)}
@ftindex pprint-file
@deffn Procedure pprint-file infile
@deffnx Procedure pprint-file infile outfile
Pretty-prints all the code in @var{infile}. If @var{outfile} is
specified, the output goes to @var{outfile}, otherwise it goes to
@code{(current-output-port)}.@refill
@end deffn
@defun pprint-filter-file infile proc outfile
@defunx pprint-filter-file infile proc
@var{infile} is a port or a string naming an existing file. Scheme
source code expressions and definitions are read from the port (or file)
and @var{proc} is applied to them sequentially.
@var{outfile} is a port or a string. If no @var{outfile} is specified
then @code{current-output-port} is assumed. These expanded expressions
are then @code{pretty-print}ed to this port.
Whitepsace and comments (introduced by @code{;}) which are not part of
scheme expressions are reproduced in the output. This procedure does
not affect the values returned by @code{current-input-port} and
@code{current-output-port}.@refill
@end defun
@code{pprint-filter-file} can be used to pre-compile macro-expansion and
thus can reduce loading time. The following will write into
@file{exp-code.scm} the result of expanding all defmacros in
@file{code.scm}.
@lisp
(require 'pprint-file)
@ftindex pprint-file
(require 'defmacroexpand)
@ftindex defmacroexpand
(defmacro:load "my-macros.scm")
(pprint-filter-file "code.scm" defmacro:expand* "exp-code.scm")
@end lisp
@node Time and Date, Vector Graphics, Printing Scheme, Textual Conversion Packages
@section Time and Date
@menu
* Posix Time:: 'posix-time
* Common-Lisp Time:: 'common-lisp-time
@end menu
@node Posix Time, Common-Lisp Time, Time and Date, Time and Date
@subsection Posix Time
@example
(require 'posix-time)
@ftindex posix-time
@end example
@deftp {Data Type} {Calendar-Time}
@cindex calendar time
@cindex caltime
is a datatype encapsulating time.
@end deftp
@deftp {Data Type} {Coordinated Universal Time}
@cindex Coordinated Universal Time
@cindex UTC
(abbreviated @dfn{UTC}) is a vector of integers representing time:
@enumerate 0
@item
seconds (0 - 61)
@item
minutes (0 - 59)
@item
hours since midnight (0 - 23)
@item
day of month (1 - 31)
@item
month (0 - 11). Note difference from @code{decode-universal-time}.
@item
the number of years since 1900. Note difference from
@code{decode-universal-time}.
@item
day of week (0 - 6)
@item
day of year (0 - 365)
@item
1 for daylight savings, 0 for regular time
@end enumerate
@end deftp
@defun gmtime caltime
Converts the calendar time @var{caltime} to UTC and returns it.
@defunx localtime caltime tz
Returns @var{caltime} converted to UTC relative to timezone @var{tz}.
@defunx localtime caltime
converts the calendar time @var{caltime} to a vector of integers
expressed relative to the user's time zone. @code{localtime} sets the
variable @var{*timezone*} with the difference between Coordinated
Universal Time (UTC) and local standard time in seconds
(@pxref{Time Zone,tzset}).
@end defun
@defun gmktime univtime
Converts a vector of integers in GMT Coordinated Universal Time (UTC)
format to a calendar time.
@defunx mktime univtime
Converts a vector of integers in local Coordinated Universal Time (UTC)
format to a calendar time.
@defunx mktime univtime tz
Converts a vector of integers in Coordinated Universal Time (UTC) format
(relative to time-zone @var{tz})
to calendar time.
@end defun
@defun asctime univtime
Converts the vector of integers @var{caltime} in Coordinated
Universal Time (UTC) format into a string of the form
@code{"Wed Jun 30 21:49:08 1993"}.
@end defun
@defun gtime caltime
@defunx ctime caltime
@defunx ctime caltime tz
Equivalent to @code{(asctime (gmtime @var{caltime}))},
@code{(asctime (localtime @var{caltime}))}, and
@code{(asctime (localtime @var{caltime} @var{tz}))}, respectively.
@end defun
@node Common-Lisp Time, , Posix Time, Time and Date
@subsection Common-Lisp Time
@defun get-decoded-time
Equivalent to @code{(decode-universal-time (get-universal-time))}.
@end defun
@defun get-universal-time
Returns the current time as @dfn{Universal Time}, number of seconds
since 00:00:00 Jan 1, 1900 GMT. Note that the reference time is
different from @code{current-time}.
@end defun
@defun decode-universal-time univtime
Converts @var{univtime} to @dfn{Decoded Time} format.
Nine values are returned:
@enumerate 0
@item
seconds (0 - 61)
@item
minutes (0 - 59)
@item
hours since midnight
@item
day of month
@item
month (1 - 12). Note difference from @code{gmtime} and @code{localtime}.
@item
year (A.D.). Note difference from @code{gmtime} and @code{localtime}.
@item
day of week (0 - 6)
@item
#t for daylight savings, #f otherwise
@item
hours west of GMT (-24 - +24)
@end enumerate
Notice that the values returned by @code{decode-universal-time} do not
match the arguments to @code{encode-universal-time}.
@end defun
@defun encode-universal-time second minute hour date month year
@defunx encode-universal-time second minute hour date month year time-zone
Converts the arguments in Decoded Time format to Universal Time format.
If @var{time-zone} is not specified, the returned time is adjusted for
daylight saving time. Otherwise, no adjustment is performed.
Notice that the values returned by @code{decode-universal-time} do not
match the arguments to @code{encode-universal-time}.
@end defun
@node Vector Graphics, , Time and Date, Textual Conversion Packages
@section Vector Graphics
@menu
* Tektronix Graphics Support::
@end menu
@node Tektronix Graphics Support, , Vector Graphics, Vector Graphics
@subsection Tektronix Graphics Support
@emph{Note:} The Tektronix graphics support files need more work, and
are not complete.
@subsubsection Tektronix 4000 Series Graphics
The Tektronix 4000 series graphics protocol gives the user a 1024 by
1024 square drawing area. The origin is in the lower left corner of the
screen. Increasing y is up and increasing x is to the right.
The graphics control codes are sent over the current-output-port and can
be mixed with regular text and ANSI or other terminal control sequences.
@deffn Procedure tek40:init
@end deffn
@deffn Procedure tek40:graphics
@end deffn
@deffn Procedure tek40:text
@end deffn
@deffn Procedure tek40:linetype linetype
@end deffn
@deffn Procedure tek40:move x y
@end deffn
@deffn Procedure tek40:draw x y
@end deffn
@deffn Procedure tek40:put-text x y str
@end deffn
@deffn Procedure tek40:reset
@end deffn
@subsubsection Tektronix 4100 Series Graphics
The graphics control codes are sent over the current-output-port and can
be mixed with regular text and ANSI or other terminal control sequences.
@deffn Procedure tek41:init
@end deffn
@deffn Procedure tek41:reset
@end deffn
@deffn Procedure tek41:graphics
@end deffn
@deffn Procedure tek41:move x y
@end deffn
@deffn Procedure tek41:draw x y
@end deffn
@deffn Procedure tek41:point x y number
@end deffn
@deffn Procedure tek41:encode-x-y x y
@end deffn
@deffn Procedure tek41:encode-int number
@end deffn
@node Mathematical Packages, Database Packages, Textual Conversion Packages, Top
@chapter Mathematical Packages
@menu
* Bit-Twiddling:: 'logical
* Modular Arithmetic:: 'modular
* Prime Testing and Generation:: 'primes
* Prime Factorization:: 'factor
* Random Numbers:: 'random
* Cyclic Checksum:: 'make-crc
* Plotting:: 'charplot
* Root Finding:: 'root
* Commutative Rings:: 'commutative-ring
* Determinant::
@end menu
@node Bit-Twiddling, Modular Arithmetic, Mathematical Packages, Mathematical Packages
@section Bit-Twiddling
@code{(require 'logical)}
@ftindex logical
The bit-twiddling functions are made available through the use of the
@code{logical} package. @code{logical} is loaded by inserting
@code{(require 'logical)} before the code that uses these
@ftindex logical
functions.@refill
@defun logand n1 n1
Returns the integer which is the bit-wise AND of the two integer
arguments.
Example:
@lisp
(number->string (logand #b1100 #b1010) 2)
@result{} "1000"
@end lisp
@end defun
@defun logior n1 n2
Returns the integer which is the bit-wise OR of the two integer
arguments.
Example:
@lisp
(number->string (logior #b1100 #b1010) 2)
@result{} "1110"
@end lisp
@end defun
@defun logxor n1 n2
Returns the integer which is the bit-wise XOR of the two integer
arguments.
Example:
@lisp
(number->string (logxor #b1100 #b1010) 2)
@result{} "110"
@end lisp
@end defun
@defun lognot n
Returns the integer which is the 2s-complement of the integer argument.
Example:
@lisp
(number->string (lognot #b10000000) 2)
@result{} "-10000001"
(number->string (lognot #b0) 2)
@result{} "-1"
@end lisp
@end defun
@defun logtest j k
@example
(logtest j k) @equiv{} (not (zero? (logand j k)))
(logtest #b0100 #b1011) @result{} #f
(logtest #b0100 #b0111) @result{} #t
@end example
@end defun
@defun logbit? index j
@example
(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)
(logbit? 0 #b1101) @result{} #t
(logbit? 1 #b1101) @result{} #f
(logbit? 2 #b1101) @result{} #t
(logbit? 3 #b1101) @result{} #t
(logbit? 4 #b1101) @result{} #f
@end example
@end defun
@defun ash int count
Returns an integer equivalent to
@code{(inexact->exact (floor (* @var{int} (expt 2 @var{count}))))}.@refill
Example:
@lisp
(number->string (ash #b1 3) 2)
@result{} "1000"
(number->string (ash #b1010 -1) 2)
@result{} "101"
@end lisp
@end defun
@defun logcount n
Returns the number of bits in integer @var{n}. If integer is positive,
the 1-bits in its binary representation are counted. If negative, the
0-bits in its two's-complement binary representation are counted. If 0,
0 is returned.
Example:
@lisp
(logcount #b10101010)
@result{} 4
(logcount 0)
@result{} 0
(logcount -2)
@result{} 1
@end lisp
@end defun
@defun integer-length n
Returns the number of bits neccessary to represent @var{n}.
Example:
@lisp
(integer-length #b10101010)
@result{} 8
(integer-length 0)
@result{} 0
(integer-length #b1111)
@result{} 4
@end lisp
@end defun
@defun integer-expt n k
Returns @var{n} raised to the non-negative integer exponent @var{k}.
Example:
@lisp
(integer-expt 2 5)
@result{} 32
(integer-expt -3 3)
@result{} -27
@end lisp
@end defun
@defun bit-extract n start end
Returns the integer composed of the @var{start} (inclusive) through
@var{end} (exclusive) bits of @var{n}. The @var{start}th bit becomes
the 0-th bit in the result.@refill
Example:
@lisp
(number->string (bit-extract #b1101101010 0 4) 2)
@result{} "1010"
(number->string (bit-extract #b1101101010 4 9) 2)
@result{} "10110"
@end lisp
@end defun
@node Modular Arithmetic, Prime Testing and Generation, Bit-Twiddling, Mathematical Packages
@section Modular Arithmetic
@code{(require 'modular)}
@ftindex modular
@defun extended-euclid n1 n2
Returns a list of 3 integers @code{(d x y)} such that d = gcd(@var{n1},
@var{n2}) = @var{n1} * x + @var{n2} * y.@refill
@end defun
@defun symmetric:modulus n
Returns @code{(quotient (+ -1 n) -2)} for positive odd integer @var{n}.
@end defun
@defun modulus->integer modulus
Returns the non-negative integer characteristic of the ring formed when
@var{modulus} is used with @code{modular:} procedures.
@end defun
@defun modular:normalize modulus n
Returns the integer @code{(modulo @var{n} (modulus->integer
@var{modulus}))} in the representation specified by @var{modulus}.
@end defun
@noindent
The rest of these functions assume normalized arguments; That is, the
arguments are constrained by the following table:
@noindent
For all of these functions, if the first argument (@var{modulus}) is:
@table @code
@item positive?
Work as before. The result is between 0 and @var{modulus}.
@item zero?
The arguments are treated as integers. An integer is returned.
@item negative?
The arguments and result are treated as members of the integers modulo
@code{(+ 1 (* -2 @var{modulus}))}, but with @dfn{symmetric}
representation; i.e. @code{(<= (- @var{modulus}) @var{n}
@var{modulus})}.
@end table
@noindent
If all the arguments are fixnums the computation will use only fixnums.
@defun modular:invertable? modulus k
Returns @code{#t} if there exists an integer n such that @var{k} * n
@equiv{} 1 mod @var{modulus}, and @code{#f} otherwise.
@end defun
@defun modular:invert modulus k2
Returns an integer n such that 1 = (n * @var{k2}) mod @var{modulus}. If
@var{k2} has no inverse mod @var{modulus} an error is signaled.
@end defun
@defun modular:negate modulus k2
Returns (@minus{}@var{k2}) mod @var{modulus}.
@end defun
@defun modular:+ modulus k2 k3
Returns (@var{k2} + @var{k3}) mod @var{modulus}.
@end defun
@defun modular:@minus{} modulus k2 k3
Returns (@var{k2} @minus{} @var{k3}) mod @var{modulus}.
@end defun
@defun modular:* modulus k2 k3
Returns (@var{k2} * @var{k3}) mod @var{modulus}.
The Scheme code for @code{modular:*} with negative @var{modulus} is not
completed for fixnum-only implementations.
@end defun
@defun modular:expt modulus k2 k3
Returns (@var{k2} ^ @var{k3}) mod @var{modulus}.
@end defun
@node Prime Testing and Generation, Prime Factorization, Modular Arithmetic, Mathematical Packages
@section Prime Testing and Generation
@code{(require 'primes)}
@ftindex primes
This package tests and generates prime numbers. The strategy used is
as follows:
@itemize @bullet
@item
First, use trial division by small primes (primes less than 1000) to
quickly weed out composites with small factors. As a side benefit, this
makes the test precise for numbers up to one million.
@item
Second, apply the Miller-Rabin primality test to detect (with high
probability) any remaining composites.
@end itemize
The Miller-Rabin test is a Monte-Carlo test---in other words, it's fast
and it gets the right answer with high probability. For a candidate
that @emph{is} prime, the Miller-Rabin test is certain to report
"prime"; it will never report "composite". However, for a candidate
that is composite, there is a (small) probability that the Miller-Rabin
test will erroneously report "prime". This probability can be made
arbitarily small by adjusting the number of iterations of the
Miller-Rabin test.
@defun probably-prime? candidate
@defunx probably-prime? candidate iter
Returns @code{#t} if @code{candidate} is probably prime. The optional
parameter @code{iter} controls the number of iterations of the
Miller-Rabin test. The probability of a composite candidate being
mistaken for a prime is at most @code{(1/4)^iter}. The default value of
@code{iter} is 15, which makes the probability less than 1 in 10^9.
@end defun
@defun primes< start count
@defunx primes< start count iter
@defunx primes> start count
@defunx primes> start count iter
Returns a list of the first @code{count} odd probable primes less (more)
than or equal to @code{start}. The optional parameter @code{iter}
controls the number of iterations of the Miller-Rabin test for each
candidate. The probability of a composite candidate being mistaken for
a prime is at most @code{(1/4)^iter}. The default value of @code{iter}
is 15, which makes the probability less than 1 in 10^9.
@end defun
@menu
* The Miller-Rabin Test:: How the Miller-Rabin test works
@end menu
@node The Miller-Rabin Test, , Prime Testing and Generation, Prime Testing and Generation
@subsection Theory
Rabin and Miller's result can be summarized as follows. Let @code{p}
(the candidate prime) be any odd integer greater than 2. Let @code{b}
(the "base") be an integer in the range @code{2 ... p-1}. There is a
fairly simple Boolean function---call it @code{C}, for
"Composite"---with the following properties:
@itemize @bullet
@item
If @code{p} is prime, @code{C(p, b)} is false for all @code{b} in the range
@code{2 ... p-1}.
@item
If @code{p} is composite, @code{C(p, b)} is false for at most 1/4 of all
@code{b} in the range @code{ 2 ... p-1}. (If the test fails for base
@code{b}, @code{p} is called a @emph{strong pseudo-prime to base
@code{b}}.)
@end itemize
For details of @code{C}, and why it fails for at most 1/4 of the
potential bases, please consult a book on number theory or cryptography
such as "A Course in Number Theory and Cryptography" by Neal Koblitz,
published by Springer-Verlag 1994.
There is nothing probablistic about this result. It's true for all
@code{p}. If we had time to test @code{(1/4)p + 1} different bases, we
could definitively determine the primality of @code{p}. For large
candidates, that would take much too long---much longer than the simple
approach of dividing by all numbers up to @code{sqrt(p)}. This is
where probability enters the picture.
Suppose we have some candidate prime @code{p}. Pick a random integer
@code{b} in the range @code{2 ... p-1}. Compute @code{C(p,b)}. If
@code{p} is prime, the result will certainly be false. If @code{p} is
composite, the probability is at most 1/4 that the result will be false
(demonstrating that @code{p} is a strong pseudoprime to base @code{b}).
The test can be repeated with other random bases. If @code{p} is prime,
each test is certain to return false. If @code{p} is composite, the
probability of @code{C(p,b)} returning false is at most 1/4 for each
test. Since the @code{b} are chosen at random, the tests outcomes are
independent. So if @code{p} is composite and the test is repeated, say,
15 times, the probability of it returning false all fifteen times is at
most (1/4)^15, or about 10^-9. If the test is repeated 30 times, the
probability of failure drops to at most 8.3e-25.
Rabin and Miller's result holds for @emph{all} candidates @code{p}.
However, if the candidate @code{p} is picked at random, the probability
of the Miller-Rabin test failing is much less than the computed bound.
This is because, for @emph{most} composite numbers, the fraction of
bases that cause the test to fail is much less than 1/4. For example,
if you pick a random odd number less than 1000 and apply the
Miller-Rabin test with only 3 random bases, the computed failure bound
is (1/4)^3, or about 1.6e-2. However, the actual probability of failure
is much less---about 7.2e-5. If you accidentally pick 703 to test for
primality, the probability of failure is (161/703)^3, or about 1.2e-2,
which is almost as high as the computed bound. This is because 703 is a
strong pseudoprime to 161 bases. But if you pick at random there is
only a small chance of picking 703, and no other number less than 1000
has that high a percentage of pseudoprime bases.
The Miller-Rabin test is sometimes used in a slightly different fashion,
where it can, at least in principle, cause problems. The weaker version
uses small prime bases instead of random bases. If you are picking
candidates at random and testing for primality, this works well since
very few composites are strong pseudo-primes to small prime bases. (For
example, there is only one composite less than 2.5e10 that is a strong
pseudo-prime to the bases 2, 3, 5, and 7.) The problem with this
approach is that once a candidate has been picked, the test is
deterministic. This distinction is subtle, but real. With the
randomized test, for @emph{any} candidate you pick---even if your
candidate-picking procedure is strongly biased towards troublesome
numbers, the test will work with high probability. With the
deterministic version, for any particular candidate, the test will
either work (with probability 1), or fail (with probability 1). It
won't fail for very many candidates, but that won't be much consolation
if your candidate-picking procedure is somehow biased toward troublesome
numbers.
@node Prime Factorization, Random Numbers, Prime Testing and Generation, Mathematical Packages
@section Prime Factorization
@code{(require 'factor)}
@ftindex factor
@defun factor k
Returns a list of the prime factors of @var{k}. The order of the
factors is unspecified. In order to obtain a sorted list do
@code{(sort! (factor k) <)}.@refill
@end defun
@emph{Note:} The rest of these procedures implement the Solovay-Strassen
primality test. This test has been superseeded by the faster
@xref{Prime Testing and Generation, probably-prime?}. However these are
left here as they take up little space and may be of use to an
implementation without bignums.
See Robert Solovay and Volker Strassen, @cite{A Fast Monte-Carlo Test
for Primality}, SIAM Journal on Computing, 1977, pp 84-85.
@defun jacobi-symbol p q
Returns the value (+1, @minus{}1, or 0) of the Jacobi-Symbol of exact
non-negative integer @var{p} and exact positive odd integer
@var{q}.@refill
@end defun
@defun prime? p
Returns @code{#f} if @var{p} is composite; @code{#t} if @var{p} is
prime. There is a slight chance @code{(expt 2 (- prime:trials))} that a
composite will return @code{#t}.@refill
@end defun
@defun prime:trials
Is the maxinum number of iterations of Solovay-Strassen that will be
done to test a number for primality.
@end defun
@node Random Numbers, Cyclic Checksum, Prime Factorization, Mathematical Packages
@section Random Numbers
@code{(require 'random)}
@ftindex random
@deffn Procedure random n
@deffnx Procedure random n state
Accepts a positive integer or real @var{n} and returns a number of the
same type between zero (inclusive) and @var{n} (exclusive). The values
returned have a uniform distribution.@refill
The optional argument @var{state} must be of the type produced by
@code{(make-random-state)}. It defaults to the value of the variable
@code{*random-state*}. This object is used to maintain the state of the
pseudo-random-number generator and is altered as a side effect of the
@code{random} operation.@refill
@end deffn
@defvar *random-state*
Holds a data structure that encodes the internal state of the
random-number generator that @code{random} uses by default. The nature
of this data structure is implementation-dependent. It may be printed
out and successfully read back in, but may or may not function correctly
as a random-number state object in another implementation.@refill
@end defvar
@deffn Procedure make-random-state
@deffnx Procedure make-random-state state
Returns a new object of type suitable for use as the value of the
variable @code{*random-state*} and as a second argument to
@code{random}. If argument @var{state} is given, a copy of it is
returned. Otherwise a copy of @code{*random-state*} is returned.@refill
@end deffn
If inexact numbers are support by the Scheme implementation,
@file{randinex.scm} will be loaded as well. @file{randinex.scm}
contains procedures for generating inexact distributions.@refill
@deffn Procedure random:uniform state
Returns an uniformly distributed inexact real random number in the
range between 0 and 1.
@end deffn
@deffn Procedure random:solid-sphere! vect
@deffnx Procedure random:solid-sphere! vect state
Fills @var{vect} with inexact real random numbers the sum of whose
squares is less than 1.0. Thinking of @var{vect} as coordinates in
space of dimension @var{n} = @code{(vector-length @var{vect})}, the
coordinates are uniformly distributed within the unit @var{n}-shere.
The sum of the squares of the numbers is returned.@refill
@end deffn
@deffn Procedure random:hollow-sphere! vect
@deffnx Procedure random:hollow-sphere! vect state
Fills @var{vect} with inexact real random numbers the sum of whose
squares is equal to 1.0. Thinking of @var{vect} as coordinates in space
of dimension n = @code{(vector-length @var{vect})}, the coordinates are
uniformly distributed over the surface of the unit n-shere.@refill
@end deffn
@deffn Procedure random:normal
@deffnx Procedure random:normal state
Returns an inexact real in a normal distribution with mean 0 and
standard deviation 1. For a normal distribution with mean @var{m} and
standard deviation @var{d} use @code{(+ @var{m} (* @var{d}
(random:normal)))}.@refill
@end deffn
@deffn Procedure random:normal-vector! vect
@deffnx Procedure random:normal-vector! vect state
Fills @var{vect} with inexact real random numbers which are independent
and standard normally distributed (i.e., with mean 0 and variance 1).
@end deffn
@deffn Procedure random:exp
@deffnx Procedure random:exp state
Returns an inexact real in an exponential distribution with mean 1. For
an exponential distribution with mean @var{u} use (* @var{u}
(random:exp)).@refill
@end deffn
@node Cyclic Checksum, Plotting, Random Numbers, Mathematical Packages
@section Cyclic Checksum
@code{(require 'make-crc)}
@ftindex make-crc
@defun make-port-crc
@defunx make-port-crc degree
@defunx make-port-crc degree generator
Returns an expression for a procedure of one argument, a port. This
procedure reads characters from the port until the end of file and
returns the integer checksum of the bytes read.
The integer @var{degree}, if given, specifies the degree of the
polynomial being computed -- which is also the number of bits computed
in the checksums. The default value is 32.
The integer @var{generator} specifies the polynomial being computed.
The power of 2 generating each 1 bit is the exponent of a term of the
polynomial. The bit at position @var{degree} is implicit and should not
be part of @var{generator}. This allows systems with numbers limited to
32 bits to calculate 32 bit checksums. The default value of
@var{generator} when @var{degree} is 32 (its default) is:
@example
(make-port-crc 32 #b00000100110000010001110110110111)
@end example
Creates a procedure to calculate the P1003.2/D11.2 (POSIX.2) 32-bit
checksum from the polynomial:
@example
32 26 23 22 16 12 11
( x + x + x + x + x + x + x +
10 8 7 5 4 2 1
x + x + x + x + x + x + x + 1 ) mod 2
@end example
@end defun
@example
(require 'make-crc)
@ftindex make-crc
(define crc32 (slib:eval (make-port-crc)))
(define (file-check-sum file) (call-with-input-file file crc32))
(file-check-sum (in-vicinity (library-vicinity) "ratize.scm"))
@result{} 3553047446
@end example
@node Plotting, Root Finding, Cyclic Checksum, Mathematical Packages
@section Plotting on Character Devices
@code{(require 'charplot)}
@ftindex charplot
The plotting procedure is made available through the use of the
@code{charplot} package. @code{charplot} is loaded by inserting
@code{(require 'charplot)} before the code that uses this
@ftindex charplot
procedure.@refill
@defvar charplot:height
The number of rows to make the plot vertically.
@end defvar
@defvar charplot:width
The number of columns to make the plot horizontally.
@end defvar
@deffn Procedure plot! coords x-label y-label
@var{coords} is a list of pairs of x and y coordinates. @var{x-label}
and @var{y-label} are strings with which to label the x and y
axes.@refill
Example:
@example
(require 'charplot)
@ftindex charplot
(set! charplot:height 19)
(set! charplot:width 45)
(define (make-points n)
(if (zero? n)
'()
(cons (cons (/ n 6) (sin (/ n 6))) (make-points (1- n)))))
(plot! (make-points 37) "x" "Sin(x)")
@print{}
@group
Sin(x) ______________________________________________
1.25|- |
| |
1|- **** |
| ** ** |
750.0e-3|- * * |
| * * |
500.0e-3|- * * |
| * |
250.0e-3|- * |
| * * |
0|-------------------*--------------------------|
| * |
-250.0e-3|- * * |
| * * |
-500.0e-3|- * |
| * * |
-750.0e-3|- * * |
| ** ** |
-1|- **** |
|____________:_____._____:_____._____:_________|
x 2 4
@end group
@end example
@end deffn
@node Root Finding, Commutative Rings, Plotting, Mathematical Packages
@section Root Finding
@code{(require 'root)}
@ftindex root
@defun newtown:find-integer-root f df/dx x0
Given integer valued procedure @var{f}, its derivative (with respect to
its argument) @var{df/dx}, and initial integer value @var{x0} for which
@var{df/dx}(@var{x0}) is non-zero, returns an integer @var{x} for which
@var{f}(@var{x}) is closer to zero than either of the integers adjacent
to @var{x}; or returns @code{#f} if such an integer can't be found.
To find the closest integer to a given integers square root:
@example
(define (integer-sqrt y)
(newton:find-integer-root
(lambda (x) (- (* x x) y))
(lambda (x) (* 2 x))
(ash 1 (quotient (integer-length y) 2))))
(integer-sqrt 15) @result{} 4
@end example
@end defun
@defun integer-sqrt y
Given a non-negative integer @var{y}, returns the rounded square-root of
@var{y}.
@end defun
@defun newton:find-root f df/dx x0 prec
Given real valued procedures @var{f}, @var{df/dx} of one (real)
argument, initial real value @var{x0} for which @var{df/dx}(@var{x0}) is
non-zero, and positive real number @var{prec}, returns a real @var{x}
for which @code{abs}(@var{f}(@var{x})) is less than @var{prec}; or
returns @code{#f} if such a real can't be found.
If @code{prec} is instead a negative integer, @code{newton:find-root}
returns the result of -@var{prec} iterations.
@end defun
@noindent
H. J. Orchard, @cite{The Laguerre Method for Finding the Zeros of
Polynomials}, IEEE Transactions on Circuits and Systems, Vol. 36,
No. 11, November 1989, pp 1377-1381.
@quotation
There are 2 errors in Orchard's Table II. Line k=2 for starting
value of 1000+j0 should have Z_k of 1.0475 + j4.1036 and line k=2
for starting value of 0+j1000 should have Z_k of 1.0988 + j4.0833.
@end quotation
@defun laguerre:find-root f df/dz ddf/dz^2 z0 prec
Given complex valued procedure @var{f} of one (complex) argument, its
derivative (with respect to its argument) @var{df/dx}, its second
derivative @var{ddf/dz^2}, initial complex value @var{z0}, and positive
real number @var{prec}, returns a complex number @var{z} for which
@code{magnitude}(@var{f}(@var{z})) is less than @var{prec}; or returns
@code{#f} if such a number can't be found.
If @code{prec} is instead a negative integer, @code{laguerre:find-root}
returns the result of -@var{prec} iterations.
@end defun
@defun laguerre:find-polynomial-root deg f df/dz ddf/dz^2 z0 prec
Given polynomial procedure @var{f} of integer degree @var{deg} of one
argument, its derivative (with respect to its argument) @var{df/dx}, its
second derivative @var{ddf/dz^2}, initial complex value @var{z0}, and
positive real number @var{prec}, returns a complex number @var{z} for
which @code{magnitude}(@var{f}(@var{z})) is less than @var{prec}; or
returns @code{#f} if such a number can't be found.
If @code{prec} is instead a negative integer,
@code{laguerre:find-polynomial-root} returns the result of -@var{prec}
iterations.
@end defun
@node Commutative Rings, Determinant, Root Finding, Mathematical Packages
@section Commutative Rings
Scheme provides a consistent and capable set of numeric functions.
Inexacts implement a field; integers a commutative ring (and Euclidean
domain). This package allows the user to use basic Scheme numeric
functions with symbols and non-numeric elements of commutative rings.
@code{(require 'commutative-ring)}
@ftindex commutative-ring
@cindex ring, commutative
The @dfn{commutative-ring} package makes @code{+}, @code{-}, @code{*},
@code{/}, and @code{^} @dfn{careful} in the sense that any non-numeric
@cindex careful
arguments which it cannot reduce appear in the expression output. In
order to see what working with this package is like, self-set all the
single letter identifiers (to their corresponding symbols).
@example
(define a 'a)
@dots{}
(define z 'z)
@end example
Or just @code{(require 'self-set)}. Now for some sample expressions:
@example
(* (+ a b) (+ a b)) @result{} (+ (* 2 a b) (^ a 2) (^ b 2))
(* (+ a b) (- a b)) @result{} (- (^ a 2) (^ b 2))
(* (- a b) (- a b)) @result{} (- (+ (^ a 2) (^ b 2)) (* 2 a b))
(* (- a b) (+ a b)) @result{} (- (^ a 2) (^ b 2))
(/ (+ a b) (+ c d)) @result{} (+ (/ a (+ c d)) (/ b (+ c d)))
(/ (+ a b) (- c d)) @result{} (+ (/ a (- c d)) (/ b (- c d)))
(/ (- a b) (- c d)) @result{} (- (/ a (- c d)) (/ b (- c d)))
(/ (- a b) (+ c d)) @result{} (- (/ a (+ c d)) (/ b (+ c d)))
(^ (+ a b) 3) @result{} (+ (* 3 a (^ b 2)) (* 3 b (^ a 2)) (^ a 3) (^ b 3))
(^ (+ a 2) 3) @result{} (+ 8 (* a 12) (* (^ a 2) 6) (^ a 3))
@end example
Use of this package is not restricted to simple arithmetic expressions:
@example
(require 'determinant)
(determinant '((a b c) (d e f) (g h i))) @result{}
(- (+ (* a e i) (* b f g) (* c d h)) (* a f h) (* b d i) (* c e g))
@end example
The @dfn{commutative-ring} package differs from other extension
mechanisms in that it automatically, using properties true of all
commutative rings, simplifies sum and product expressions containing
non-numeric elements. One need only specify behavior for @code{+} or
@code{*} for cases where expressions involving objects reduce to numbers
or to expressions involving different non-numeric elements.
Currently, only @code{+}, @code{-}, @code{*}, @code{/}, and @code{^}
support non-numeric elements. Expressions with @code{-} are converted
to equivalent expressions without @code{-}, so behavior for @code{-} is
not defined separately. @code{/} expressions are handled similarly.
This list might be extended to include @code{quotient}, @code{modulo},
@code{remainder}, @code{lcm}, and @code{gcd}; but these work only for
the more restrictive Euclidean (Unique Factorization) Domain.
@cindex Unique Factorization
@cindex Euclidean Domain
@defun cring:define-rule op sub-op1 sub-op2 reduction
Defines a rule for the case when the operation represented by symbol
@var{op} is applied to lists whose @code{car}s are @var{sub-op1} and
@var{sub-op2}, respectively. The argument @var{reduction} is a
procedure accepting 2 arguments which will be lists whose @code{car}s
are @var{sub-op1} and @var{sub-op2}.
@defunx cring:define-rule op sub-op1 'identity reduction
Defines a rule for the case when the operation represented by symbol
@var{op} is applied to a list whose @code{car} is @var{sub-op1}, and
some other argument. @var{Reduction} will be called with the list whose
@code{car} is @var{sub-op1} and some other argument.
If @var{reduction} returns @code{#f}, the reduction has failed and other
reductions will be tried. If @var{reduction} returns a non-false value,
that value will replace the two arguments in arithmetic (@code{+},
@code{-}, and @code{*}) calculations involving non-numeric elements.
The operations @code{+} and @code{*} are assumed commutative; hence both
orders of arguments to @var{reduction} will be tried if necessary.
The following rule is the built-in definition for distributing @code{*}
over @code{+}.
@example
(cring:define-rule
'* '+ 'identity
(lambda (exp1 exp2)
(apply + (map (lambda (trm) (* trm exp2)) (cdr exp1))))))
@end example
@end defun
@heading How to Create a Commutative Ring
The first step in creating your commutative ring is to write procedures
to create elements of the ring. A non-numeric element of the ring must
be represented as a list whose first element is a symbol or string.
This first element identifies the type of the object. A convenient and
clear convention is to make the type-identifying element be the same
symbol whose top-level value is the procedure to create it.
@example
(define (n . list1)
(cond ((and (= 2 (length list1))
(eq? (car list1) (cadr list1)))
0)
((not (term< (first list1) (last1 list1)))
(apply n (reverse list1)))
(else (cons 'n list1))))
(define (s x y) (n x y))
(define (m . list1)
(cond ((neq? (first list1) (term_min list1))
(apply m (cyclicrotate list1)))
((term< (last1 list1) (cadr list1))
(apply m (reverse (cyclicrotate list1))))
(else (cons 'm list1))))
@end example
Define a procedure to multiply 2 non-numeric elements of the ring.
Other multiplicatons are handled automatically. Objects for which rules
have @emph{not} been defined are not changed.
@example
(define (n*n ni nj)
(let ((list1 (cdr ni)) (list2 (cdr nj)))
(cond ((null? (intersection list1 list2)) #f)
((and (eq? (last1 list1) (first list2))
(neq? (first list1) (last1 list2)))
(apply n (splice list1 list2)))
((and (eq? (first list1) (first list2))
(neq? (last1 list1) (last1 list2)))
(apply n (splice (reverse list1) list2)))
((and (eq? (last1 list1) (last1 list2))
(neq? (first list1) (first list2)))
(apply n (splice list1 (reverse list2))))
((and (eq? (last1 list1) (first list2))
(eq? (first list1) (last1 list2)))
(apply m (cyclicsplice list1 list2)))
((and (eq? (first list1) (first list2))
(eq? (last1 list1) (last1 list2)))
(apply m (cyclicsplice (reverse list1) list2)))
(else #f))))
@end example
Test the procedures to see if they work.
@example
;;; where cyclicrotate(list) is cyclic rotation of the list one step
;;; by putting the first element at the end
(define (cyclicrotate list1)
(append (rest list1) (list (first list1))))
;;; and where term_min(list) is the element of the list which is
;;; first in the term ordering.
(define (term_min list1)
(car (sort list1 term<)))
(define (term< sym1 sym2)
(string<? (symbol->string sym1) (symbol->string sym2)))
(define first car)
(define rest cdr)
(define (last1 list1) (car (last-pair list1)))
(define (neq? obj1 obj2) (not (eq? obj1 obj2)))
;;; where splice is the concatenation of list1 and list2 except that their
;;; common element is not repeated.
(define (splice list1 list2)
(cond ((eq? (last1 list1) (first list2))
(append list1 (cdr list2)))
(else (error 'splice list1 list2))))
;;; where cyclicsplice is the result of leaving off the last element of
;;; splice(list1,list2).
(define (cyclicsplice list1 list2)
(cond ((and (eq? (last1 list1) (first list2))
(eq? (first list1) (last1 list2)))
(butlast (splice list1 list2) 1))
(else (error 'cyclicsplice list1 list2))))
(N*N (S a b) (S a b)) @result{} (m a b)
@end example
Then register the rule for multiplying type N objects by type N objects.
@example
(cring:define-rule '* 'N 'N N*N))
@end example
Now we are ready to compute!
@example
(define (t)
(define detM
(+ (* (S g b)
(+ (* (S f d)
(- (* (S a f) (S d g)) (* (S a g) (S d f))))
(* (S f f)
(- (* (S a g) (S d d)) (* (S a d) (S d g))))
(* (S f g)
(- (* (S a d) (S d f)) (* (S a f) (S d d))))))
(* (S g d)
(+ (* (S f b)
(- (* (S a g) (S d f)) (* (S a f) (S d g))))
(* (S f f)
(- (* (S a b) (S d g)) (* (S a g) (S d b))))
(* (S f g)
(- (* (S a f) (S d b)) (* (S a b) (S d f))))))
(* (S g f)
(+ (* (S f b)
(- (* (S a d) (S d g)) (* (S a g) (S d d))))
(* (S f d)
(- (* (S a g) (S d b)) (* (S a b) (S d g))))
(* (S f g)
(- (* (S a b) (S d d)) (* (S a d) (S d b))))))
(* (S g g)
(+ (* (S f b)
(- (* (S a f) (S d d)) (* (S a d) (S d f))))
(* (S f d)
(- (* (S a b) (S d f)) (* (S a f) (S d b))))
(* (S f f)
(- (* (S a d) (S d b)) (* (S a b) (S d d))))))))
(* (S b e) (S c a) (S e c)
detM
))
(pretty-print (t))
@print{}
(- (+ (m a c e b d f g)
(m a c e b d g f)
(m a c e b f d g)
(m a c e b f g d)
(m a c e b g d f)
(m a c e b g f d))
(* 2 (m a b e c) (m d f g))
(* (m a c e b d) (m f g))
(* (m a c e b f) (m d g))
(* (m a c e b g) (m d f)))
@end example
@node Determinant, , Commutative Rings, Mathematical Packages
@section Determinant
@example
(require 'determinant)
(determinant '((1 2) (3 4))) @result{} -2
(determinant '((1 2 3) (4 5 6) (7 8 9))) @result{} 0
(determinant '((1 2 3 4) (5 6 7 8) (9 10 11 12))) @result{} 0
@end example
@node Database Packages, Other Packages, Mathematical Packages, Top
@chapter Database Packages
@menu
* Base Table::
* Relational Database:: 'relational-database
* Weight-Balanced Trees:: 'wt-tree
@end menu
@node Base Table, Relational Database, Database Packages, Database Packages
@section Base Table
A base table implementation using Scheme association lists is available
as the value of the identifier @code{alist-table} after doing:
@code{(require 'alist-table)}
@ftindex alist-table
Association list base tables are suitable for small databases and
support all Scheme types when temporary and readable/writeable Scheme
types when saved. I hope support for other base table implementations
will be added in the future.
This rest of this section documents the interface for a base table
implementation from which the @ref{Relational Database} package
constructs a Relational system. It will be of interest primarily to
those wishing to port or write new base-table implementations.
All of these functions are accessed through a single procedure by
calling that procedure with the symbol name of the operation. A
procedure will be returned if that operation is supported and @code{#f}
otherwise. For example:
@example
@group
(require 'alist-table)
@ftindex alist-table
(define open-base (alist-table 'make-base))
make-base @result{} *a procedure*
(define foo (alist-table 'foo))
foo @result{} #f
@end group
@end example
@defun make-base filename key-dimension column-types
Returns a new, open, low-level database (collection of tables)
associated with @var{filename}. This returned database has an empty
table associated with @var{catalog-id}. The positive integer
@var{key-dimension} is the number of keys composed to make a
@var{primary-key} for the catalog table. The list of symbols
@var{column-types} describes the types of each column for that table.
If the database cannot be created as specified, @code{#f} is returned.
Calling the @code{close-base} method on this database and possibly other
operations will cause @var{filename} to be written to. If
@var{filename} is @code{#f} a temporary, non-disk based database will be
created if such can be supported by the base table implelentation.
@end defun
@defun open-base filename mutable
Returns an open low-level database associated with @var{filename}. If
@var{mutable?} is @code{#t}, this database will have methods capable of
effecting change to the database. If @var{mutable?} is @code{#f}, only
methods for inquiring the database will be available. If the database
cannot be opened as specified @code{#f} is returned.
Calling the @code{close-base} (and possibly other) method on a
@var{mutable?} database will cause @var{filename} to be written to.
@end defun
@defun write-base lldb filename
Causes the low-level database @var{lldb} to be written to
@var{filename}. If the write is successful, also causes @var{lldb} to
henceforth be associated with @var{filename}. Calling the
@code{close-database} (and possibly other) method on @var{lldb} may
cause @var{filename} to be written to. If @var{filename} is @code{#f}
this database will be changed to a temporary, non-disk based database if
such can be supported by the underlying base table implelentation. If
the operations completed successfully, @code{#t} is returned.
Otherwise, @code{#f} is returned.
@end defun
@defun sync-base lldb
Causes the file associated with the low-level database @var{lldb} to be
updated to reflect its current state. If the associated filename is
@code{#f}, no action is taken and @code{#f} is returned. If this
operation completes successfully, @code{#t} is returned. Otherwise,
@code{#f} is returned.
@end defun
@defun close-base lldb
Causes the low-level database @var{lldb} to be written to its associated
file (if any). If the write is successful, subsequent operations to
@var{lldb} will signal an error. If the operations complete
successfully, @code{#t} is returned. Otherwise, @code{#f} is returned.
@end defun
@defun make-table lldb key-dimension column-types
Returns the @var{base-id} for a new base table, otherwise returns
@code{#f}. The base table can then be opened using @code{(open-table
@var{lldb} @var{base-id})}. The positive integer @var{key-dimension} is
the number of keys composed to make a @var{primary-key} for this table.
The list of symbols @var{column-types} describes the types of each
column.
@end defun
@defvr Constant catalog-id
A constant @var{base-id} suitable for passing as a parameter to
@code{open-table}. @var{catalog-id} will be used as the base table for
the system catalog.
@end defvr
@defun open-table lldb base-id key-dimension column-types
Returns a @var{handle} for an existing base table in the low-level
database @var{lldb} if that table exists and can be opened in the mode
indicated by @var{mutable?}, otherwise returns @code{#f}.
As with @code{make-table}, the positive integer @var{key-dimension} is
the number of keys composed to make a @var{primary-key} for this table.
The list of symbols @var{column-types} describes the types of each
column.
@end defun
@defun kill-table lldb base-id key-dimension column-types
Returns @code{#t} if the base table associated with @var{base-id} was
removed from the low level database @var{lldb}, and @code{#f} otherwise.
@end defun
@defun make-keyifier-1 type
Returns a procedure which accepts a single argument which must be of
type @var{type}. This returned procedure returns an object suitable for
being a @var{key} argument in the functions whose descriptions follow.
Any 2 arguments of the supported type passed to the returned function
which are not @code{equal?} must result in returned values which are not
@code{equal?}.
@end defun
@defun make-list-keyifier key-dimension types
The list of symbols @var{types} must have at least @var{key-dimension}
elements. Returns a procedure which accepts a list of length
@var{key-dimension} and whose types must corresopond to the types named
by @var{types}. This returned procedure combines the elements of its
list argument into an object suitable for being a @var{key} argument in
the functions whose descriptions follow.
Any 2 lists of supported types (which must at least include symbols and
non-negative integers) passed to the returned function which are not
@code{equal?} must result in returned values which are not
@code{equal?}.
@end defun
@defun make-key-extractor key-dimension types column-number
Returns a procedure which accepts objects produced by application of the
result of @code{(make-list-keyifier @var{key-dimension} @var{types})}.
This procedure returns a @var{key} which is @code{equal?} to the
@var{column-number}th element of the list which was passed to create
@var{combined-key}. The list @var{types} must have at least
@var{key-dimension} elements.
@end defun
@defun make-key->list key-dimension types
Returns a procedure which accepts objects produced by application of the
result of @code{(make-list-keyifier @var{key-dimension} @var{types})}.
This procedure returns a list of @var{key}s which are elementwise
@code{equal?} to the list which was passed to create @var{combined-key}.
@end defun
@noindent
In the following functions, the @var{key} argument can always be assumed
to be the value returned by a call to a @emph{keyify} routine.
@noindent
@cindex match-key
@cindex match
@cindex wild-card
In contrast, a @var{match-key} argument is a list of length equal to the
number of primary keys. The @var{match-key} restricts the actions of
the table command to those records whose primary keys all satisfy the
corresponding element of the @var{match-key} list.
The elements and their actions are:
@quotation
@table @asis
@item @code{#f}
The false value matches any key in the corresponding position.
@item an object of type procedure
This procedure must take a single argument, the key in the corresponding
position. Any key for which the procedure returns a non-false value is
a match; Any key for which the procedure returns a @code{#f} is not.
@item other values
Any other value matches only those keys @code{equal?} to it.
@end table
@end quotation
@defun for-each-key handle procedure match-key
Calls @var{procedure} once with each @var{key} in the table opened in
@var{handle} which satisfies @var{match-key} in an unspecified order.
An unspecified value is returned.
@end defun
@defun map-key handle procedure match-key
Returns a list of the values returned by calling @var{procedure} once
with each @var{key} in the table opened in @var{handle} which satisfies
@var{match-key} in an unspecified order.
@end defun
@defun ordered-for-each-key handle procedure match-key
Calls @var{procedure} once with each @var{key} in the table opened in
@var{handle} which satisfies @var{match-key} in the natural order for
the types of the primary key fields of that table. An unspecified value
is returned.
@end defun
@defun delete* handle match-key
Removes all rows which satisfy @var{match-key} from the table opened in
@var{handle}. An unspecified value is returned.
@end defun
@defun present? handle key
Returns a non-@code{#f} value if there is a row associated with
@var{key} in the table opened in @var{handle} and @code{#f} otherwise.
@end defun
@defun delete handle key
Removes the row associated with @var{key} from the table opened in
@var{handle}. An unspecified value is returned.
@end defun
@defun make-getter key-dimension types
Returns a procedure which takes arguments @var{handle} and @var{key}.
This procedure returns a list of the non-primary values of the relation
(in the base table opened in @var{handle}) whose primary key is
@var{key} if it exists, and @code{#f} otherwise.
@end defun
@defun make-putter key-dimension types
Returns a procedure which takes arguments @var{handle} and @var{key} and
@var{value-list}. This procedure associates the primary key @var{key}
with the values in @var{value-list} (in the base table opened in
@var{handle}) and returns an unspecified value.
@end defun
@defun supported-type? symbol
Returns @code{#t} if @var{symbol} names a type allowed as a column value
by the implementation, and @code{#f} otherwise. At a minimum, an
implementation must support the types @code{integer}, @code{symbol},
@code{string}, @code{boolean}, and @code{base-id}.
@end defun
@defun supported-key-type? symbol
Returns @code{#t} if @var{symbol} names a type allowed as a key value by
the implementation, and @code{#f} otherwise. At a minimum, an
implementation must support the types @code{integer}, and @code{symbol}.
@end defun
@table @code
@item integer
Scheme exact integer.
@item symbol
Scheme symbol.
@item boolean
@code{#t} or @code{#f}.
@item base-id
Objects suitable for passing as the @var{base-id} parameter to
@code{open-table}. The value of @var{catalog-id} must be an acceptable
@code{base-id}.
@end table
@node Relational Database, Weight-Balanced Trees, Base Table, Database Packages
@section Relational Database
@code{(require 'relational-database)}
@ftindex relational-database
This package implements a database system inspired by the Relational
Model (@cite{E. F. Codd, A Relational Model of Data for Large Shared
Data Banks}). An SLIB relational database implementation can be created
from any @ref{Base Table} implementation.
@menu
* Motivations:: Database Manifesto
* Creating and Opening Relational Databases::
* Relational Database Operations::
* Table Operations::
* Catalog Representation::
* Unresolved Issues::
* Database Utilities:: 'database-utilities
@end menu
@node Motivations, Creating and Opening Relational Databases, Relational Database, Relational Database
@subsection Motivations
Most nontrivial programs contain databases: Makefiles, configure
scripts, file backup, calendars, editors, source revision control, CAD
systems, display managers, menu GUIs, games, parsers, debuggers,
profilers, and even error reporting are all rife with databases. Coding
databases is such a common activity in programming that many may not be
aware of how often they do it.
A database often starts as a dispatch in a program. The author, perhaps
because of the need to make the dispatch configurable, the need for
correlating dispatch in other routines, or because of changes or growth,
devises a data structure to contain the information, a routine for
interpreting that data structure, and perhaps routines for augmenting
and modifying the stored data. The dispatch must be converted into this
form and tested.
The programmer may need to devise an interactive program for enabling
easy examination and modification of the information contained in this
database. Often, in an attempt to foster modularity and avoid delays in
release, intermediate file formats for the database information are
devised. It often turns out that users prefer modifying these
intermediate files with a text editor to using the interactive program
in order to do operations (such as global changes) not forseen by the
program's author.
In order to address this need, the concientous software engineer may
even provide a scripting language to allow users to make repetitive
database changes. Users will grumble that they need to read a large
manual and learn yet another programming language (even if it
@emph{almost} has language "xyz" syntax) in order to do simple
configuration.
All of these facilities need to be designed, coded, debugged,
documented, and supported; often causing what was very simple in concept
to become a major developement project.
This view of databases just outlined is somewhat the reverse of the view
of the originators of the @dfn{Relational Model} of database
abstraction. The relational model was devised to unify and allow
interoperation of large multi-user databases running on diverse
platforms. A fairly general purpose "Comprehensive Language" for
database manipulations is mandated (but not specified) as part of the
relational model for databases.
One aspect of the Relational Model of some importance is that the
"Comprehensive Language" must be expressible in some form which can be
stored in the database. This frees the programmer from having to make
programs data-driven in order to use a database.
This package includes as one of its basic supported types Scheme
@dfn{expression}s. This type allows expressions as defined by the
Scheme standards to be stored in the database. Using @code{slib:eval}
retrieved expressions can be evaluated (in the top-level environment).
Scheme's @code{lambda} facilitates closure of environments, modularity,
etc. so that procedures (which could not be stored directly most
databases) can still be effectively retrieved. Since @code{slib:eval}
evaluates expressions in the top-level environment, built-in and user
defined procedures can be easily accessed by name.
This package's purpose is to standardize (through a common interface)
database creation and usage in Scheme programs. The relational model's
provision for inclusion of language expressions as data as well as the
description (in tables, of course) of all of its tables assures that
relational databases are powerful enough to assume the roles currently
played by thousands of ad-hoc routines and data formats.
@noindent
Such standardization to a relational-like model brings many benefits:
@itemize @bullet
@item
Tables, fields, domains, and types can be dealt with by name in
programs.
@item
The underlying database implementation can be changed (for
performance or other reasons) by changing a single line of code.
@item
The formats of tables can be easily extended or changed without
altering code.
@item
Consistency checks are specified as part of the table descriptions.
Changes in checks need only occur in one place.
@item
All the configuration information which the developer wishes to group
together is easily grouped, without needing to change programs aware of
only some of these tables.
@item
Generalized report generators, interactive entry programs, and other
database utilities can be part of a shared library. The burden of
adding configurability to a program is greatly reduced.
@item
Scheme is the "comprehensive language" for these databases. Scripting
for configuration no longer needs to be in a separate language with
additional documentation.
@item
Scheme's latent types mesh well with the strict typing and logical
requirements of the relational model.
@item
Portable formats allow easy interchange of data. The included table
descriptions help prevent misinterpretation of format.
@end itemize
@node Creating and Opening Relational Databases, Relational Database Operations, Motivations, Relational Database
@subsection Creating and Opening Relational Databases
@defun make-relational-system base-table-implementation
Returns a procedure implementing a relational database using the
@var{base-table-implementation}.
All of the operations of a base table implementation are accessed
through a procedure defined by @code{require}ing that implementation.
Similarly, all of the operations of the relational database
implementation are accessed through the procedure returned by
@code{make-relational-system}. For instance, a new relational database
could be created from the procedure returned by
@code{make-relational-system} by:
@example
(require 'alist-table)
@ftindex alist-table
(define relational-alist-system
(make-relational-system alist-table))
(define create-alist-database
(relational-alist-system 'create-database))
(define my-database
(create-alist-database "mydata.db"))
@end example
@end defun
@noindent
What follows are the descriptions of the methods available from
relational system returned by a call to @code{make-relational-system}.
@defun create-database filename
Returns an open, nearly empty relational database associated with
@var{filename}. The only tables defined are the system catalog and
domain table. Calling the @code{close-database} method on this database
and possibly other operations will cause @var{filename} to be written
to. If @var{filename} is @code{#f} a temporary, non-disk based database
will be created if such can be supported by the underlying base table
implelentation. If the database cannot be created as specified
@code{#f} is returned. For the fields and layout of descriptor tables,
@xref{Catalog Representation}
@end defun
@defun open-database filename mutable?
Returns an open relational database associated with @var{filename}. If
@var{mutable?} is @code{#t}, this database will have methods capable of
effecting change to the database. If @var{mutable?} is @code{#f}, only
methods for inquiring the database will be available. Calling the
@code{close-database} (and possibly other) method on a @var{mutable?}
database will cause @var{filename} to be written to. If the database
cannot be opened as specified @code{#f} is returned.
@end defun
@node Relational Database Operations, Table Operations, Creating and Opening Relational Databases, Relational Database
@subsection Relational Database Operations
@noindent
These are the descriptions of the methods available from an open
relational database. A method is retrieved from a database by calling
the database with the symbol name of the operation. For example:
@example
(define my-database
(create-alist-database "mydata.db"))
(define telephone-table-desc
((my-database 'create-table) 'telephone-table-desc))
@end example
@defun close-database
Causes the relational database to be written to its associated file (if
any). If the write is successful, subsequent operations to this
database will signal an error. If the operations completed
successfully, @code{#t} is returned. Otherwise, @code{#f} is returned.
@end defun
@defun write-database filename
Causes the relational database to be written to @var{filename}. If the
write is successful, also causes the database to henceforth be
associated with @var{filename}. Calling the @code{close-database} (and
possibly other) method on this database will cause @var{filename} to be
written to. If @var{filename} is @code{#f} this database will be
changed to a temporary, non-disk based database if such can be supported
by the underlying base table implelentation. If the operations
completed successfully, @code{#t} is returned. Otherwise, @code{#f} is
returned.
@end defun
@defun table-exists? table-name
Returns @code{#t} if @var{table-name} exists in the system catalog,
otherwise returns @code{#f}.
@end defun
@defun open-table table-name mutable?
Returns a @dfn{methods} procedure for an existing relational table in
this database if it exists and can be opened in the mode indicated by
@var{mutable?}, otherwise returns @code{#f}.
@end defun
@noindent
These methods will be present only in databases which are
@var{mutable?}.
@defun delete-table table-name
Removes and returns the @var{table-name} row from the system catalog if
the table or view associated with @var{table-name} gets removed from the
database, and @code{#f} otherwise.
@end defun
@defun create-table table-desc-name
Returns a methods procedure for a new (open) relational table for
describing the columns of a new base table in this database, otherwise
returns @code{#f}. For the fields and layout of descriptor tables,
@xref{Catalog Representation}.
@defunx create-table table-name table-desc-name
Returns a methods procedure for a new (open) relational table with
columns as described by @var{table-desc-name}, otherwise returns
@code{#f}.
@end defun
@defun create-view ??
@defunx project-table ??
@defunx restrict-table ??
@defunx cart-prod-tables ??
Not yet implemented.
@end defun
@node Table Operations, Catalog Representation, Relational Database Operations, Relational Database
@subsection Table Operations
@noindent
These are the descriptions of the methods available from an open
relational table. A method is retrieved from a table by calling
the table with the symbol name of the operation. For example:
@example
@group
(define telephone-table-desc
((my-database 'create-table) 'telephone-table-desc))
(require 'common-list-functions)
(define ndrp (telephone-table-desc 'row:insert))
(ndrp '(1 #t name #f string))
(ndrp '(2 #f telephone
(lambda (d)
(and (string? d) (> (string-length d) 2)
(every
(lambda (c)
(memv c '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9
#\+ #\( #\ #\) #\-)))
(string->list d))))
string))
@end group
@end example
@noindent
Some operations described below require primary key arguments. Primary
keys arguments are denoted @var{key1} @var{key2} @dots{}. It is an
error to call an operation for a table which takes primary key arguments
with the wrong number of primary keys for that table.
@noindent
The term @dfn{row} used below refers to a Scheme list of values (one for
each column) in the order specified in the descriptor (table) for this
table. Missing values appear as @code{#f}. Primary keys must not
be missing.
@defun get column-name
Returns a procedure of arguments @var{key1} @var{key2} @dots{} which
returns the value for the @var{column-name} column of the row associated
with primary keys @var{key1}, @var{key2} @dots{} if that row exists in
the table, or @code{#f} otherwise.
@example
((plat 'get 'processor) 'djgpp) @result{} i386
((plat 'get 'processor) 'be-os) @result{} #f
@end example
@defunx get* column-name
Returns a procedure of optional arguments @var{match-key1} @dots{} which
returns a list of the values for the specified column for all rows in
this table. The optional @var{match-key1} @dots{} arguments restrict
actions to a subset of the table. See the match-key description below
for details.
@example
((plat 'get* 'processor)) @result{}
(i386 8086 i386 8086 i386 i386 8086 m68000
m68000 m68000 m68000 m68000 powerpc)
((plat 'get* 'processor) #f) @result{}
(i386 8086 i386 8086 i386 i386 8086 m68000
m68000 m68000 m68000 m68000 powerpc)
(define (a-key? key)
(char=? #\a (string-ref (symbol->string key) 0)))
((plat 'get* 'processor) a-key?) @result{}
(m68000 m68000 m68000 m68000 m68000 powerpc)
((plat 'get* 'name) a-key?) @result{}
(atari-st-turbo-c atari-st-gcc amiga-sas/c-5.10
amiga-aztec amiga-dice-c aix)
@end example
@end defun
@defun row:retrieve
Returns a procedure of arguments @var{key1} @var{key2} @dots{} which
returns the row associated with primary keys @var{key1}, @var{key2}
@dots{} if it exists, or @code{#f} otherwise.
@example
((plat 'row:retrieve) 'linux) @result{} (linux i386 linux gcc)
((plat 'row:retrieve) 'multics) @result{} #f
@end example
@defunx row:retrieve*
Returns a procedure of optional arguments @var{match-key1} @dots{} which
returns a list of all rows in this table. The optional @var{match-key1}
@dots{} arguments restrict actions to a subset of the table. See the
match-key description below for details.
@end defun
@example
((plat 'row:retrieve*) a-key?) @result{}
((atari-st-turbo-c m68000 atari turbo-c)
(atari-st-gcc m68000 atari gcc)
(amiga-sas/c-5.10 m68000 amiga sas/c)
(amiga-aztec m68000 amiga aztec)
(amiga-dice-c m68000 amiga dice-c)
(aix powerpc aix -))
@end example
@defun row:remove
Returns a procedure of arguments @var{key1} @var{key2} @dots{} which
removes and returns the row associated with primary keys @var{key1},
@var{key2} @dots{} if it exists, or @code{#f} otherwise.
@defunx row:remove*
Returns a procedure of optional arguments @var{match-key1} @dots{} which
removes and returns a list of all rows in this table. The optional
@var{match-key1} @dots{} arguments restrict actions to a subset of the
table. See the match-key description below for details.
@end defun
@defun row:delete
Returns a procedure of arguments @var{key1} @var{key2} @dots{} which
deletes the row associated with primary keys @var{key1}, @var{key2}
@dots{} if it exists. The value returned is unspecified.
@defunx row:delete*
Returns a procedure of optional arguments @var{match-key1} @dots{} which
Deletes all rows from this table. The optional @var{match-key1} @dots{}
arguments restrict deletions to a subset of the table. See the
match-key description below for details. The value returned is
unspecified. The descriptor table and catalog entry for this table are
not affected.
@end defun
@defun row:update
Returns a procedure of one argument, @var{row}, which adds the row,
@var{row}, to this table. If a row for the primary key(s) specified by
@var{row} already exists in this table, it will be overwritten. The
value returned is unspecified.
@defunx row:update*
Returns a procedure of one argument, @var{rows}, which adds each row in
the list of rows, @var{rows}, to this table. If a row for the primary
key specified by an element of @var{rows} already exists in this table,
it will be overwritten. The value returned is unspecified.
@end defun
@defun row:insert
Adds the row @var{row} to this table. If a row for the primary key(s)
specified by @var{row} already exists in this table an error is
signaled. The value returned is unspecified.
@defunx row:insert*
Returns a procedure of one argument, @var{rows}, which adds each row in
the list of rows, @var{rows}, to this table. If a row for the primary
key specified by an element of @var{rows} already exists in this table,
an error is signaled. The value returned is unspecified.
@end defun
@defun for-each-row
Returns a procedure of arguments @var{proc} @var{match-key1} @dots{}
which calls @var{proc} with each @var{row} in this table in the
(implementation-dependent) natural ordering for rows. The optional
@var{match-key1} @dots{} arguments restrict actions to a subset of the
table. See the match-key description below for details.
@emph{Real} relational programmers would use some least-upper-bound join
for every row to get them in order; But we don't have joins yet.
@end defun
@noindent
@cindex match-keys
The (optional) @var{match-key1} @dots{} arguments are used to restrict
actions of a whole-table operation to a subset of that table. Those
procedures (returned by methods) which accept match-key arguments will
accept any number of match-key arguments between zero and the number of
primary keys in the table. Any unspecified @var{match-key} arguments
default to @code{#f}.
@noindent
The @var{match-key1} @dots{} restrict the actions of the table command
to those records whose primary keys each satisfy the corresponding
@var{match-key} argument. The arguments and their actions are:
@quotation
@table @asis
@item @code{#f}
The false value matches any key in the corresponding position.
@item an object of type procedure
This procedure must take a single argument, the key in the corresponding
position. Any key for which the procedure returns a non-false value is
a match; Any key for which the procedure returns a @code{#f} is not.
@item other values
Any other value matches only those keys @code{equal?} to it.
@end table
@end quotation
@defun close-table
Subsequent operations to this table will signal an error.
@end defun
@defvr Constant column-names
@defvrx Constant column-foreigns
@defvrx Constant column-domains
@defvrx Constant column-types
Return a list of the column names, foreign-key table names, domain
names, or type names respectively for this table. These 4 methods are
different from the others in that the list is returned, rather than a
procedure to obtain the list.
@defvrx Constant primary-limit
Returns the number of primary keys fields in the relations in this
table.
@end defvr
@node Catalog Representation, Unresolved Issues, Table Operations, Relational Database
@subsection Catalog Representation
@noindent
Each database (in an implementation) has a @dfn{system catalog} which
describes all the user accessible tables in that database (including
itself).
@noindent
The system catalog base table has the following fields. @code{PRI}
indicates a primary key for that table.
@example
@group
PRI table-name
column-limit the highest column number
coltab-name descriptor table name
bastab-id data base table identifier
user-integrity-rule
view-procedure A scheme thunk which, when called,
produces a handle for the view. coltab
and bastab are specified if and only if
view-procedure is not.
@end group
@end example
@noindent
Descriptors for base tables (not views) are tables (pointed to by
system catalog). Descriptor (base) tables have the fields:
@example
@group
PRI column-number sequential integers from 1
primary-key? boolean TRUE for primary key components
column-name
column-integrity-rule
domain-name
@end group
@end example
@noindent
A @dfn{primary key} is any column marked as @code{primary-key?} in the
corresponding descriptor table. All the @code{primary-key?} columns
must have lower column numbers than any non-@code{primary-key?} columns.
Every table must have at least one primary key. Primary keys must be
sufficient to distinguish all rows from each other in the table. All of
the system defined tables have a single primary key.
@noindent
This package currently supports tables having from 1 to 4 primary keys
if there are non-primary columns, and any (natural) number if @emph{all}
columns are primary keys. If you need more than 4 primary keys, I would
like to hear what you are doing!
@noindent
A @dfn{domain} is a category describing the allowable values to occur in
a column. It is described by a (base) table with the fields:
@example
@group
PRI domain-name
foreign-table
domain-integrity-rule
type-id
type-param
@end group
@end example
@noindent
The @dfn{type-id} field value is a symbol. This symbol may be used by
the underlying base table implementation in storing that field.
@noindent
If the @code{foreign-table} field is non-@code{#f} then that field names
a table from the catalog. The values for that domain must match a
primary key of the table referenced by the @var{type-param} (or
@code{#f}, if allowed). This package currently does not support
composite foreign-keys.
@noindent
The types for which support is planned are:
@example
@group
atom
symbol
string [<length>]
number [<base>]
money <currency>
date-time
boolean
foreign-key <table-name>
expression
virtual <expression>
@end group
@end example
@node Unresolved Issues, Database Utilities, Catalog Representation, Relational Database
@subsection Unresolved Issues
Although @file{rdms.scm} is not large, I found it very difficult to
write (six rewrites). I am not aware of any other examples of a
generalized relational system (although there is little new in CS). I
left out several aspects of the Relational model in order to simplify
the job. The major features lacking (which might be addressed portably)
are views, transaction boundaries, and protection.
Protection needs a model for specifying priveledges. Given how
operations are accessed from handles it should not be difficult to
restrict table accesses to those allowed for that user.
The system catalog has a field called @code{view-procedure}. This
should allow a purely functional implementation of views. This will
work but is unsatisfying for views resulting from a @dfn{select}ion
(subset of rows); for whole table operations it will not be possible to
reduce the number of keys scanned over when the selection is specified
only by an opaque procedure.
Transaction boundaries present the most intriguing area. Transaction
boundaries are actually a feature of the "Comprehensive Language" of the
Relational database and not of the database. Scheme would seem to
provide the opportunity for an extremely clean semantics for transaction
boundaries since the builtin procedures with side effects are small in
number and easily identified.
These side-effect builtin procedures might all be portably redefined to
versions which properly handled transactions. Compiled library routines
would need to be recompiled as well. Many system extensions
(delete-file, system, etc.) would also need to be redefined.
@noindent
There are 2 scope issues that must be resolved for multiprocess
transaction boundaries:
@table @asis
@item Process scope
The actions captured by a transaction should be only for the process
which invoked the start of transaction. Although standard Scheme does
not provide process primitives as such, @code{dynamic-wind} would
provide a workable hook into process switching for many implementations.
@item Shared utilities with state
Some shared utilities have state which should @emph{not} be part of a
transaction. An example would be calling a pseudo-random number
generator. If the success of a transaction depended on the
pseudo-random number and failed, the state of the generator would be set
back. Subsequent calls would keep returning the same number and keep
failing.
Pseudo-random number generators are not reentrant; thus they would
require locks in order to operate properly in a multiprocess
environment. Are all examples of utilities whose state should not be
part of transactions also non-reentrant? If so, perhaps suspending
transaction capture for the duration of locks would solve this problem.
@end table
@node Database Utilities, , Unresolved Issues, Relational Database
@subsection Database Utilities
@code{(require 'database-utilities)}
@ftindex database-utilities
@noindent
This enhancement wraps a utility layer on @code{relational-database}
which provides:
@itemize @bullet
@item
Automatic loading of the appropriate base-table package when opening a
database.
@item
Automatic execution of initialization commands stored in database.
@item
Transparent execution of database commands stored in @code{*commands*}
table in database.
@end itemize
@noindent
Also included are utilities which provide:
@itemize @bullet
@item
Data definition from Scheme lists and
@item
Report generation
@end itemize
@noindent
for any SLIB relational database.
@defun create-database filename base-table-type
Returns an open, nearly empty enhanced (with @code{*commands*} table)
relational database (with base-table type @var{base-table-type})
associated with @var{filename}.
@end defun
@defun open-database filename
@defunx open-database filename base-table-type
Returns an open enchanced relational database associated with
@var{filename}. The database will be opened with base-table type
@var{base-table-type}) if supplied. If @var{base-table-type} is not
supplied, @code{open-database} will attempt to deduce the correct
base-table-type. If the database can not be opened or if it lacks the
@code{*commands*} table, @code{#f} is returned.
@defunx open-database! filename
@defunx open-database! filename base-table-type
Returns @emph{mutable} open enchanced relational database @dots{}
@end defun
@noindent
The table @code{*commands*} in an @dfn{enhanced} relational-database has
the fields (with domains):
@example
@group
PRI name symbol
parameters parameter-list
procedure expression
documentation string
@end group
@end example
The @code{parameters} field is a foreign key (domain
@code{parameter-list}) of the @code{*catalog-data*} table and should
have the value of a table described by @code{*parameter-columns*}. This
@code{parameter-list} table describes the arguments suitable for passing
to the associated command. The intent of this table is to be of a form
such that different user-interfaces (for instance, pull-down menus or
plain-text queries) can operate from the same table. A
@code{parameter-list} table has the following fields:
@example
@group
PRI index uint
name symbol
arity parameter-arity
domain domain
defaulter expression
expander expression
documentation string
@end group
@end example
The @code{arity} field can take the values:
@table @code
@item single
Requires a single parameter of the specified domain.
@item optional
A single parameter of the specified domain or zero parameters is
acceptable.
@item boolean
A single boolean parameter or zero parameters (in which case @code{#f}
is substituted) is acceptable.
@item nary
Any number of parameters of the specified domain are acceptable. The
argument passed to the command function is always a list of the
parameters.
@item nary1
One or more of parameters of the specified domain are acceptable. The
argument passed to the command function is always a list of the
parameters.
@end table
The @code{domain} field specifies the domain which a parameter or
parameters in the @code{index}th field must satisfy.
The @code{defaulter} field is an expression whose value is either
@code{#f} or a procedure of one argument (the parameter-list) which
returns a @emph{list} of the default value or values as appropriate.
Note that since the @code{defaulter} procedure is called every time a
default parameter is needed for this column, @dfn{sticky} defaults can
be implemented using shared state with the domain-integrity-rule.
@subsubheading Invoking Commands
When an enhanced relational-database is called with a symbol which
matches a @var{name} in the @code{*commands*} table, the associated
procedure expression is evaluated and applied to the enhanced
relational-database. A procedure should then be returned which the user
can invoke on (optional) arguments.
The command @code{*initialize*} is special. If present in the
@code{*commands*} table, @code{open-database} or @code{open-database!}
will return the value of the @code{*initialize*} command. Notice that
arbitrary code can be run when the @code{*initialize*} procedure is
automatically applied to the enhanced relational-database.
Note also that if you wish to shadow or hide from the user
relational-database methods described in @ref{Relational Database
Operations}, this can be done by a dispatch in the closure returned by
the @code{*initialize*} expression rather than by entries in the
@code{*commands*} table if it is desired that the underlying methods
remain accessible to code in the @code{*commands*} table.
@defun make-command-server rdb table-name
Returns a procedure of 2 arguments, a (symbol) command and a call-back
procedure. When this returned procedure is called, it looks up
@var{command} in table @var{table-name} and calls the call-back
procedure with arguments:
@table @var
@item command
The @var{command}
@item command-value
The result of evaluating the expression in the @var{procedure} field of
@var{table-name} and calling it with @var{rdb}.
@item parameter-name
A list of the @dfn{official} name of each parameter. Corresponds to the
@code{name} field of the @var{command}'s parameter-table.
@item positions
A list of the positive integer index of each parameter. Corresponds to
the @code{index} field of the @var{command}'s parameter-table.
@item arities
A list of the arities of each parameter. Corresponds to the
@code{arity} field of the @var{command}'s parameter-table. For a
description of @code{arity} see table above.
@item types
A list of the type name of each parameter. Correspnds to the
@code{type-id} field of the contents of the @code{domain} of the
@var{command}'s parameter-table.
@item defaulters
A list of the defaulters for each parameter. Corresponds to
the @code{defaulters} field of the @var{command}'s parameter-table.
@item domain-integrity-rules
A list of procedures (one for each parameter) which tests whether a
value for a parameter is acceptable for that parameter. The procedure
should be called with each datum in the list for @code{nary} arity
parameters.
@item aliases
A list of lists of @code{(@r{alias} @r{parameter-name})}. There can be
more than one alias per @var{parameter-name}.
@end table
@end defun
For information about parameters, @xref{Parameter lists}. Here is an
example of setting up a command with arguments and parsing those
arguments from a @code{getopt} style argument list (@pxref{Getopt}).
@example
(require 'database-utilities)
@ftindex database-utilities
(require 'fluid-let)
@ftindex fluid-let
(require 'parameters)
@ftindex parameters
(require 'getopt)
@ftindex getopt
(define my-rdb (create-database #f 'alist-table))
(define-tables my-rdb
'(foo-params
*parameter-columns*
*parameter-columns*
((1 single-string single string
(lambda (pl) '("str")) #f "single string")
(2 nary-symbols nary symbol
(lambda (pl) '()) #f "zero or more symbols")
(3 nary1-symbols nary1 symbol
(lambda (pl) '(symb)) #f "one or more symbols")
(4 optional-number optional uint
(lambda (pl) '()) #f "zero or one number")
(5 flag boolean boolean
(lambda (pl) '(#f)) #f "a boolean flag")))
'(foo-pnames
((name string))
((parameter-index uint))
(("s" 1)
("single-string" 1)
("n" 2)
("nary-symbols" 2)
("N" 3)
("nary1-symbols" 3)
("o" 4)
("optional-number" 4)
("f" 5)
("flag" 5)))
'(my-commands
((name symbol))
((parameters parameter-list)
(parameter-names parameter-name-translation)
(procedure expression)
(documentation string))
((foo
foo-params
foo-pnames
(lambda (rdb) (lambda args (print args)))
"test command arguments"))))
(define (dbutil:serve-command-line rdb command-table
command argc argv)
(set! argv (if (vector? argv) (vector->list argv) argv))
((make-command-server rdb command-table)
command
(lambda (comname comval options positions
arities types defaulters dirs aliases)
(apply comval (getopt->arglist
argc argv options positions
arities types defaulters dirs aliases)))))
(define (cmd . opts)
(fluid-let ((*optind* 1))
(printf "%-34s @result{} "
(call-with-output-string (lambda (pt) (write (cons 'cmd opts) pt)))
;;(apply string-append (map (lambda (x) (string-append x " ")) opts))
)
(set! opts (cons "cmd" opts))
(force-output)
(dbutil:serve-command-line
my-rdb 'my-commands 'foo (length opts) opts)))
(cmd) @result{} ("str" () (symb) () #f)
(cmd "-f") @result{} ("str" () (symb) () #t)
(cmd "--flag") @result{} ("str" () (symb) () #t)
(cmd "-o177") @result{} ("str" () (symb) (177) #f)
(cmd "-o" "177") @result{} ("str" () (symb) (177) #f)
(cmd "--optional" "621") @result{} ("str" () (symb) (621) #f)
(cmd "--optional=621") @result{} ("str" () (symb) (621) #f)
(cmd "-s" "speciality") @result{} ("speciality" () (symb) () #f)
(cmd "-sspeciality") @result{} ("speciality" () (symb) () #f)
(cmd "--single" "serendipity") @result{} ("serendipity" () (symb) () #f)
(cmd "--single=serendipity") @result{} ("serendipity" () (symb) () #f)
(cmd "-n" "gravity" "piety") @result{} ("str" () (piety gravity) () #f)
(cmd "-ngravity" "piety") @result{} ("str" () (piety gravity) () #f)
(cmd "--nary" "chastity") @result{} ("str" () (chastity) () #f)
(cmd "--nary=chastity" "") @result{} ("str" () ( chastity) () #f)
(cmd "-N" "calamity") @result{} ("str" () (calamity) () #f)
(cmd "-Ncalamity") @result{} ("str" () (calamity) () #f)
(cmd "--nary1" "surety") @result{} ("str" () (surety) () #f)
(cmd "--nary1=surety") @result{} ("str" () (surety) () #f)
(cmd "-N" "levity" "fealty") @result{} ("str" () (fealty levity) () #f)
(cmd "-Nlevity" "fealty") @result{} ("str" () (fealty levity) () #f)
(cmd "--nary1" "surety" "brevity") @result{} ("str" () (brevity surety) () #f)
(cmd "--nary1=surety" "brevity") @result{} ("str" () (brevity surety) () #f)
(cmd "-?")
@print{}
Usage: cmd [OPTION ARGUMENT ...] ...
-f, --flag
-o, --optional[=]<number>
-n, --nary[=]<symbols> ...
-N, --nary1[=]<symbols> ...
-s, --single[=]<string>
ERROR: getopt->parameter-list "unrecognized option" "-?"
@end example
Some commands are defined in all extended relational-databases. The are
called just like @ref{Relational Database Operations}.
@defun add-domain domain-row
Adds @var{domain-row} to the @dfn{domains} table if there is no row in
the domains table associated with key @code{(car @var{domain-row})} and
returns @code{#t}. Otherwise returns @code{#f}.
For the fields and layout of the domain table, @xref{Catalog
Representation}. Currently, these fields are
@itemize @bullet
@item
domain-name
@item
foreign-table
@item
domain-integrity-rule
@item
type-id
@item
type-param
@end itemize
The following example adds 3 domains to the @samp{build} database.
@samp{Optstring} is either a string or @code{#f}. @code{filename} is a
string and @code{build-whats} is a symbol.
@example
(for-each (build 'add-domain)
'((optstring #f
(lambda (x) (or (not x) (string? x)))
string
#f)
(filename #f #f string #f)
(build-whats #f #f symbol #f)))
@end example
@end defun
@defun delete-domain domain-name
Removes and returns the @var{domain-name} row from the @dfn{domains}
table.
@end defun
@defun domain-checker domain
Returns a procedure to check an argument for conformance to domain
@var{domain}.
@end defun
@subsubheading Defining Tables
@deffn Procedure define-tables rdb spec-0 @dots{}
Adds tables as specified in @var{spec-0} @dots{} to the open
relational-database @var{rdb}. Each @var{spec} has the form:
@lisp
(@r{<name>} @r{<descriptor-name>} @r{<descriptor-name>} @r{<rows>})
@end lisp
or
@lisp
(@r{<name>} @r{<primary-key-fields>} @r{<other-fields>} @r{<rows>})
@end lisp
where @r{<name>} is the table name, @r{<descriptor-name>} is the symbol
name of a descriptor table, @r{<primary-key-fields>} and
@r{<other-fields>} describe the primary keys and other fields
respectively, and @r{<rows>} is a list of data rows to be added to the
table.
@r{<primary-key-fields>} and @r{<other-fields>} are lists of field
descriptors of the form:
@lisp
(@r{<column-name>} @r{<domain>})
@end lisp
or
@lisp
(@r{<column-name>} @r{<domain>} @r{<column-integrity-rule>})
@end lisp
where @r{<column-name>} is the column name, @r{<domain>} is the domain
of the column, and @r{<column-integrity-rule>} is an expression whose
value is a procedure of one argument (which returns @code{#f} to signal
an error).
If @r{<domain>} is not a defined domain name and it matches the name of
this table or an already defined (in one of @var{spec-0} @dots{}) single
key field table, a foriegn-key domain will be created for it.
@end deffn
@deffn Procedure create-report rdb destination report-name table
@deffnx Procedure create-report rdb destination report-name
The symbol @var{report-name} must be primary key in the table named
@code{*reports*} in the relational database @var{rdb}.
@var{destination} is a port, string, or symbol. If @var{destination} is
a:
@table @asis
@item port
The table is created as ascii text and written to that port.
@item string
The table is created as ascii text and written to the file named by
@var{destination}.
@item symbol
@var{destination} is the primary key for a row in the table named *printers*.
@end table
Each row in the table *reports* has the fields:
@table @asis
@item name
The report name.
@item default-table
The table to report on if none is specified.
@item header, footer
A @code{format} string. At the beginning and end of each page
respectively, @code{format} is called with this string and the (list of)
column-names of this table.
@item reporter
A @code{format} string. For each row in the table, @code{format} is
called with this string and the row.
@item minimum-break
The minimum number of lines into which the report lines for a row can be
broken. Use @code{0} if a row's lines should not be broken over page
boundaries.
@end table
Each row in the table *printers* has the fields:
@table @asis
@item name
The printer name.
@item print-procedure
The procedure to call to actually print.
@end table
The report is prepared as follows:
@itemize @bullet
@item
@code{Format} (@pxref{Format}) is called with the @code{header} field
and the (list of) @code{column-names} of the table.
@item
@code{Format} is called with the @code{reporter} field and (on
successive calls) each record in the natural order for the table. A
count is kept of the number of newlines output by format. When the
number of newlines to be output exceeds the number of lines per page,
the set of lines will be broken if there are more than
@code{minimum-break} left on this page and the number of lines for this
row is larger or equal to twice @code{minimum-break}.
@item
@code{Format} is called with the @code{footer} field and the (list of)
@code{column-names} of the table. The footer field should not output a
newline.
@item
A new page is output.
@item
This entire process repeats until all the rows are output.
@end itemize
@end deffn
@noindent
The following example shows a new database with the name of
@file{foo.db} being created with tables describing processor families
and processor/os/compiler combinations.
@noindent
The database command @code{define-tables} is defined to call
@code{define-tables} with its arguments. The database is also
configured to print @samp{Welcome} when the database is opened. The
database is then closed and reopened.
@example
(require 'database-utilities)
@ftindex database-utilities
(define my-rdb (create-database "foo.db" 'alist-table))
(define-tables my-rdb
'(*commands*
((name symbol))
((parameters parameter-list)
(procedure expression)
(documentation string))
((define-tables
no-parameters
no-parameter-names
(lambda (rdb) (lambda specs (apply define-tables rdb specs)))
"Create or Augment tables from list of specs")
(*initialize*
no-parameters
no-parameter-names
(lambda (rdb) (display "Welcome") (newline) rdb)
"Print Welcome"))))
((my-rdb 'define-tables)
'(processor-family
((family atom))
((also-ran processor-family))
((m68000 #f)
(m68030 m68000)
(i386 8086)
(8086 #f)
(powerpc #f)))
'(platform
((name symbol))
((processor processor-family)
(os symbol)
(compiler symbol))
((aix powerpc aix -)
(amiga-dice-c m68000 amiga dice-c)
(amiga-aztec m68000 amiga aztec)
(amiga-sas/c-5.10 m68000 amiga sas/c)
(atari-st-gcc m68000 atari gcc)
(atari-st-turbo-c m68000 atari turbo-c)
(borland-c-3.1 8086 ms-dos borland-c)
(djgpp i386 ms-dos gcc)
(linux i386 linux gcc)
(microsoft-c 8086 ms-dos microsoft-c)
(os/2-emx i386 os/2 gcc)
(turbo-c-2 8086 ms-dos turbo-c)
(watcom-9.0 i386 ms-dos watcom))))
((my-rdb 'close-database))
(set! my-rdb (open-database "foo.db" 'alist-table))
@print{}
Welcome
@end example
@node Weight-Balanced Trees, , Relational Database, Database Packages
@section Weight-Balanced Trees
@code{(require 'wt-tree)}
@ftindex wt-tree
@cindex trees, balanced binary
@cindex balanced binary trees
@cindex binary trees
@cindex weight-balanced binary trees
Balanced binary trees are a useful data structure for maintaining large
sets of ordered objects or sets of associations whose keys are ordered.
MIT Scheme has an comprehensive implementation of weight-balanced binary
trees which has several advantages over the other data structures for
large aggregates:
@itemize @bullet
@item
In addition to the usual element-level operations like insertion,
deletion and lookup, there is a full complement of collection-level
operations, like set intersection, set union and subset test, all of
which are implemented with good orders of growth in time and space.
This makes weight balanced trees ideal for rapid prototyping of
functionally derived specifications.
@item
An element in a tree may be indexed by its position under the ordering
of the keys, and the ordinal position of an element may be determined,
both with reasonable efficiency.
@item
Operations to find and remove minimum element make weight balanced trees
simple to use for priority queues.
@item
The implementation is @emph{functional} rather than @emph{imperative}.
This means that operations like `inserting' an association in a tree do
not destroy the old tree, in much the same way that @code{(+ 1 x)}
modifies neither the constant 1 nor the value bound to @code{x}. The
trees are referentially transparent thus the programmer need not worry
about copying the trees. Referential transparency allows space
efficiency to be achieved by sharing subtrees.
@end itemize
These features make weight-balanced trees suitable for a wide range of
applications, especially those that
require large numbers of sets or discrete maps. Applications that have
a few global databases and/or concentrate on element-level operations like
insertion and lookup are probably better off using hash-tables or
red-black trees.
The @emph{size} of a tree is the number of associations that it
contains. Weight balanced binary trees are balanced to keep the sizes
of the subtrees of each node within a constant factor of each other.
This ensures logarithmic times for single-path operations (like lookup
and insertion). A weight balanced tree takes space that is proportional
to the number of associations in the tree. For the current
implementation, the constant of proportionality is six words per
association.
@cindex binary trees, as sets
@cindex binary trees, as discrete maps
@cindex sets, using binary trees
@cindex discrete maps, using binary trees
Weight balanced trees can be used as an implementation for either
discrete sets or discrete maps (associations). Sets are implemented by
ignoring the datum that is associated with the key. Under this scheme
if an associations exists in the tree this indicates that the key of the
association is a member of the set. Typically a value such as
@code{()}, @code{#t} or @code{#f} is associated with the key.
Many operations can be viewed as computing a result that, depending on
whether the tree arguments are thought of as sets or maps, is known by
two different names.
An example is @code{wt-tree/member?}, which, when
regarding the tree argument as a set, computes the set membership operation, but,
when regarding the tree as a discrete map, @code{wt-tree/member?} is the
predicate testing if the map is defined at an element in its domain.
Most names in this package have been chosen based on interpreting the
trees as sets, hence the name @code{wt-tree/member?} rather than
@code{wt-tree/defined-at?}.
@cindex run-time-loadable option
@cindex option, run-time-loadable
The weight balanced tree implementation is a run-time-loadable option.
To use weight balanced trees, execute
@example
(load-option 'wt-tree)
@end example
@findex load-option
@noindent
once before calling any of the procedures defined here.
@menu
* Construction of Weight-Balanced Trees::
* Basic Operations on Weight-Balanced Trees::
* Advanced Operations on Weight-Balanced Trees::
* Indexing Operations on Weight-Balanced Trees::
@end menu
@node Construction of Weight-Balanced Trees, Basic Operations on Weight-Balanced Trees, Weight-Balanced Trees, Weight-Balanced Trees
@subsection Construction of Weight-Balanced Trees
Binary trees require there to be a total order on the keys used to
arrange the elements in the tree. Weight balanced trees are organized
by @emph{types}, where the type is an object encapsulating the ordering
relation. Creating a tree is a two-stage process. First a tree type
must be created from the predicate which gives the ordering. The tree type
is then used for making trees, either empty or singleton trees or trees
from other aggregate structures like association lists. Once created, a
tree `knows' its type and the type is used to test compatibility between
trees in operations taking two trees. Usually a small number of tree
types are created at the beginning of a program and used many times
throughout the program's execution.
@deffn {procedure+} make-wt-tree-type key<?
This procedure creates and returns a new tree type based on the ordering
predicate @var{key<?}.
@var{Key<?} must be a total ordering, having the property that for all
key values @code{a}, @code{b} and @code{c}:
@example
(key<? a a) @result{} #f
(and (key<? a b) (key<? b a)) @result{} #f
(if (and (key<? a b) (key<? b c))
(key<? a c)
#t) @result{} #t
@end example
@noindent
Two key values are assumed to be equal if neither is less than the other
by @var{key<?}.
Each call to @code{make-wt-tree-type} returns a distinct value, and
trees are only compatible if their tree types are @code{eq?}.
A consequence is
that trees that are intended to be used in binary tree operations must all be
created with a tree type originating from the same call to
@code{make-wt-tree-type}.
@end deffn
@defvr {variable+} number-wt-type
A standard tree type for trees with numeric keys. @code{Number-wt-type}
could have been defined by
@example
(define number-wt-type (make-wt-tree-type <))
@end example
@end defvr
@defvr {variable+} string-wt-type
A standard tree type for trees with string keys. @code{String-wt-type}
could have been defined by
@example
(define string-wt-type (make-wt-tree-type string<?))
@end example
@end defvr
@deffn {procedure+} make-wt-tree wt-tree-type
This procedure creates and returns a newly allocated weight balanced
tree. The tree is empty, i.e. it contains no associations.
@var{Wt-tree-type} is a weight balanced tree type obtained by calling
@code{make-wt-tree-type}; the returned tree has this type.
@end deffn
@deffn {procedure+} singleton-wt-tree wt-tree-type key datum
This procedure creates and returns a newly allocated weight balanced
tree. The tree contains a single association, that of @var{datum} with
@var{key}. @var{Wt-tree-type} is a weight balanced tree type obtained
by calling @code{make-wt-tree-type}; the returned tree has this type.
@end deffn
@deffn {procedure+} alist->wt-tree tree-type alist
Returns a newly allocated weight-balanced tree that contains the same
associations as @var{alist}. This procedure is equivalent to:
@example
(lambda (type alist)
(let ((tree (make-wt-tree type)))
(for-each (lambda (association)
(wt-tree/add! tree
(car association)
(cdr association)))
alist)
tree))
@end example
@end deffn
@node Basic Operations on Weight-Balanced Trees, Advanced Operations on Weight-Balanced Trees, Construction of Weight-Balanced Trees, Weight-Balanced Trees
@subsection Basic Operations on Weight-Balanced Trees
This section describes the basic tree operations on weight balanced
trees. These operations are the usual tree operations for insertion,
deletion and lookup, some predicates and a procedure for determining the
number of associations in a tree.
@deffn {procedure+} wt-tree? object
Returns @code{#t} if @var{object} is a weight-balanced tree, otherwise
returns @code{#f}.
@end deffn
@deffn {procedure+} wt-tree/empty? wt-tree
Returns @code{#t} if @var{wt-tree} contains no associations, otherwise
returns @code{#f}.
@end deffn
@deffn {procedure+} wt-tree/size wt-tree
Returns the number of associations in @var{wt-tree}, an exact
non-negative integer. This operation takes constant time.
@end deffn
@deffn {procedure+} wt-tree/add wt-tree key datum
Returns a new tree containing all the associations in @var{wt-tree} and
the association of @var{datum} with @var{key}. If @var{wt-tree} already
had an association for @var{key}, the new association overrides the old.
The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in
@var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/add! wt-tree key datum
Associates @var{datum} with @var{key} in @var{wt-tree} and returns an
unspecified value. If @var{wt-tree} already has an association for
@var{key}, that association is replaced. The average and worst-case
times required by this operation are proportional to the logarithm of
the number of associations in @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/member? key wt-tree
Returns @code{#t} if @var{wt-tree} contains an association for
@var{key}, otherwise returns @code{#f}. The average and worst-case
times required by this operation are proportional to the logarithm of
the number of associations in @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/lookup wt-tree key default
Returns the datum associated with @var{key} in @var{wt-tree}. If
@var{wt-tree} doesn't contain an association for @var{key},
@var{default} is returned. The average and worst-case times required by
this operation are proportional to the logarithm of the number of
associations in @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/delete wt-tree key
Returns a new tree containing all the associations in @var{wt-tree},
except that if @var{wt-tree} contains an association for @var{key}, it
is removed from the result. The average and worst-case times required
by this operation are proportional to the logarithm of the number of
associations in @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/delete! wt-tree key
If @var{wt-tree} contains an association for @var{key} the association
is removed. Returns an unspecified value. The average and worst-case
times required by this operation are proportional to the logarithm of
the number of associations in @var{wt-tree}.
@end deffn
@node Advanced Operations on Weight-Balanced Trees, Indexing Operations on Weight-Balanced Trees, Basic Operations on Weight-Balanced Trees, Weight-Balanced Trees
@subsection Advanced Operations on Weight-Balanced Trees
In the following the @emph{size} of a tree is the number of associations
that the tree contains, and a @emph{smaller} tree contains fewer
associations.
@deffn {procedure+} wt-tree/split< wt-tree bound
Returns a new tree containing all and only the associations in
@var{wt-tree} which have a key that is less than @var{bound} in the
ordering relation of the tree type of @var{wt-tree}. The average and
worst-case times required by this operation are proportional to the
logarithm of the size of @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/split> wt-tree bound
Returns a new tree containing all and only the associations in
@var{wt-tree} which have a key that is greater than @var{bound} in the
ordering relation of the tree type of @var{wt-tree}. The average and
worst-case times required by this operation are proportional to the
logarithm of size of @var{wt-tree}.
@end deffn
@deffn {procedure+} wt-tree/union wt-tree-1 wt-tree-2
Returns a new tree containing all the associations from both trees.
This operation is asymmetric: when both trees have an association for
the same key, the returned tree associates the datum from @var{wt-tree-2}
with the key. Thus if the trees are viewed as discrete maps then
@code{wt-tree/union} computes the map override of @var{wt-tree-1} by
@var{wt-tree-2}. If the trees are viewed as sets the result is the set
union of the arguments.
The worst-case time required by this operation
is proportional to the sum of the sizes of both trees.
If the minimum key of one tree is greater than the maximum key of
the other tree then the time required is at worst proportional to
the logarithm of the size of the larger tree.
@end deffn
@deffn {procedure+} wt-tree/intersection wt-tree-1 wt-tree-2
Returns a new tree containing all and only those associations from
@var{wt-tree-1} which have keys appearing as the key of an association
in @var{wt-tree-2}. Thus the associated data in the result are those
from @var{wt-tree-1}. If the trees are being used as sets the result is
the set intersection of the arguments. As a discrete map operation,
@code{wt-tree/intersection} computes the domain restriction of
@var{wt-tree-1} to (the domain of) @var{wt-tree-2}.
The time required by this operation is never worse that proportional to
the sum of the sizes of the trees.
@end deffn
@deffn {procedure+} wt-tree/difference wt-tree-1 wt-tree-2
Returns a new tree containing all and only those associations from
@var{wt-tree-1} which have keys that @emph{do not} appear as the key of
an association in @var{wt-tree-2}. If the trees are viewed as sets the
result is the asymmetric set difference of the arguments. As a discrete
map operation, it computes the domain restriction of @var{wt-tree-1} to
the complement of (the domain of) @var{wt-tree-2}.
The time required by this operation is never worse that proportional to
the sum of the sizes of the trees.
@end deffn
@deffn {procedure+} wt-tree/subset? wt-tree-1 wt-tree-2
Returns @code{#t} iff the key of each association in @var{wt-tree-1} is
the key of some association in @var{wt-tree-2}, otherwise returns @code{#f}.
Viewed as a set operation, @code{wt-tree/subset?} is the improper subset
predicate.
A proper subset predicate can be constructed:
@example
(define (proper-subset? s1 s2)
(and (wt-tree/subset? s1 s2)
(< (wt-tree/size s1) (wt-tree/size s2))))
@end example
As a discrete map operation, @code{wt-tree/subset?} is the subset
test on the domain(s) of the map(s). In the worst-case the time
required by this operation is proportional to the size of
@var{wt-tree-1}.
@end deffn
@deffn {procedure+} wt-tree/set-equal? wt-tree-1 wt-tree-2
Returns @code{#t} iff for every association in @var{wt-tree-1} there is
an association in @var{wt-tree-2} that has the same key, and @emph{vice
versa}.
Viewing the arguments as sets @code{wt-tree/set-equal?} is the set
equality predicate. As a map operation it determines if two maps are
defined on the same domain.
This procedure is equivalent to
@example
(lambda (wt-tree-1 wt-tree-2)
(and (wt-tree/subset? wt-tree-1 wt-tree-2
(wt-tree/subset? wt-tree-2 wt-tree-1)))
@end example
In the worst-case the time required by this operation is proportional to
the size of the smaller tree.
@end deffn
@deffn {procedure+} wt-tree/fold combiner initial wt-tree
This procedure reduces @var{wt-tree} by combining all the associations,
using an reverse in-order traversal, so the associations are visited in
reverse order. @var{Combiner} is a procedure of three arguments: a key,
a datum and the accumulated result so far. Provided @var{combiner}
takes time bounded by a constant, @code{wt-tree/fold} takes time
proportional to the size of @var{wt-tree}.
A sorted association list can be derived simply:
@example
(wt-tree/fold (lambda (key datum list)
(cons (cons key datum) list))
'()
@var{wt-tree}))
@end example
The data in the associations can be summed like this:
@example
(wt-tree/fold (lambda (key datum sum) (+ sum datum))
0
@var{wt-tree})
@end example
@end deffn
@deffn {procedure+} wt-tree/for-each action wt-tree
This procedure traverses the tree in-order, applying @var{action} to
each association.
The associations are processed in increasing order of their keys.
@var{Action} is a procedure of two arguments which take the key and
datum respectively of the association.
Provided @var{action} takes time bounded by a constant,
@code{wt-tree/for-each} takes time proportional to in the size of
@var{wt-tree}.
The example prints the tree:
@example
(wt-tree/for-each (lambda (key value)
(display (list key value)))
@var{wt-tree}))
@end example
@end deffn
@node Indexing Operations on Weight-Balanced Trees, , Advanced Operations on Weight-Balanced Trees, Weight-Balanced Trees
@subsection Indexing Operations on Weight-Balanced Trees
Weight balanced trees support operations that view the tree as sorted
sequence of associations. Elements of the sequence can be accessed by
position, and the position of an element in the sequence can be
determined, both in logarthmic time.
@deffn {procedure+} wt-tree/index wt-tree index
@deffnx {procedure+} wt-tree/index-datum wt-tree index
@deffnx {procedure+} wt-tree/index-pair wt-tree index
Returns the 0-based @var{index}th association of @var{wt-tree} in the
sorted sequence under the tree's ordering relation on the keys.
@code{wt-tree/index} returns the @var{index}th key,
@code{wt-tree/index-datum} returns the datum associated with the
@var{index}th key and @code{wt-tree/index-pair} returns a new pair
@code{(@var{key} . @var{datum})} which is the @code{cons} of the @var{index}th
key and its datum. The average and worst-case times required by this
operation are proportional to the logarithm of the number of
associations in the tree.
These operations signal an error if the tree is empty, if
@var{index}@code{<0}, or if @var{index} is greater than or equal to the
number of associations in the tree.
Indexing can be used to find the median and maximum keys in the tree as
follows:
@example
median: (wt-tree/index @var{wt-tree} (quotient (wt-tree/size @var{wt-tree}) 2))
maximum: (wt-tree/index @var{wt-tree} (-1+ (wt-tree/size @var{wt-tree})))
@end example
@end deffn
@deffn {procedure+} wt-tree/rank wt-tree key
Determines the 0-based position of @var{key} in the sorted sequence of
the keys under the tree's ordering relation, or @code{#f} if the tree
has no association with for @var{key}. This procedure returns either an
exact non-negative integer or @code{#f}. The average and worst-case
times required by this operation are proportional to the logarithm of
the number of associations in the tree.
@end deffn
@deffn {procedure+} wt-tree/min wt-tree
@deffnx {procedure+} wt-tree/min-datum wt-tree
@deffnx {procedure+} wt-tree/min-pair wt-tree
Returns the association of @var{wt-tree} that has the least key under the tree's ordering relation.
@code{wt-tree/min} returns the least key,
@code{wt-tree/min-datum} returns the datum associated with the
least key and @code{wt-tree/min-pair} returns a new pair
@code{(key . datum)} which is the @code{cons} of the minimum key and its datum.
The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in the tree.
These operations signal an error if the tree is empty.
They could be written
@example
(define (wt-tree/min tree) (wt-tree/index tree 0))
(define (wt-tree/min-datum tree) (wt-tree/index-datum tree 0))
(define (wt-tree/min-pair tree) (wt-tree/index-pair tree 0))
@end example
@end deffn
@deffn {procedure+} wt-tree/delete-min wt-tree
Returns a new tree containing all of the associations in @var{wt-tree}
except the association with the least key under the @var{wt-tree}'s
ordering relation. An error is signalled if the tree is empty. The
average and worst-case times required by this operation are proportional
to the logarithm of the number of associations in the tree. This
operation is equivalent to
@example
(wt-tree/delete @var{wt-tree} (wt-tree/min @var{wt-tree}))
@end example
@end deffn
@deffn {procedure+} wt-tree/delete-min! wt-tree
Removes the association with the least key under the @var{wt-tree}'s
ordering relation. An error is signalled if the tree is empty. The
average and worst-case times required by this operation are proportional
to the logarithm of the number of associations in the tree. This
operation is equivalent to
@example
(wt-tree/delete! @var{wt-tree} (wt-tree/min @var{wt-tree}))
@end example
@end deffn
@node Other Packages, About SLIB, Database Packages, Top
@chapter Other Packages
@menu
* Data Structures:: Various data structures.
* Procedures:: Miscellaneous utility procedures.
* Standards Support:: Support for Scheme Standards.
* Session Support:: REPL and Debugging.
* Extra-SLIB Packages::
@end menu
@node Data Structures, Procedures, Other Packages, Other Packages
@section Data Structures
@menu
* Arrays:: 'array
* Array Mapping:: 'array-for-each
* Association Lists:: 'alist
* Byte:: 'byte
* Collections:: 'collect
* Dynamic Data Type:: 'dynamic
* Hash Tables:: 'hash-table
* Hashing:: 'hash, 'sierpinski, 'soundex
* Priority Queues:: 'priority-queue
* Queues:: 'queue
* Records:: 'record
* Structures:: 'struct, 'structure
@end menu
@node Arrays, Array Mapping, Data Structures, Data Structures
@subsection Arrays
@code{(require 'array)}
@ftindex array
@defun array? obj
Returns @code{#t} if the @var{obj} is an array, and @code{#f} if not.
@end defun
@defun make-array initial-value bound1 bound2 @dots{}
Creates and returns an array that has as many dimensins as there are
@var{bound}s and fills it with @var{initial-value}.@refill
@end defun
When constructing an array, @var{bound} is either an inclusive range of
indices expressed as a two element list, or an upper bound expressed as
a single integer. So@refill
@lisp
(make-array 'foo 3 3) @equiv{} (make-array 'foo '(0 2) '(0 2))
@end lisp
@defun make-shared-array array mapper bound1 bound2 @dots{}
@code{make-shared-array} can be used to create shared subarrays of other
arrays. The @var{mapper} is a function that translates coordinates in
the new array into coordinates in the old array. A @var{mapper} must be
linear, and its range must stay within the bounds of the old array, but
it can be otherwise arbitrary. A simple example:@refill
@lisp
(define fred (make-array #f 8 8))
(define freds-diagonal
(make-shared-array fred (lambda (i) (list i i)) 8))
(array-set! freds-diagonal 'foo 3)
(array-ref fred 3 3)
@result{} FOO
(define freds-center
(make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))
2 2))
(array-ref freds-center 0 0)
@result{} FOO
@end lisp
@end defun
@defun array-rank obj
Returns the number of dimensions of @var{obj}. If @var{obj} is not an
array, 0 is returned.
@end defun
@defun array-shape array
@code{array-shape} returns a list of inclusive bounds. So:
@lisp
(array-shape (make-array 'foo 3 5))
@result{} ((0 2) (0 4))
@end lisp
@end defun
@defun array-dimensions array
@code{array-dimensions} is similar to @code{array-shape} but replaces
elements with a 0 minimum with one greater than the maximum. So:
@lisp
(array-dimensions (make-array 'foo 3 5))
@result{} (3 5)
@end lisp
@end defun
@deffn Procedure array-in-bounds? array index1 index2 @dots{}
Returns @code{#t} if its arguments would be acceptable to
@code{array-ref}.
@end deffn
@defun array-ref array index1 index2 @dots{}
Returns the element at the @code{(@var{index1}, @var{index2})} element
in @var{array}.@refill
@end defun
@deffn Procedure array-set! array new-value index1 index2 @dots{}
@end deffn
@defun array-1d-ref array index
@defunx array-2d-ref array index index
@defunx array-3d-ref array index index index
@end defun
@deffn Procedure array-1d-set! array new-value index
@deffnx Procedure array-2d-set! array new-value index index
@deffnx Procedure array-3d-set! array new-value index index index
@end deffn
The functions are just fast versions of @code{array-ref} and
@code{array-set!} that take a fixed number of arguments, and perform no
bounds checking.@refill
If you comment out the bounds checking code, this is about as efficient
as you could ask for without help from the compiler.
An exercise left to the reader: implement the rest of APL.
@node Array Mapping, Association Lists, Arrays, Data Structures
@subsection Array Mapping
@code{(require 'array-for-each)}
@ftindex array-for-each
@defun array-map! array0 proc array1 @dots{}
@var{array1}, @dots{} must have the same number of dimensions as
@var{array0} and have a range for each index which includes the range
for the corresponding index in @var{array0}. @var{proc} is applied to
each tuple of elements of @var{array1} @dots{} and the result is stored
as the corresponding element in @var{array0}. The value returned is
unspecified. The order of application is unspecified.
@end defun
@defun array-for-each @var{proc} @var{array0} @dots{}
@var{proc} is applied to each tuple of elements of @var{array0} @dots{}
in row-major order. The value returned is unspecified.
@end defun
@defun array-indexes @var{array}
Returns an array of lists of indexes for @var{array} such that, if
@var{li} is a list of indexes for which @var{array} is defined, (equal?
@var{li} (apply array-ref (array-indexes @var{array}) @var{li})).
@end defun
@defun array-index-map! array proc
applies @var{proc} to the indices of each element of @var{array} in
turn, storing the result in the corresponding element. The value
returned and the order of application are unspecified.
One can implement @var{array-indexes} as
@example
(define (array-indexes array)
(let ((ra (apply make-array #f (array-shape array))))
(array-index-map! ra (lambda x x))
ra))
@end example
Another example:
@example
(define (apl:index-generator n)
(let ((v (make-uniform-vector n 1)))
(array-index-map! v (lambda (i) i))
v))
@end example
@end defun
@defun array-copy! source destination
Copies every element from vector or array @var{source} to the
corresponding element of @var{destination}. @var{destination} must have
the same rank as @var{source}, and be at least as large in each
dimension. The order of copying is unspecified.
@end defun
@node Association Lists, Byte, Array Mapping, Data Structures
@subsection Association Lists
@code{(require 'alist)}
@ftindex alist
Alist functions provide utilities for treating a list of key-value pairs
as an associative database. These functions take an equality predicate,
@var{pred}, as an argument. This predicate should be repeatable,
symmetric, and transitive.@refill
Alist functions can be used with a secondary index method such as hash
tables for improved performance.
@defun predicate->asso pred
Returns an @dfn{association function} (like @code{assq}, @code{assv}, or
@code{assoc}) corresponding to @var{pred}. The returned function
returns a key-value pair whose key is @code{pred}-equal to its first
argument or @code{#f} if no key in the alist is @var{pred}-equal to the
first argument.@refill
@end defun
@defun alist-inquirer pred
Returns a procedure of 2 arguments, @var{alist} and @var{key}, which
returns the value associated with @var{key} in @var{alist} or @code{#f} if
@var{key} does not appear in @var{alist}.@refill
@end defun
@defun alist-associator pred
Returns a procedure of 3 arguments, @var{alist}, @var{key}, and
@var{value}, which returns an alist with @var{key} and @var{value}
associated. Any previous value associated with @var{key} will be
lost. This returned procedure may or may not have side effects on its
@var{alist} argument. An example of correct usage is:@refill
@lisp
(define put (alist-associator string-ci=?))
(define alist '())
(set! alist (put alist "Foo" 9))
@end lisp
@end defun
@defun alist-remover pred
Returns a procedure of 2 arguments, @var{alist} and @var{key}, which
returns an alist with an association whose @var{key} is key removed.
This returned procedure may or may not have side effects on its
@var{alist} argument. An example of correct usage is:@refill
@lisp
(define rem (alist-remover string-ci=?))
(set! alist (rem alist "foo"))
@end lisp
@end defun
@defun alist-map proc alist
Returns a new association list formed by mapping @var{proc} over the
keys and values of @var{alist}. @var{proc} must be a function of 2
arguments which returns the new value part.
@end defun
@defun alist-for-each proc alist
Applies @var{proc} to each pair of keys and values of @var{alist}.
@var{proc} must be a function of 2 arguments. The returned value is
unspecified.
@end defun
@node Byte, Collections, Association Lists, Data Structures
@subsection Byte
@code{(require 'byte)}
Some algorithms are expressed in terms of arrays of small integers.
Using Scheme strings to implement these arrays is not portable vis-a-vis
the correspondence between integers and characters and non-ascii
character sets. These functions abstract the notion of a @dfn{byte}.
@cindex byte
@deffn Function byte-ref bytes k
@var{k} must be a valid index of @var{bytes}. @code{byte-ref} returns
byte @var{k} of @var{bytes} using zero-origin indexing.
@findex byte-ref
@end deffn
@deffn Procedure byte-set! bytes k byte
@var{k} must be a valid index of @var{bytes}%, and @var{byte} must be a
small integer. @code{Byte-set!} stores @var{byte} in element @var{k}
of @var{bytes}
@findex byte-set!
and returns an unspecified value. @c <!>
@end deffn
@deffn Function make-bytes k
@deffnx Function make-bytes k byte
@code{Make-bytes} returns a newly allocated byte-array of
@findex make-bytes
length @var{k}. If @var{byte} is given, then all elements of the
byte-array are initialized to @var{byte}, otherwise the contents of the
byte-array are unspecified.
@end deffn
@deffn Function write-byte byte
@deffnx Function write-byte byte port
Writes the byte @var{byte} (not an external representation of the
byte) to the given @var{port} and returns an unspecified value. The
@var{port} argument may be omitted, in which case it defaults to the value
returned by @code{current-output-port}.
@findex current-output-port
@end deffn
@deffn Function read-byte
@deffnx Function read-byte port
Returns the next byte available from the input @var{port}, updating
the @var{port} to point to the following byte. If no more bytes
are available, an end of file object is returned. @var{Port} may be
omitted, in which case it defaults to the value returned by
@code{current-input-port}.
@findex current-input-port
@end deffn
@deffn Function bytes byte @dots{}
Returns a newly allocated byte-array composed of the arguments.
@end deffn
@deffn Function bytes->list bytes
@deffnx Function list->bytes bytes
@code{Bytes->list} returns a newly allocated list of the
@findex bytes->list
bytes that make up the given byte-array. @code{List->bytes}
@findex list->bytes
returns a newly allocated byte-array formed from the small integers in
the list @var{bytes}. @code{Bytes->list} and @code{list->bytes} are
@findex list->bytes
@findex bytes->list
inverses so far as @code{equal?} is concerned.
@findex equal?
@end deffn
@node Collections, Dynamic Data Type, Byte, Data Structures
@subsection Collections
@c Much of the documentation in this section was written by Dave Love
@c (d.love@dl.ac.uk) -- don't blame Ken Dickey for its faults.
@c but we can blame him for not writing it!
@code{(require 'collect)}
@ftindex collect
Routines for managing collections. Collections are aggregate data
structures supporting iteration over their elements, similar to the
Dylan(TM) language, but with a different interface. They have
@dfn{elements} indexed by corresponding @dfn{keys}, although the keys
may be implicit (as with lists).@refill
New types of collections may be defined as YASOS objects (@xref{Yasos}).
They must support the following operations:
@itemize @bullet
@item
@code{(collection? @var{self})} (always returns @code{#t});
@item
@code{(size @var{self})} returns the number of elements in the collection;
@item
@code{(print @var{self} @var{port})} is a specialized print operation
for the collection which prints a suitable representation on the given
@var{port} or returns it as a string if @var{port} is @code{#t};@refill
@item
@code{(gen-elts @var{self})} returns a thunk which on successive
invocations yields elements of @var{self} in order or gives an error if
it is invoked more than @code{(size @var{self})} times;@refill
@item
@code{(gen-keys @var{self})} is like @code{gen-elts}, but yields the
collection's keys in order.
@end itemize
They might support specialized @code{for-each-key} and
@code{for-each-elt} operations.@refill
@defun collection? obj
A predicate, true initially of lists, vectors and strings. New sorts of
collections must answer @code{#t} to @code{collection?}.@refill
@end defun
@deffn Procedure map-elts proc . collections
@deffnx Procedure do-elts proc . collections
@var{proc} is a procedure taking as many arguments as there are
@var{collections} (at least one). The @var{collections} are iterated
over in their natural order and @var{proc} is applied to the elements
yielded by each iteration in turn. The order in which the arguments are
supplied corresponds to te order in which the @var{collections} appear.
@code{do-elts} is used when only side-effects of @var{proc} are of
interest and its return value is unspecified. @code{map-elts} returns a
collection (actually a vector) of the results of the applications of
@var{proc}.@refill
Example:
@lisp
(map-elts + (list 1 2 3) (vector 1 2 3))
@result{} #(2 4 6)
@end lisp
@end deffn
@deffn Procedure map-keys proc . collections
@deffnx Procedure do-keys proc . collections
These are analogous to @code{map-elts} and @code{do-elts}, but each
iteration is over the @var{collections}' @emph{keys} rather than their
elements.@refill
Example:
@lisp
(map-keys + (list 1 2 3) (vector 1 2 3))
@result{} #(0 2 4)
@end lisp
@end deffn
@deffn Procedure for-each-key collection proc
@deffnx Procedure for-each-elt collection proc
These are like @code{do-keys} and @code{do-elts} but only for a single
collection; they are potentially more efficient.
@end deffn
@defun reduce proc seed . collections
A generalization of the list-based @code{comlist:reduce-init}
(@xref{Lists as sequences}) to collections which will shadow the
list-based version if @code{(require 'collect)} follows
@ftindex collect
@code{(require 'common-list-functions)} (@xref{Common List Functions}).@refill
@ftindex common-list-functions
Examples:
@lisp
(reduce + 0 (vector 1 2 3))
@result{} 6
(reduce union '() '((a b c) (b c d) (d a)))
@result{} (c b d a).
@end lisp
@end defun
@defun any? pred . collections
A generalization of the list-based @code{some} (@xref{Lists as
sequences}) to collections.@refill
Example:
@lisp
(any? odd? (list 2 3 4 5))
@result{} #t
@end lisp
@end defun
@defun every? pred . collections
A generalization of the list-based @code{every} (@xref{Lists as
sequences}) to collections.@refill
Example:
@lisp
(every? collection? '((1 2) #(1 2)))
@result{} #t
@end lisp
@end defun
@defun empty? collection
Returns @code{#t} iff there are no elements in @var{collection}.
@code{(empty? @var{collection}) @equiv{} (zero? (size @var{collection}))}
@end defun
@defun size collection
Returns the number of elements in @var{collection}.
@end defun
@defun Setter list-ref
See @xref{Setters} for a definition of @dfn{setter}. N.B.
@code{(setter list-ref)} doesn't work properly for element 0 of a
list.@refill
@end defun
Here is a sample collection: @code{simple-table} which is also a
@code{table}.@refill
@lisp
(define-predicate TABLE?)
(define-operation (LOOKUP table key failure-object))
(define-operation (ASSOCIATE! table key value)) ;; returns key
(define-operation (REMOVE! table key)) ;; returns value
(define (MAKE-SIMPLE-TABLE)
(let ( (table (list)) )
(object
;; table behaviors
((TABLE? self) #t)
((SIZE self) (size table))
((PRINT self port) (format port "#<SIMPLE-TABLE>"))
((LOOKUP self key failure-object)
(cond
((assq key table) => cdr)
(else failure-object)
))
((ASSOCIATE! self key value)
(cond
((assq key table)
=> (lambda (bucket) (set-cdr! bucket value) key))
(else
(set! table (cons (cons key value) table))
key)
))
((REMOVE! self key);; returns old value
(cond
((null? table) (slib:error "TABLE:REMOVE! Key not found: " key))
((eq? key (caar table))
(let ( (value (cdar table)) )
(set! table (cdr table))
value)
)
(else
(let loop ( (last table) (this (cdr table)) )
(cond
((null? this)
(slib:error "TABLE:REMOVE! Key not found: " key))
((eq? key (caar this))
(let ( (value (cdar this)) )
(set-cdr! last (cdr this))
value)
)
(else
(loop (cdr last) (cdr this)))
) ) )
))
;; collection behaviors
((COLLECTION? self) #t)
((GEN-KEYS self) (collect:list-gen-elts (map car table)))
((GEN-ELTS self) (collect:list-gen-elts (map cdr table)))
((FOR-EACH-KEY self proc)
(for-each (lambda (bucket) (proc (car bucket))) table)
)
((FOR-EACH-ELT self proc)
(for-each (lambda (bucket) (proc (cdr bucket))) table)
)
) ) )
@end lisp
@node Dynamic Data Type, Hash Tables, Collections, Data Structures
@subsection Dynamic Data Type
@code{(require 'dynamic)}
@ftindex dynamic
@defun make-dynamic obj
Create and returns a new @dfn{dynamic} whose global value is @var{obj}.
@end defun
@defun dynamic? obj
Returns true if and only if @var{obj} is a dynamic. No object
satisfying @code{dynamic?} satisfies any of the other standard type
predicates.@refill
@end defun
@defun dynamic-ref dyn
Return the value of the given dynamic in the current dynamic
environment.
@end defun
@deffn Procedure dynamic-set! dyn obj
Change the value of the given dynamic to @var{obj} in the current
dynamic environment. The returned value is unspecified.@refill
@end deffn
@defun call-with-dynamic-binding dyn obj thunk
Invoke and return the value of the given thunk in a new, nested dynamic
environment in which the given dynamic has been bound to a new location
whose initial contents are the value @var{obj}. This dynamic
environment has precisely the same extent as the invocation of the thunk
and is thus captured by continuations created within that invocation and
re-established by those continuations when they are invoked.@refill
@end defun
The @code{dynamic-bind} macro is not implemented.
@node Hash Tables, Hashing, Dynamic Data Type, Data Structures
@subsection Hash Tables
@code{(require 'hash-table)}
@ftindex hash-table
@defun predicate->hash pred
Returns a hash function (like @code{hashq}, @code{hashv}, or
@code{hash}) corresponding to the equality predicate @var{pred}.
@var{pred} should be @code{eq?}, @code{eqv?}, @code{equal?}, @code{=},
@code{char=?}, @code{char-ci=?}, @code{string=?}, or
@code{string-ci=?}.@refill
@end defun
A hash table is a vector of association lists.
@defun make-hash-table k
Returns a vector of @var{k} empty (association) lists.
@end defun
Hash table functions provide utilities for an associative database.
These functions take an equality predicate, @var{pred}, as an argument.
@var{pred} should be @code{eq?}, @code{eqv?}, @code{equal?}, @code{=},
@code{char=?}, @code{char-ci=?}, @code{string=?}, or
@code{string-ci=?}.@refill
@defun predicate->hash-asso pred
Returns a hash association function of 2 arguments, @var{key} and
@var{hashtab}, corresponding to @var{pred}. The returned function
returns a key-value pair whose key is @var{pred}-equal to its first
argument or @code{#f} if no key in @var{hashtab} is @var{pred}-equal to
the first argument.@refill
@end defun
@defun hash-inquirer pred
Returns a procedure of 3 arguments, @code{hashtab} and @code{key}, which
returns the value associated with @code{key} in @code{hashtab} or
@code{#f} if key does not appear in @code{hashtab}.@refill
@end defun
@defun hash-associator pred
Returns a procedure of 3 arguments, @var{hashtab}, @var{key}, and
@var{value}, which modifies @var{hashtab} so that @var{key} and
@var{value} associated. Any previous value associated with @var{key}
will be lost.@refill
@end defun
@defun hash-remover pred
Returns a procedure of 2 arguments, @var{hashtab} and @var{key}, which
modifies @var{hashtab} so that the association whose key is @var{key} is
removed.@refill
@end defun
@defun hash-map proc hash-table
Returns a new hash table formed by mapping @var{proc} over the
keys and values of @var{hash-table}. @var{proc} must be a function of 2
arguments which returns the new value part.
@end defun
@defun hash-for-each proc hash-table
Applies @var{proc} to each pair of keys and values of @var{hash-table}.
@var{proc} must be a function of 2 arguments. The returned value is
unspecified.
@end defun
@node Hashing, Priority Queues, Hash Tables, Data Structures
@subsection Hashing
@code{(require 'hash)}
@ftindex hash
These hashing functions are for use in quickly classifying objects.
Hash tables use these functions.
@defun hashq obj k
@defunx hashv obj k
@defunx hash obj k
Returns an exact non-negative integer less than @var{k}. For each
non-negative integer less than @var{k} there are arguments @var{obj} for
which the hashing functions applied to @var{obj} and @var{k} returns
that integer.@refill
For @code{hashq}, @code{(eq? obj1 obj2)} implies @code{(= (hashq obj1 k)
(hashq obj2))}.@refill
For @code{hashv}, @code{(eqv? obj1 obj2)} implies @code{(= (hashv obj1 k)
(hashv obj2))}.@refill
For @code{hash}, @code{(equal? obj1 obj2)} implies @code{(= (hash obj1 k)
(hash obj2))}.@refill
@code{hash}, @code{hashv}, and @code{hashq} return in time bounded by a
constant. Notice that items having the same @code{hash} implies the
items have the same @code{hashv} implies the items have the same
@code{hashq}.@refill
@end defun
@code{(require 'sierpinski)}
@ftindex sierpinski
@defun make-sierpinski-indexer max-coordinate
Returns a procedure (eg hash-function) of 2 numeric arguments which
preserves @emph{nearness} in its mapping from NxN to N.
@var{max-coordinate} is the maximum coordinate (a positive integer) of a
population of points. The returned procedures is a function that takes
the x and y coordinates of a point, (non-negative integers) and returns
an integer corresponding to the relative position of that point along a
Sierpinski curve. (You can think of this as computing a (pseudo-)
inverse of the Sierpinski spacefilling curve.)
Example use: Make an indexer (hash-function) for integer points lying in
square of integer grid points [0,99]x[0,99]:
@example
(define space-key (make-sierpinski-indexer 100))
@end example
Now let's compute the index of some points:
@example
(space-key 24 78) @result{} 9206
(space-key 23 80) @result{} 9172
@end example
Note that locations (24, 78) and (23, 80) are near in index and
therefore, because the Sierpinski spacefilling curve is continuous, we
know they must also be near in the plane. Nearness in the plane does
not, however, necessarily correspond to nearness in index, although it
@emph{tends} to be so.
Example applications:
@itemize @bullet
@item
Sort points by Sierpinski index to get heuristic solution to
@emph{travelling salesman problem}. For details of performance,
see L. Platzman and J. Bartholdi, "Spacefilling curves and the
Euclidean travelling salesman problem", JACM 36(4):719--737
(October 1989) and references therein.
@item
Use Sierpinski index as key by which to store 2-dimensional data
in a 1-dimensional data structure (such as a table). Then
locations that are near each other in 2-d space will tend to
be near each other in 1-d data structure; and locations that
are near in 1-d data structure will be near in 2-d space. This
can significantly speed retrieval from secondary storage because
contiguous regions in the plane will tend to correspond to
contiguous regions in secondary storage. (This is a standard
technique for managing CAD/CAM or geographic data.)
@end itemize
@end defun
@code{(require 'soundex)}
@ftindex soundex
@defun soundex name
Computes the @emph{soundex} hash of @var{name}. Returns a string of an
initial letter and up to three digits between 0 and 6. Soundex
supposedly has the property that names that sound similar in normal
English pronunciation tend to map to the same key.
Soundex was a classic algorithm used for manual filing of personal
records before the advent of computers. It performs adequately for
English names but has trouble with other nationalities.
See Knuth, Vol. 3 @cite{Sorting and searching}, pp 391--2
To manage unusual inputs, @code{soundex} omits all non-alphabetic
characters. Consequently, in this implementation:
@example
(soundex <string of blanks>) @result{} ""
(soundex "") @result{} ""
@end example
Examples from Knuth:
@example
(map soundex '("Euler" "Gauss" "Hilbert" "Knuth"
"Lloyd" "Lukasiewicz"))
@result{} ("E460" "G200" "H416" "K530" "L300" "L222")
(map soundex '("Ellery" "Ghosh" "Heilbronn" "Kant"
"Ladd" "Lissajous"))
@result{} ("E460" "G200" "H416" "K530" "L300" "L222")
@end example
Some cases in which the algorithm fails (Knuth):
@example
(map soundex '("Rogers" "Rodgers")) @result{} ("R262" "R326")
(map soundex '("Sinclair" "St. Clair")) @result{} ("S524" "S324")
(map soundex '("Tchebysheff" "Chebyshev")) @result{} ("T212" "C121")
@end example
@end defun
@node Priority Queues, Queues, Hashing, Data Structures
@subsection Priority Queues
@code{(require 'priority-queue)}
@ftindex priority-queue
@defun make-heap pred<?
Returns a binary heap suitable which can be used for priority queue
operations.
@end defun
@defun heap-length heap
Returns the number of elements in @var{heap}.@refill
@end defun
@deffn Procedure heap-insert! heap item
Inserts @var{item} into @var{heap}. @var{item} can be inserted multiple
times. The value returned is unspecified.@refill
@end deffn
@defun heap-extract-max! heap
Returns the item which is larger than all others according to the
@var{pred<?} argument to @code{make-heap}. If there are no items in
@var{heap}, an error is signaled.@refill
@end defun
The algorithm for priority queues was taken from @cite{Introduction to
Algorithms} by T. Cormen, C. Leiserson, R. Rivest. 1989 MIT Press.
@node Queues, Records, Priority Queues, Data Structures
@subsection Queues
@code{(require 'queue)}
@ftindex queue
A @dfn{queue} is a list where elements can be added to both the front
and rear, and removed from the front (i.e., they are what are often
called @dfn{dequeues}). A queue may also be used like a stack.@refill
@defun make-queue
Returns a new, empty queue.
@end defun
@defun queue? obj
Returns @code{#t} if @var{obj} is a queue.
@end defun
@defun queue-empty? q
Returns @code{#t} if the queue @var{q} is empty.
@end defun
@deffn Procedure queue-push! q datum
Adds @var{datum} to the front of queue @var{q}.
@end deffn
@deffn Procedure enquque! q datum
Adds @var{datum} to the rear of queue @var{q}.
@end deffn
All of the following functions raise an error if the queue @var{q} is
empty.@refill
@defun queue-front q
Returns the datum at the front of the queue @var{q}.
@end defun
@defun queue-rear q
Returns the datum at the rear of the queue @var{q}.
@end defun
@deffn Prcoedure queue-pop! q
@deffnx Procedure dequeue! q
Both of these procedures remove and return the datum at the front of the
queue. @code{queue-pop!} is used to suggest that the queue is being
used like a stack.@refill
@end deffn
@node Records, Structures, Queues, Data Structures
@subsection Records
@code{(require 'record)}
@ftindex record
The Record package provides a facility for user to define their own
record data types.
@defun make-record-type type-name field-names
Returns a @dfn{record-type descriptor}, a value representing a new data
type disjoint from all others. The @var{type-name} argument must be a
string, but is only used for debugging purposes (such as the printed
representation of a record of the new type). The @var{field-names}
argument is a list of symbols naming the @dfn{fields} of a record of the
new type. It is an error if the list contains any duplicates. It is
unspecified how record-type descriptors are represented.@refill
@end defun
@c @defun make-record-sub-type type-name field-names rtd
@c Returns a @dfn{record-type descriptor}, a value representing a new data
@c type, disjoint from all others. The @var{type-name} argument must be a
@c string. The @var{field-names} argument is a list of symbols naming the
@c additional @dfn{fields} to be appended to @var{field-names} of
@c @var{rtd}. It is an error if the combinded list contains any
@c duplicates.@refill
@c
@c Record-modifiers and record-accessors for @var{rtd} work for the new
@c record-sub-type as well. But record-modifiers and record-accessors for
@c the new record-sub-type will not neccessarily work for @var{rtd}.@refill
@c @end defun
@defun record-constructor rtd [field-names]
Returns a procedure for constructing new members of the type represented
by @var{rtd}. The returned procedure accepts exactly as many arguments
as there are symbols in the given list, @var{field-names}; these are
used, in order, as the initial values of those fields in a new record,
which is returned by the constructor procedure. The values of any
fields not named in that list are unspecified. The @var{field-names}
argument defaults to the list of field names in the call to
@code{make-record-type} that created the type represented by @var{rtd};
if the @var{field-names} argument is provided, it is an error if it
contains any duplicates or any symbols not in the default list.@refill
@end defun
@defun record-predicate rtd
Returns a procedure for testing membership in the type represented by
@var{rtd}. The returned procedure accepts exactly one argument and
returns a true value if the argument is a member of the indicated record
type; it returns a false value otherwise.@refill
@end defun
@c @defun record-sub-predicate rtd
@c Returns a procedure for testing membership in the type represented by
@c @var{rtd} or its parents. The returned procedure accepts exactly one
@c argument and returns a true value if the argument is a member of the
@c indicated record type or its parents; it returns a false value
@c otherwise.@refill
@c @end defun
@defun record-accessor rtd field-name
Returns a procedure for reading the value of a particular field of a
member of the type represented by @var{rtd}. The returned procedure
accepts exactly one argument which must be a record of the appropriate
type; it returns the current value of the field named by the symbol
@var{field-name} in that record. The symbol @var{field-name} must be a
member of the list of field-names in the call to @code{make-record-type}
that created the type represented by @var{rtd}.@refill
@end defun
@defun record-modifier rtd field-name
Returns a procedure for writing the value of a particular field of a
member of the type represented by @var{rtd}. The returned procedure
accepts exactly two arguments: first, a record of the appropriate type,
and second, an arbitrary Scheme value; it modifies the field named by
the symbol @var{field-name} in that record to contain the given value.
The returned value of the modifier procedure is unspecified. The symbol
@var{field-name} must be a member of the list of field-names in the call
to @code{make-record-type} that created the type represented by
@var{rtd}.@refill
@end defun
In May of 1996, as a product of discussion on the @code{rrrs-authors}
mailing list, I rewrote @file{record.scm} to portably implement type
disjointness for record data types.
As long as an implementation's procedures are opaque and the
@code{record} code is loaded before other programs, this will give
disjoint record types which are unforgeable and incorruptible by R4RS
procedures.
As a consequence, the procedures @code{record?},
@code{record-type-descriptor}, @code{record-type-name}.and
@code{record-type-field-names} are no longer supported.
@ignore
@defun record? obj
Returns a true value if @var{obj} is a record of any type and a false
value otherwise. Note that @code{record?} may be true of any Scheme
value; of course, if it returns true for some particular value, then
@code{record-type-descriptor} is applicable to that value and returns an
appropriate descriptor.@refill
@end defun
@defun record-type-descriptor record
Returns a record-type descriptor representing the type of the given
record. That is, for example, if the returned descriptor were passed to
@code{record-predicate}, the resulting predicate would return a true
value when passed the given record. Note that it is not necessarily the
case that the returned descriptor is the one that was passed to
@code{record-constructor} in the call that created the constructor
procedure that created the given record.@refill
@end defun
@defun record-type-name rtd
Returns the type-name associated with the type represented by rtd. The
returned value is @code{eqv?} to the @var{type-name} argument given in
the call to @code{make-record-type} that created the type represented by
@var{rtd}.@refill
@end defun
@defun record-type-field-names rtd
Returns a list of the symbols naming the fields in members of the type
represented by @var{rtd}. The returned value is @code{equal?} to the
field-names argument given in the call to @code{make-record-type} that
created the type represented by @var{rtd}.@refill
@end defun
@end ignore
@node Structures, , Records, Data Structures
@subsection Structures
@code{(require 'struct)} (uses defmacros)
@ftindex struct
@code{defmacro}s which implement @dfn{records} from the book
@cite{Essentials of Programming Languages} by Daniel P. Friedman, M.
Wand and C.T. Haynes. Copyright 1992 Jeff Alexander, Shinnder Lee, and
Lewis Patterson@refill
Matthew McDonald <mafm@@cs.uwa.edu.au> added field setters.
@defmac define-record tag (var1 var2 @dots{})
Defines several functions pertaining to record-name @var{tag}:
@defun make-@var{tag} var1 var2 @dots{}
@end defun
@defun @var{tag}? obj
@end defun
@defun @var{tag}->var1 obj
@end defun
@defun @var{tag}->var2 obj
@end defun
@dots{}
@defun set-@var{tag}-var1! obj val
@end defun
@defun set-@var{tag}-var2! obj val
@end defun
@dots{}
Here is an example of its use.
@example
(define-record term (operator left right))
@result{} #<unspecified>
(define foo (make-term 'plus 1 2))
@result{} foo
(term->left foo)
@result{} 1
(set-term-left! foo 2345)
@result{} #<unspecified>
(term->left foo)
@result{} 2345
@end example
@end defmac
@defmac variant-case exp (tag (var1 var2 @dots{}) body) @dots{}
executes the following for the matching clause:
@example
((lambda (@var{var1} @var{var} @dots{}) @var{body})
(@var{tag->var1} @var{exp})
(@var{tag->var2} @var{exp}) @dots{})
@end example
@end defmac
@node Procedures, Standards Support, Data Structures, Other Packages
@section Procedures
Anything that doesn't fall neatly into any of the other categories winds
up here.
@menu
* Common List Functions:: 'common-list-functions
* Tree Operations:: 'tree
* Chapter Ordering:: 'chapter-order
* Sorting:: 'sort
* Topological Sort:: Keep your socks on.
* String-Case:: 'string-case
* String Ports:: 'string-port
* String Search:: Also Search from a Port.
* Line I/O:: 'line-i/o
* Multi-Processing:: 'process
@end menu
@node Common List Functions, Tree Operations, Procedures, Procedures
@subsection Common List Functions
@code{(require 'common-list-functions)}
@ftindex common-list-functions
The procedures below follow the Common LISP equivalents apart from
optional arguments in some cases.
@menu
* List construction::
* Lists as sets::
* Lists as sequences::
* Destructive list operations::
* Non-List functions::
@end menu
@node List construction, Lists as sets, Common List Functions, Common List Functions
@subsubsection List construction
@defun make-list k . init
@code{make-list} creates and returns a list of @var{k} elements. If
@var{init} is included, all elements in the list are initialized to
@var{init}.@refill
Example:
@lisp
(make-list 3)
@result{} (#<unspecified> #<unspecified> #<unspecified>)
(make-list 5 'foo)
@result{} (foo foo foo foo foo)
@end lisp
@end defun
@defun list* x . y
Works like @code{list} except that the cdr of the last pair is the last
argument unless there is only one argument, when the result is just that
argument. Sometimes called @code{cons*}. E.g.:@refill
@lisp
(list* 1)
@result{} 1
(list* 1 2 3)
@result{} (1 2 . 3)
(list* 1 2 '(3 4))
@result{} (1 2 3 4)
(list* @var{args} '())
@equiv{} (list @var{args})
@end lisp
@end defun
@defun copy-list lst
@code{copy-list} makes a copy of @var{lst} using new pairs and returns
it. Only the top level of the list is copied, i.e., pairs forming
elements of the copied list remain @code{eq?} to the corresponding
elements of the original; the copy is, however, not @code{eq?} to the
original, but is @code{equal?} to it.@refill
Example:
@lisp
(copy-list '(foo foo foo))
@result{} (foo foo foo)
(define q '(foo bar baz bang))
(define p q)
(eq? p q)
@result{} #t
(define r (copy-list q))
(eq? q r)
@result{} #f
(equal? q r)
@result{} #t
(define bar '(bar))
(eq? bar (car (copy-list (list bar 'foo))))
@result{} #t
@end lisp
@end defun
@node Lists as sets, Lists as sequences, List construction, Common List Functions
@subsubsection Lists as sets
@code{eq?} is used to test for membership by all the procedures below
which treat lists as sets.@refill
@defun adjoin e l
@code{adjoin} returns the adjoint of the element @var{e} and the list
@var{l}. That is, if @var{e} is in @var{l}, @code{adjoin} returns
@var{l}, otherwise, it returns @code{(cons @var{e} @var{l})}.@refill
Example:
@lisp
(adjoin 'baz '(bar baz bang))
@result{} (bar baz bang)
(adjoin 'foo '(bar baz bang))
@result{} (foo bar baz bang)
@end lisp
@end defun
@defun union l1 l2
@code{union} returns the combination of @var{l1} and @var{l2}.
Duplicates between @var{l1} and @var{l2} are culled. Duplicates within
@var{l1} or within @var{l2} may or may not be removed.@refill
Example:
@lisp
(union '(1 2 3 4) '(5 6 7 8))
@result{} (4 3 2 1 5 6 7 8)
(union '(1 2 3 4) '(3 4 5 6))
@result{} (2 1 3 4 5 6)
@end lisp
@end defun
@defun intersection l1 l2
@code{intersection} returns all elements that are in both @var{l1} and
@var{l2}.@refill
Example:
@lisp
(intersection '(1 2 3 4) '(3 4 5 6))
@result{} (3 4)
(intersection '(1 2 3 4) '(5 6 7 8))
@result{} ()
@end lisp
@end defun
@defun set-difference l1 l2
@code{set-difference} returns the union of all elements that are in
@var{l1} but not in @var{l2}.@refill
Example:
@lisp
(set-difference '(1 2 3 4) '(3 4 5 6))
@result{} (1 2)
(set-difference '(1 2 3 4) '(1 2 3 4 5 6))
@result{} ()
@end lisp
@end defun
@defun member-if pred lst
@code{member-if} returns @var{lst} if @code{(@var{pred} @var{element})}
is @code{#t} for any @var{element} in @var{lst}. Returns @code{#f} if
@var{pred} does not apply to any @var{element} in @var{lst}.@refill
Example:
@lisp
(member-if vector? '(1 2 3 4))
@result{} #f
(member-if number? '(1 2 3 4))
@result{} (1 2 3 4)
@end lisp
@end defun
@defun some pred lst . more-lsts
@var{pred} is a boolean function of as many arguments as there are list
arguments to @code{some} i.e., @var{lst} plus any optional arguments.
@var{pred} is applied to successive elements of the list arguments in
order. @code{some} returns @code{#t} as soon as one of these
applications returns @code{#t}, and is @code{#f} if none returns
@code{#t}. All the lists should have the same length.@refill
Example:
@lisp
(some odd? '(1 2 3 4))
@result{} #t
(some odd? '(2 4 6 8))
@result{} #f
(some > '(2 3) '(1 4))
@result{} #f
@end lisp
@end defun
@defun every pred lst . more-lsts
@code{every} is analogous to @code{some} except it returns @code{#t} if
every application of @var{pred} is @code{#t} and @code{#f}
otherwise.@refill
Example:
@lisp
(every even? '(1 2 3 4))
@result{} #f
(every even? '(2 4 6 8))
@result{} #t
(every > '(2 3) '(1 4))
@result{} #f
@end lisp
@end defun
@defun notany pred . lst
@code{notany} is analogous to @code{some} but returns @code{#t} if no
application of @var{pred} returns @code{#t} or @code{#f} as soon as any
one does.@refill
@end defun
@defun notevery pred . lst
@code{notevery} is analogous to @code{some} but returns @code{#t} as soon
as an application of @var{pred} returns @code{#f}, and @code{#f}
otherwise.@refill
Example:
@lisp
(notevery even? '(1 2 3 4))
@result{} #t
(notevery even? '(2 4 6 8))
@result{} #f
@end lisp
@end defun
@defun find-if pred lst
@code{find-if} searches for the first @var{element} in @var{lst} such
that @code{(@var{pred} @var{element})} returns @code{#t}. If it finds
any such @var{element} in @var{lst}, @var{element} is returned.
Otherwise, @code{#f} is returned.@refill
Example:
@lisp
(find-if number? '(foo 1 bar 2))
@result{} 1
(find-if number? '(foo bar baz bang))
@result{} #f
(find-if symbol? '(1 2 foo bar))
@result{} foo
@end lisp
@end defun
@defun remove elt lst
@code{remove} removes all occurrences of @var{elt} from @var{lst} using
@code{eqv?} to test for equality and returns everything that's left.
N.B.: other implementations (Chez, Scheme->C and T, at least) use
@code{equal?} as the equality test.@refill
Example:
@lisp
(remove 1 '(1 2 1 3 1 4 1 5))
@result{} (2 3 4 5)
(remove 'foo '(bar baz bang))
@result{} (bar baz bang)
@end lisp
@end defun
@defun remove-if pred lst
@code{remove-if} removes all @var{element}s from @var{lst} where
@code{(@var{pred} @var{element})} is @code{#t} and returns everything
that's left.@refill
Example:
@lisp
(remove-if number? '(1 2 3 4))
@result{} ()
(remove-if even? '(1 2 3 4 5 6 7 8))
@result{} (1 3 5 7)
@end lisp
@end defun
@defun remove-if-not pred lst
@code{remove-if-not} removes all @var{element}s from @var{lst} for which
@code{(@var{pred} @var{element})} is @code{#f} and returns everything that's
left.@refill
Example:
@lisp
(remove-if-not number? '(foo bar baz))
@result{} ()
(remove-if-not odd? '(1 2 3 4 5 6 7 8))
@result{} (1 3 5 7)
@end lisp
@end defun
@defun has-duplicates? lst
returns @code{#t} if 2 members of @var{lst} are @code{equal?}, @code{#f}
otherwise.
Example:
@lisp
(has-duplicates? '(1 2 3 4))
@result{} #f
(has-duplicates? '(2 4 3 4))
@result{} #t
@end lisp
@end defun
@node Lists as sequences, Destructive list operations, Lists as sets, Common List Functions
@subsubsection Lists as sequences
@defun position obj lst
@code{position} returns the 0-based position of @var{obj} in @var{lst},
or @code{#f} if @var{obj} does not occur in @var{lst}.@refill
Example:
@lisp
(position 'foo '(foo bar baz bang))
@result{} 0
(position 'baz '(foo bar baz bang))
@result{} 2
(position 'oops '(foo bar baz bang))
@result{} #f
@end lisp
@end defun
@defun reduce p lst
@code{reduce} combines all the elements of a sequence using a binary
operation (the combination is left-associative). For example, using
@code{+}, one can add up all the elements. @code{reduce} allows you to
apply a function which accepts only two arguments to more than 2
objects. Functional programmers usually refer to this as @dfn{foldl}.
@code{collect:reduce} (@xref{Collections}) provides a version of
@code{collect} generalized to collections.@refill
Example:
@lisp
(reduce + '(1 2 3 4))
@result{} 10
(define (bad-sum . l) (reduce + l))
(bad-sum 1 2 3 4)
@equiv{} (reduce + (1 2 3 4))
@equiv{} (+ (+ (+ 1 2) 3) 4)
@result{} 10
(bad-sum)
@equiv{} (reduce + ())
@result{} ()
(reduce string-append '("hello" "cruel" "world"))
@equiv{} (string-append (string-append "hello" "cruel") "world")
@result{} "hellocruelworld"
(reduce anything '())
@result{} ()
(reduce anything '(x))
@result{} x
@end lisp
What follows is a rather non-standard implementation of @code{reverse}
in terms of @code{reduce} and a combinator elsewhere called
@dfn{C}.@refill
@lisp
;;; Contributed by Jussi Piitulainen (jpiitula@@ling.helsinki.fi)
(define commute
(lambda (f)
(lambda (x y)
(f y x))))
(define reverse
(lambda (args)
(reduce-init (commute cons) '() args)))
@end lisp
@end defun
@defun reduce-init p init lst
@code{reduce-init} is the same as reduce, except that it implicitly
inserts @var{init} at the start of the list. @code{reduce-init} is
preferred if you want to handle the null list, the one-element, and
lists with two or more elements consistently. It is common to use the
operator's idempotent as the initializer. Functional programmers
usually call this @dfn{foldl}.@refill
Example:
@lisp
(define (sum . l) (reduce-init + 0 l))
(sum 1 2 3 4)
@equiv{} (reduce-init + 0 (1 2 3 4))
@equiv{} (+ (+ (+ (+ 0 1) 2) 3) 4)
@result{} 10
(sum)
@equiv{} (reduce-init + 0 '())
@result{} 0
(reduce-init string-append "@@" '("hello" "cruel" "world"))
@equiv{}
(string-append (string-append (string-append "@@" "hello")
"cruel")
"world")
@result{} "@@hellocruelworld"
@end lisp
Given a differentiation of 2 arguments, @code{diff}, the following will
differentiate by any number of variables.
@lisp
(define (diff* exp . vars)
(reduce-init diff exp vars))
@end lisp
Example:
@lisp
;;; Real-world example: Insertion sort using reduce-init.
(define (insert l item)
(if (null? l)
(list item)
(if (< (car l) item)
(cons (car l) (insert (cdr l) item))
(cons item l))))
(define (insertion-sort l) (reduce-init insert '() l))
(insertion-sort '(3 1 4 1 5)
@equiv{} (reduce-init insert () (3 1 4 1 5))
@equiv{} (insert (insert (insert (insert (insert () 3) 1) 4) 1) 5)
@equiv{} (insert (insert (insert (insert (3)) 1) 4) 1) 5)
@equiv{} (insert (insert (insert (1 3) 4) 1) 5)
@equiv{} (insert (insert (1 3 4) 1) 5)
@equiv{} (insert (1 1 3 4) 5)
@result{} (1 1 3 4 5)
@end lisp
@end defun
@defun last lst n
@code{last} returns the last @var{n} elements of @var{lst}. @var{n}
must be a non-negative integer.
Example:
@lisp
(last '(foo bar baz bang) 2)
@result{} (baz bang)
(last '(1 2 3) 0)
@result{} 0
@end lisp
@end defun
@defun butlast lst n
@code{butlast} returns all but the last @var{n} elements of
@var{lst}.@refill
Example:
@lisp
(butlast '(a b c d) 3)
@result{} (a)
(butlast '(a b c d) 4)
@result{} ()
@end lisp
@end defun
@noindent
@code{last} and @code{butlast} split a list into two parts when given
identical arugments.
@example
(last '(a b c d e) 2)
@result{} (d e)
(butlast '(a b c d e) 2)
@result{} (a b c)
@end example
@defun nthcdr n lst
@code{nthcdr} takes @var{n} @code{cdr}s of @var{lst} and returns the
result. Thus @code{(nthcdr 3 @var{lst})} @equiv{} @code{(cdddr
@var{lst})}
Example:
@lisp
(nthcdr 2 '(a b c d))
@result{} (c d)
(nthcdr 0 '(a b c d))
@result{} (a b c d)
@end lisp
@end defun
@defun butnthcdr n lst
@code{butnthcdr} returns all but the nthcdr @var{n} elements of
@var{lst}.@refill
Example:
@lisp
(butnthcdr 3 '(a b c d))
@result{} (a b c)
(butnthcdr 4 '(a b c d))
@result{} ()
@end lisp
@end defun
@noindent
@code{nthcdr} and @code{butnthcdr} split a list into two parts when
given identical arugments.
@example
(nthcdr 2 '(a b c d e))
@result{} (c d e)
(butnthcdr 2 '(a b c d e))
@result{} (a b)
@end example
@node Destructive list operations, Non-List functions, Lists as sequences, Common List Functions
@subsubsection Destructive list operations
These procedures may mutate the list they operate on, but any such
mutation is undefined.
@deffn Procedure nconc args
@code{nconc} destructively concatenates its arguments. (Compare this
with @code{append}, which copies arguments rather than destroying them.)
Sometimes called @code{append!} (@xref{Rev2 Procedures}).@refill
Example: You want to find the subsets of a set. Here's the obvious way:
@lisp
(define (subsets set)
(if (null? set)
'(())
(append (mapcar (lambda (sub) (cons (car set) sub))
(subsets (cdr set)))
(subsets (cdr set)))))
@end lisp
But that does way more consing than you need. Instead, you could
replace the @code{append} with @code{nconc}, since you don't have any
need for all the intermediate results.@refill
Example:
@lisp
(define x '(a b c))
(define y '(d e f))
(nconc x y)
@result{} (a b c d e f)
x
@result{} (a b c d e f)
@end lisp
@code{nconc} is the same as @code{append!} in @file{sc2.scm}.
@end deffn
@deffn Procedure nreverse lst
@code{nreverse} reverses the order of elements in @var{lst} by mutating
@code{cdr}s of the list. Sometimes called @code{reverse!}.@refill
Example:
@lisp
(define foo '(a b c))
(nreverse foo)
@result{} (c b a)
foo
@result{} (a)
@end lisp
Some people have been confused about how to use @code{nreverse},
thinking that it doesn't return a value. It needs to be pointed out
that@refill
@lisp
(set! lst (nreverse lst))
@end lisp
@noindent
is the proper usage, not
@lisp
(nreverse lst)
@end lisp
The example should suffice to show why this is the case.
@end deffn
@deffn Procedure delete elt lst
@deffnx Procedure delete-if pred lst
@deffnx Procedure delete-if-not pred lst
Destructive versions of @code{remove} @code{remove-if}, and
@code{remove-if-not}.@refill
Example:
@lisp
(define lst '(foo bar baz bang))
(delete 'foo lst)
@result{} (bar baz bang)
lst
@result{} (foo bar baz bang)
(define lst '(1 2 3 4 5 6 7 8 9))
(delete-if odd? lst)
@result{} (2 4 6 8)
lst
@result{} (1 2 4 6 8)
@end lisp
Some people have been confused about how to use @code{delete},
@code{delete-if}, and @code{delete-if}, thinking that they dont' return
a value. It needs to be pointed out that@refill
@lisp
(set! lst (delete el lst))
@end lisp
@noindent
is the proper usage, not
@lisp
(delete el lst)
@end lisp
The examples should suffice to show why this is the case.
@end deffn
@node Non-List functions, , Destructive list operations, Common List Functions
@subsubsection Non-List functions
@defun and? . args
@code{and?} checks to see if all its arguments are true. If they are,
@code{and?} returns @code{#t}, otherwise, @code{#f}. (In contrast to
@code{and}, this is a function, so all arguments are always evaluated
and in an unspecified order.)@refill
Example:
@lisp
(and? 1 2 3)
@result{} #t
(and #f 1 2)
@result{} #f
@end lisp
@end defun
@defun or? . args
@code{or?} checks to see if any of its arguments are true. If any is
true, @code{or?} returns @code{#t}, and @code{#f} otherwise. (To
@code{or} as @code{and?} is to @code{and}.)@refill
Example:
@lisp
(or? 1 2 #f)
@result{} #t
(or? #f #f #f)
@result{} #f
@end lisp
@end defun
@defun atom? object
Returns @code{#t} if @var{object} is not a pair and @code{#f} if it is
pair. (Called @code{atom} in Common LISP.)
@lisp
(atom? 1)
@result{} #t
(atom? '(1 2))
@result{} #f
(atom? #(1 2)) ; dubious!
@result{} #t
@end lisp
@end defun
@defun type-of object
Returns a symbol name for the type of @var{object}.
@end defun
@defun coerce object result-type
Converts and returns @var{object} of type @code{char}, @code{number},
@code{string}, @code{symbol}, @code{list}, or @code{vector} to
@var{result-type} (which must be one of these symbols).
@end defun
@node Tree Operations, Chapter Ordering, Common List Functions, Procedures
@subsection Tree operations
@code{(require 'tree)}
@ftindex tree
These are operations that treat lists a representations of trees.
@defun subst new old tree
@defunx substq new old tree
@defunx substv new old tree
@code{subst} makes a copy of @var{tree}, substituting @var{new} for
every subtree or leaf of @var{tree} which is @code{equal?} to @var{old}
and returns a modified tree. The original @var{tree} is unchanged, but
may share parts with the result.@refill
@code{substq} and @code{substv} are similar, but test against @var{old}
using @code{eq?} and @code{eqv?} respectively.@refill
Examples:
@lisp
(substq 'tempest 'hurricane '(shakespeare wrote (the hurricane)))
@result{} (shakespeare wrote (the tempest))
(substq 'foo '() '(shakespeare wrote (twelfth night)))
@result{} (shakespeare wrote (twelfth night . foo) . foo)
(subst '(a . cons) '(old . pair)
'((old . spice) ((old . shoes) old . pair) (old . pair)))
@result{} ((old . spice) ((old . shoes) a . cons) (a . cons))
@end lisp
@end defun
@defun copy-tree tree
Makes a copy of the nested list structure @var{tree} using new pairs and
returns it. All levels are copied, so that none of the pairs in the
tree are @code{eq?} to the original ones -- only the leaves are.@refill
Example:
@lisp
(define bar '(bar))
(copy-tree (list bar 'foo))
@result{} ((bar) foo)
(eq? bar (car (copy-tree (list bar 'foo))))
@result{} #f
@end lisp
@end defun
@node Chapter Ordering, Sorting, Tree Operations, Procedures
@subsection Chapter Ordering
@code{(require 'chapter-order)}
@ftindex chapter-order
The @samp{chap:} functions deal with strings which are ordered like
chapter numbers (or letters) in a book. Each section of the string
consists of consecutive numeric or consecutive aphabetic characters of
like case.
@defun chap:string<? string1 string2
Returns #t if the first non-matching run of alphabetic upper-case or the
first non-matching run of alphabetic lower-case or the first
non-matching run of numeric characters of @var{string1} is
@code{string<?} than the corresponding non-matching run of characters of
@var{string2}.
@example
(chap:string<? "a.9" "a.10") @result{} #t
(chap:string<? "4c" "4aa") @result{} #t
(chap:string<? "Revised^@{3.99@}" "Revised^@{4@}") @result{} #t
@end example
@defunx chap:string>? string1 string2
@defunx chap:string<=? string1 string2
@defunx chap:string>=? string1 string2
Implement the corresponding chapter-order predicates.
@end defun
@defun chap:next-string string
Returns the next string in the @emph{chapter order}. If @var{string}
has no alphabetic or numeric characters,
@code{(string-append @var{string} "0")} is returnd. The argument to
chap:next-string will always be @code{chap:string<?} than the result.
@example
(chap:next-string "a.9") @result{} "a.10"
(chap:next-string "4c") @result{} "4d"
(chap:next-string "4z") @result{} "4aa"
(chap:next-string "Revised^@{4@}") @result{} "Revised^@{5@}"
@end example
@end defun
@node Sorting, Topological Sort, Chapter Ordering, Procedures
@subsection Sorting
@code{(require 'sort)}
@ftindex sort
Many Scheme systems provide some kind of sorting functions. They do
not, however, always provide the @emph{same} sorting functions, and
those that I have had the opportunity to test provided inefficient ones
(a common blunder is to use quicksort which does not perform well).
Because @code{sort} and @code{sort!} are not in the standard, there is
very little agreement about what these functions look like. For
example, Dybvig says that Chez Scheme provides
@lisp
(merge predicate list1 list2)
(merge! predicate list1 list2)
(sort predicate list)
(sort! predicate list)
@end lisp
@noindent
while MIT Scheme 7.1, following Common LISP, offers unstable
@lisp
(sort list predicate)
@end lisp
@noindent
TI PC Scheme offers
@lisp
(sort! list/vector predicate?)
@end lisp
@noindent
and Elk offers
@lisp
(sort list/vector predicate?)
(sort! list/vector predicate?)
@end lisp
Here is a comprehensive catalogue of the variations I have found.
@enumerate
@item
Both @code{sort} and @code{sort!} may be provided.
@item
@code{sort} may be provided without @code{sort!}.
@item
@code{sort!} may be provided without @code{sort}.
@item
Neither may be provided.
@item
The sequence argument may be either a list or a vector.
@item
The sequence argument may only be a list.
@item
The sequence argument may only be a vector.
@item
The comparison function may be expected to behave like @code{<}.
@item
The comparison function may be expected to behave like @code{<=}.
@item
The interface may be @code{(sort predicate? sequence)}.
@item
The interface may be @code{(sort sequence predicate?)}.
@item
The interface may be @code{(sort sequence &optional (predicate? <))}.
@item
The sort may be stable.
@item
The sort may be unstable.
@end enumerate
All of this variation really does not help anybody. A nice simple merge
sort is both stable and fast (quite a lot faster than @emph{quick} sort).
I am providing this source code with no restrictions at all on its use
(but please retain D.H.D.Warren's credit for the original idea). You
may have to rename some of these functions in order to use them in a
system which already provides incompatible or inferior sorts. For each
of the functions, only the top-level define needs to be edited to do
that.
I could have given these functions names which would not clash with any
Scheme that I know of, but I would like to encourage implementors to
converge on a single interface, and this may serve as a hint. The
argument order for all functions has been chosen to be as close to
Common LISP as made sense, in order to avoid NIH-itis.
Each of the five functions has a required @emph{last} parameter which is
a comparison function. A comparison function @code{f} is a function of
2 arguments which acts like @code{<}. For example,@refill
@lisp
(not (f x x))
(and (f x y) (f y z)) @equiv{} (f x z)
@end lisp
The standard functions @code{<}, @code{>}, @code{char<?}, @code{char>?},
@code{char-ci<?}, @code{char-ci>?}, @code{string<?}, @code{string>?},
@code{string-ci<?}, and @code{string-ci>?} are suitable for use as
comparison functions. Think of @code{(less? x y)} as saying when
@code{x} must @emph{not} precede @code{y}.@refill
@defun sorted? sequence less?
Returns @code{#t} when the sequence argument is in non-decreasing order
according to @var{less?} (that is, there is no adjacent pair @code{@dots{} x
y @dots{}} for which @code{(less? y x)}).@refill
Returns @code{#f} when the sequence contains at least one out-of-order
pair. It is an error if the sequence is neither a list nor a vector.
@end defun
@defun merge list1 list2 less?
This merges two lists, producing a completely new list as result. I
gave serious consideration to producing a Common-LISP-compatible
version. However, Common LISP's @code{sort} is our @code{sort!} (well,
in fact Common LISP's @code{stable-sort} is our @code{sort!}, merge sort
is @emph{fast} as well as stable!) so adapting CL code to Scheme takes a
bit of work anyway. I did, however, appeal to CL to determine the
@emph{order} of the arguments.
@end defun
@deffn Procedure merge! list1 list2 less?
Merges two lists, re-using the pairs of @var{list1} and @var{list2} to
build the result. If the code is compiled, and @var{less?} constructs
no new pairs, no pairs at all will be allocated. The first pair of the
result will be either the first pair of @var{list1} or the first pair of
@var{list2}, but you can't predict which.
The code of @code{merge} and @code{merge!} could have been quite a bit
simpler, but they have been coded to reduce the amount of work done per
iteration. (For example, we only have one @code{null?} test per
iteration.)@refill
@end deffn
@defun sort sequence less?
Accepts either a list or a vector, and returns a new sequence which is
sorted. The new sequence is the same type as the input. Always
@code{(sorted? (sort sequence less?) less?)}. The original sequence is
not altered in any way. The new sequence shares its @emph{elements}
with the old one; no elements are copied.@refill
@end defun
@deffn Procedure sort! sequence less?
Returns its sorted result in the original boxes. If the original
sequence is a list, no new storage is allocated at all. If the original
sequence is a vector, the sorted elements are put back in the same
vector.
Some people have been confused about how to use @code{sort!}, thinking
that it doesn't return a value. It needs to be pointed out that
@lisp
(set! slist (sort! slist <))
@end lisp
@noindent
is the proper usage, not
@lisp
(sort! slist <)
@end lisp
@end deffn
Note that these functions do @emph{not} accept a CL-style @samp{:key}
argument. A simple device for obtaining the same expressiveness is to
define@refill
@lisp
(define (keyed less? key)
(lambda (x y) (less? (key x) (key y))))
@end lisp
@noindent
and then, when you would have written
@lisp
(sort a-sequence #'my-less :key #'my-key)
@end lisp
@noindent
in Common LISP, just write
@lisp
(sort! a-sequence (keyed my-less? my-key))
@end lisp
@noindent
in Scheme.
@node Topological Sort, String-Case, Sorting, Procedures
@subsection Topological Sort
@code{(require 'topological-sort)} or @code{(require 'tsort)}
@ftindex topological-sort
@ftindex tsort
@noindent
The algorithm is inspired by Cormen, Leiserson and Rivest (1990)
@cite{Introduction to Algorithms}, chapter 23.
@defun tsort dag pred
@defunx topological-sort dag pred
where
@table @var
@item dag
is a list of sublists. The car of each sublist is a vertex. The cdr is
the adjacency list of that vertex, i.e. a list of all vertices to which
there exists an edge from the car vertex.
@item pred
is one of @code{eq?}, @code{eqv?}, @code{equal?}, @code{=},
@code{char=?}, @code{char-ci=?}, @code{string=?}, or @code{string-ci=?}.
@end table
Sort the directed acyclic graph @var{dag} so that for every edge from
vertex @var{u} to @var{v}, @var{u} will come before @var{v} in the
resulting list of vertices.
Time complexity: O (|V| + |E|)
Example (from Cormen):
@quotation
Prof. Bumstead topologically sorts his clothing when getting
dressed. The first argument to `tsort' describes which
garments he needs to put on before others. (For example,
Prof Bumstead needs to put on his shirt before he puts on his
tie or his belt.) `tsort' gives the correct order of dressing:
@end quotation
@example
(require 'tsort)
@ftindex tsort
(tsort '((shirt tie belt)
(tie jacket)
(belt jacket)
(watch)
(pants shoes belt)
(undershorts pants shoes)
(socks shoes))
eq?)
@result{}
(socks undershorts pants shoes watch shirt belt tie jacket)
@end example
@end defun
@node String-Case, String Ports, Topological Sort, Procedures
@subsection String-Case
@code{(require 'string-case)}
@ftindex string-case
@deffn Procedure string-upcase str
@deffnx Procedure string-downcase str
@deffnx Procedure string-capitalize str
The obvious string conversion routines. These are non-destructive.
@end deffn
@defun string-upcase! str
@defunx string-downcase! str
@defunx string-captialize! str
The destructive versions of the functions above.
@end defun
@node String Ports, String Search, String-Case, Procedures
@subsection String Ports
@code{(require 'string-port)}
@ftindex string-port
@deffn Procedure call-with-output-string proc
@var{proc} must be a procedure of one argument. This procedure calls
@var{proc} with one argument: a (newly created) output port. When the
function returns, the string composed of the characters written into the
port is returned.@refill
@end deffn
@deffn Procedure call-with-input-string string proc
@var{proc} must be a procedure of one argument. This procedure calls
@var{proc} with one argument: an (newly created) input port from which
@var{string}'s contents may be read. When @var{proc} returns, the port
is closed and the value yielded by the procedure @var{proc} is
returned.@refill
@end deffn
@node String Search, Line I/O, String Ports, Procedures
@subsection String Search
@code{(require 'string-search)}
@ftindex string-search
@deffn Procedure string-index string char
@deffnx Procedure string-index-ci string char
Returns the index of the first occurence of @var{char} within
@var{string}, or @code{#f} if the @var{string} does not contain a
character @var{char}.
@end deffn
@deffn Procedure string-reverse-index string char
@deffnx Procedure string-reverse-index-ci string char
Returns the index of the last occurence of @var{char} within
@var{string}, or @code{#f} if the @var{string} does not contain a
character @var{char}.
@end deffn
@deffn procedure substring? pattern string
@deffnx procedure substring-ci? pattern string
Searches @var{string} to see if some substring of @var{string} is equal
to @var{pattern}. @code{substring?} returns the index of the first
character of the first substring of @var{string} that is equal to
@var{pattern}; or @code{#f} if @var{string} does not contain
@var{pattern}.
@example
(substring? "rat" "pirate") @result{} 2
(substring? "rat" "outrage") @result{} #f
(substring? "" any-string) @result{} 0
@end example
@end deffn
@deffn Procedure find-string-from-port? str in-port max-no-chars
Looks for a string @var{str} within the first @var{max-no-chars} chars
of the input port @var{in-port}.
@deffnx Procedure find-string-from-port? str in-port
When called with two arguments, the search span is limited by the end of
the input stream.
@deffnx Procedure find-string-from-port? str in-port char
Searches up to the first occurrence of character @var{char} in
@var{str}.
@deffnx Procedure find-string-from-port? str in-port proc
Searches up to the first occurrence of the procedure @var{proc}
returning non-false when called with a character (from @var{in-port})
argument.
When the @var{str} is found, @code{find-string-from-port?} returns the
number of characters it has read from the port, and the port is set to
read the first char after that (that is, after the @var{str}) The
function returns @code{#f} when the @var{str} isn't found.
@code{find-string-from-port?} reads the port @emph{strictly}
sequentially, and does not perform any buffering. So
@code{find-string-from-port?} can be used even if the @var{in-port} is
open to a pipe or other communication channel.
@end deffn
@node Line I/O, Multi-Processing, String Search, Procedures
@subsection Line I/O
@code{(require 'line-i/o)}
@ftindex line-i
@defun read-line
@defunx read-line port
Returns a string of the characters up to, but not including a newline or
end of file, updating @var{port} to point to the character following the
newline. If no characters are available, an end of file object is
returned. @var{port} may be omitted, in which case it defaults to the
value returned by @code{current-input-port}.@refill
@end defun
@defun read-line! string
@defunx read-line! string port
Fills @var{string} with characters up to, but not including a newline or
end of file, updating the port to point to the last character read or
following the newline if it was read. If no characters are available,
an end of file object is returned. If a newline or end of file was
found, the number of characters read is returned. Otherwise, @code{#f}
is returned. @var{port} may be omitted, in which case it defaults to
the value returned by @code{current-input-port}.@refill
@end defun
@defun write-line string
@defunx write-line string port
Writes @var{string} followed by a newline to the given port and returns
an unspecified value. Port may be omited, in which case it defaults to
the value returned by @code{current-input-port}.@refill
@end defun
@node Multi-Processing, , Line I/O, Procedures
@subsection Multi-Processing
@code{(require 'process)}
@ftindex process
This module implements asynchronous (non-polled) time-sliced
multi-processing in the SCM Scheme implementation using procedures
@code{alarm} and @code{alarm-interrupt}.
@findex alarm
@findex alarm-interrupt
Until this is ported to another implementation, consider it an example
of writing schedulers in Scheme.
@deffn Procedure add-process! proc
Adds proc, which must be a procedure (or continuation) capable of
accepting accepting one argument, to the @code{process:queue}. The
value returned is unspecified. The argument to @var{proc} should be
ignored. If @var{proc} returns, the process is killed.@refill
@end deffn
@deffn Procedure process:schedule!
Saves the current process on @code{process:queue} and runs the next
process from @code{process:queue}. The value returned is
unspecified.@refill
@end deffn
@deffn Procedure kill-process!
Kills the current process and runs the next process from
@code{process:queue}. If there are no more processes on
@code{process:queue}, @code{(slib:exit)} is called (@xref{System}).
@end deffn
@node Standards Support, Session Support, Procedures, Other Packages
@section Standards Support
@menu
* With-File:: 'with-file
* Transcripts:: 'transcript
* Rev2 Procedures:: 'rev2-procedures
* Rev4 Optional Procedures:: 'rev4-optional-procedures
* Multi-argument / and -:: 'multiarg/and-
* Multi-argument Apply:: 'multiarg-apply
* Rationalize:: 'rationalize
* Promises:: 'promise
* Dynamic-Wind:: 'dynamic-wind
* Values:: 'values
@end menu
@node With-File, Transcripts, Standards Support, Standards Support
@subsection With-File
@code{(require 'with-file)}
@ftindex with-file
@defun with-input-from-file file thunk
@defunx with-output-to-file file thunk
Description found in R4RS.
@end defun
@node Transcripts, Rev2 Procedures, With-File, Standards Support
@subsection Transcripts
@code{(require 'transcript)}
@ftindex transcript
@defun transcript-on filename
@defunx transcript-off filename
Redefines @code{read-char}, @code{read}, @code{write-char},
@code{write}, @code{display}, and @code{newline}.@refill
@end defun
@node Rev2 Procedures, Rev4 Optional Procedures, Transcripts, Standards Support
@subsection Rev2 Procedures
@code{(require 'rev2-procedures)}
@ftindex rev2-procedures
The procedures below were specified in the @cite{Revised^2 Report on
Scheme}. @strong{N.B.}: The symbols @code{1+} and @code{-1+} are not
@cite{R4RS} syntax. Scheme->C, for instance, barfs on this
module.@refill
@deffn Procedure substring-move-left! string1 start1 end1 string2 start2
@deffnx Procedure substring-move-right! string1 start1 end1 string2 start2
@var{string1} and @var{string2} must be a strings, and @var{start1},
@var{start2} and @var{end1} must be exact integers satisfying@refill
@display
0 <= @var{start1} <= @var{end1} <= (string-length @var{string1})
0 <= @var{start2} <= @var{end1} - @var{start1} + @var{start2} <= (string-length @var{string2})
@end display
@code{substring-move-left!} and @code{substring-move-right!} store
characters of @var{string1} beginning with index @var{start1}
(inclusive) and ending with index @var{end1} (exclusive) into
@var{string2} beginning with index @var{start2} (inclusive).@refill
@code{substring-move-left!} stores characters in time order of
increasing indices. @code{substring-move-right!} stores characters in
time order of increasing indeces.@refill
@end deffn
@deffn Procedure substring-fill! string start end char
Fills the elements @var{start}--@var{end} of @var{string} with the
character @var{char}.@refill
@end deffn
@defun string-null? str
@equiv{} @code{(= 0 (string-length @var{str}))}
@end defun
@deffn Procedure append! . pairs
Destructively appends its arguments. Equivalent to @code{nconc}.
@end deffn
@defun 1+ n
Adds 1 to @var{n}.
@end defun
@defun -1+ n
Subtracts 1 from @var{n}.
@end defun
@defun <?
@defunx <=?
@defunx =?
@defunx >?
@defunx >=?
These are equivalent to the procedures of the same name but without the
trailing @samp{?}.
@end defun
@node Rev4 Optional Procedures, Multi-argument / and -, Rev2 Procedures, Standards Support
@subsection Rev4 Optional Procedures
@code{(require 'rev4-optional-procedures)}
@ftindex rev4-optional-procedures
For the specification of these optional procedures,
@xref{Standard procedures, , ,r4rs, Revised(4) Scheme}.
@defun list-tail l p
@end defun
@defun string->list s
@end defun
@defun list->string l
@end defun
@defun string-copy
@end defun
@deffn Procedure string-fill! s obj
@end deffn
@defun list->vector l
@end defun
@defun vector->list s
@end defun
@deffn Procedure vector-fill! s obj
@end deffn
@node Multi-argument / and -, Multi-argument Apply, Rev4 Optional Procedures, Standards Support
@subsection Multi-argument / and -
@code{(require 'mutliarg/and-)}
@ftindex mutliarg
For the specification of these optional forms, @xref{Numerical
operations, , ,r4rs, Revised(4) Scheme}. The @code{two-arg:}* forms are
only defined if the implementation does not support the many-argument
forms.@refill
@defun two-arg:/ n1 n2
The original two-argument version of @code{/}.
@end defun
@defun / divident . divisors
@end defun
@defun two-arg:- n1 n2
The original two-argument version of @code{-}.
@end defun
@defun - minuend . subtrahends
@end defun
@node Multi-argument Apply, Rationalize, Multi-argument / and -, Standards Support
@subsection Multi-argument Apply
@code{(require 'multiarg-apply)}
@ftindex multiarg-apply
@noindent
For the specification of this optional form,
@xref{Control features, , ,r4rs, Revised(4) Scheme}.
@defun two-arg:apply proc l
The implementation's native @code{apply}. Only defined for
implementations which don't support the many-argument version.
@end defun
@defun apply proc . args
@end defun
@node Rationalize, Promises, Multi-argument Apply, Standards Support
@subsection Rationalize
@code{(require 'rationalize)}
@ftindex rationalize
The procedure rationalize is interesting because most programming
languages do not provide anything analogous to it. For simplicity, we
present an algorithm which computes the correct result for exact
arguments (provided the implementation supports exact rational numbers
of unlimited precision), and produces a reasonable answer for inexact
arguments when inexact arithmetic is implemented using floating-point.
We thank Alan Bawden for contributing this algorithm.
@defun rationalize x e
@end defun
@node Promises, Dynamic-Wind, Rationalize, Standards Support
@subsection Promises
@code{(require 'promise)}
@ftindex promise
@defun make-promise proc
@end defun
Change occurrences of @code{(delay @var{expression})} to
@code{(make-promise (lambda () @var{expression}))} and @code{(define
force promise:force)} to implement promises if your implementation
doesn't support them
(@pxref{Control features, , ,r4rs, Revised(4) Scheme}).
@node Dynamic-Wind, Values, Promises, Standards Support
@subsection Dynamic-Wind
@code{(require 'dynamic-wind)}
@ftindex dynamic-wind
This facility is a generalization of Common LISP @code{unwind-protect},
designed to take into account the fact that continuations produced by
@code{call-with-current-continuation} may be reentered.@refill
@deffn Procedure dynamic-wind thunk1 thunk2 thunk3
The arguments @var{thunk1}, @var{thunk2}, and @var{thunk3} must all be
procedures of no arguments (thunks).@refill
@code{dynamic-wind} calls @var{thunk1}, @var{thunk2}, and then
@var{thunk3}. The value returned by @var{thunk2} is returned as the
result of @code{dynamic-wind}. @var{thunk3} is also called just before
control leaves the dynamic context of @var{thunk2} by calling a
continuation created outside that context. Furthermore, @var{thunk1} is
called before reentering the dynamic context of @var{thunk2} by calling
a continuation created inside that context. (Control is inside the
context of @var{thunk2} if @var{thunk2} is on the current return stack).
@strong{Warning:} There is no provision for dealing with errors or
interrupts. If an error or interrupt occurs while using
@code{dynamic-wind}, the dynamic environment will be that in effect at
the time of the error or interrupt.@refill
@end deffn
@node Values, , Dynamic-Wind, Standards Support
@subsection Values
@code{(require 'values)}
@ftindex values
@defun values obj @dots{}
@code{values} takes any number of arguments, and passes (returns) them
to its continuation.@refill
@end defun
@defun call-with-values thunk proc
@var{thunk} must be a procedure of no arguments, and @var{proc} must be
a procedure. @code{call-with-values} calls @var{thunk} with a
continuation that, when passed some values, calls @var{proc} with those
values as arguments.@refill
Except for continuations created by the @code{call-with-values}
procedure, all continuations take exactly one value, as now; the effect
of passing no value or more than one value to continuations that were
not created by the @code{call-with-values} procedure is
unspecified.@refill
@end defun
@node Session Support, Extra-SLIB Packages, Standards Support, Other Packages
@section Session Support
@menu
* Repl:: Macros at top-level
* Quick Print:: Loop-safe Output
* Debug:: To err is human ...
* Breakpoints:: Pause execution
* Trace:: 'trace
* System Interface:: 'system and 'getenv
* Time Zone::
@end menu
@node Repl, Quick Print, Session Support, Session Support
@subsection Repl
@code{(require 'repl)}
@ftindex repl
Here is a read-eval-print-loop which, given an eval, evaluates forms.
@deffn Procedure repl:top-level repl:eval
@code{read}s, @code{repl:eval}s and @code{write}s expressions from
@code{(current-input-port)} to @code{(current-output-port)} until an
end-of-file is encountered. @code{load}, @code{slib:eval},
@code{slib:error}, and @code{repl:quit} dynamically bound during
@code{repl:top-level}.@refill
@end deffn
@deffn Procedure repl:quit
Exits from the invocation of @code{repl:top-level}.
@end deffn
The @code{repl:} procedures establish, as much as is possible to do
portably, a top level environment supporting macros.
@code{repl:top-level} uses @code{dynamic-wind} to catch error conditions
and interrupts. If your implementation supports this you are all set.
Otherwise, if there is some way your implementation can catch error
conditions and interrupts, then have them call @code{slib:error}. It
will display its arguments and reenter @code{repl:top-level}.
@code{slib:error} dynamically bound by @code{repl:top-level}.@refill
To have your top level loop always use macros, add any interrupt
catching lines and the following lines to your Scheme init file:
@lisp
(require 'macro)
@ftindex macro
(require 'repl)
@ftindex repl
(repl:top-level macro:eval)
@end lisp
@node Quick Print, Debug, Repl, Session Support
@subsection Quick Print
@code{(require 'qp)}
@ftindex qp
@noindent
When displaying error messages and warnings, it is paramount that the
output generated for circular lists and large data structures be
limited. This section supplies a procedure to do this. It could be
much improved.
@quotation
Notice that the neccessity for truncating output eliminates
Common-Lisp's @xref{Format} from consideration; even when variables
@code{*print-level*} and @code{*print-level*} are set, huge strings and
bit-vectors are @emph{not} limited.
@end quotation
@deffn Procedure qp arg1 @dots{}
@deffnx Procedure qpn arg1 @dots{}
@deffnx Procedure qpr arg1 @dots{}
@code{qp} writes its arguments, separated by spaces, to
@code{(current-output-port)}. @code{qp} compresses printing by
substituting @samp{...} for substructure it does not have sufficient
room to print. @code{qpn} is like @code{qp} but outputs a newline
before returning. @code{qpr} is like @code{qpn} except that it returns
its last argument.@refill
@end deffn
@defvar *qp-width*
@code{*qp-width*} is the largest number of characters that @code{qp}
should use.@refill
@end defvar
@node Debug, Breakpoints, Quick Print, Session Support
@subsection Debug
@code{(require 'debug)}
@ftindex debug
@noindent
Requiring @code{debug} automatically requires @code{trace} and
@code{break}.
@noindent
An application with its own datatypes may want to substitute its own
printer for @code{qp}. This example shows how to do this:
@example
(define qpn (lambda args) @dots{})
(provide 'qp)
(require 'debug)
@ftindex debug
@end example
@deffn Procedure trace-all file
Traces (@pxref{Trace}) all procedures @code{define}d at top-level in
file @file{file}.
@end deffn
@deffn Procedure break-all file
Breakpoints (@pxref{Breakpoints}) all procedures @code{define}d at
top-level in file @file{file}.
@end deffn
@node Breakpoints, Trace, Debug, Session Support
@subsection Breakpoints
@code{(require 'break)}
@ftindex break
@defun init-debug
If your Scheme implementation does not support @code{break} or
@code{abort}, a message will appear when you @code{(require 'break)} or
@ftindex break
@code{(require 'debug)} telling you to type @code{(init-debug)}. This
@ftindex debug
is in order to establish a top-level continuation. Typing
@code{(init-debug)} at top level sets up a continuation for
@code{break}.
@end defun
@defun breakpoint arg1 @dots{}
Returns from the top level continuation and pushes the continuation from
which it was called on a continuation stack.
@end defun
@defun continue
Pops the topmost continuation off of the continuation stack and returns
an unspecified value to it.
@defunx continue arg1 @dots{}
Pops the topmost continuation off of the continuation stack and returns
@var{arg1} @dots{} to it.
@end defun
@defmac break proc1 @dots{}
Redefines the top-level named procedures given as arguments so that
@code{breakpoint} is called before calling @var{proc1} @dots{}.
@defmacx break
With no arguments, makes sure that all the currently broken identifiers
are broken (even if those identifiers have been redefined) and returns a
list of the broken identifiers.
@end defmac
@defmac unbreak proc1 @dots{}
Turns breakpoints off for its arguments.
@defmacx unbreak
With no arguments, unbreaks all currently broken identifiers and returns
a list of these formerly broken identifiers.
@end defmac
The following routines are the procedures which actually do the tracing
when this module is supplied by SLIB, rather than natively. If
defmacros are not natively supported by your implementation, these might
be more convenient to use.
@defun breakf proc
@defunx breakf proc name
@defunx debug:breakf proc
@defunx debug:breakf proc name
To break, type
@lisp
(set! @var{symbol} (breakf @var{symbol}))
@end lisp
@noindent
or
@lisp
(set! @var{symbol} (breakf @var{symbol} '@var{symbol}))
@end lisp
@noindent
or
@lisp
(define @var{symbol} (breakf @var{function}))
@end lisp
@noindent
or
@lisp
(define @var{symbol} (breakf @var{function} '@var{symbol}))
@end lisp
@end defun
@defun unbreakf proc
@defunx debug:unbreakf proc
To unbreak, type
@lisp
(set! @var{symbol} (unbreakf @var{symbol}))
@end lisp
@end defun
@node Trace, System Interface, Breakpoints, Session Support
@subsection Tracing
@code{(require 'trace)}
@ftindex trace
@defmac trace proc1 @dots{}
Traces the top-level named procedures given as arguments.
@defmacx trace
With no arguments, makes sure that all the currently traced identifiers
are traced (even if those identifiers have been redefined) and returns a
list of the traced identifiers.
@end defmac
@defmac untrace proc1 @dots{}
Turns tracing off for its arguments.
@defmacx untrace
With no arguments, untraces all currently traced identifiers and returns
a list of these formerly traced identifiers.
@end defmac
The following routines are the procedures which actually do the tracing
when this module is supplied by SLIB, rather than natively. If
defmacros are not natively supported by your implementation, these might
be more convenient to use.
@defun tracef proc
@defunx tracef proc name
@defunx debug:tracef proc
@defunx debug:tracef proc name
To trace, type
@lisp
(set! @var{symbol} (tracef @var{symbol}))
@end lisp
@noindent
or
@lisp
(set! @var{symbol} (tracef @var{symbol} '@var{symbol}))
@end lisp
@noindent
or
@lisp
(define @var{symbol} (tracef @var{function}))
@end lisp
@noindent
or
@lisp
(define @var{symbol} (tracef @var{function} '@var{symbol}))
@end lisp
@end defun
@defun untracef proc
@defunx debug:untracef proc
To untrace, type
@lisp
(set! @var{symbol} (untracef @var{symbol}))
@end lisp
@end defun
@node System Interface, Time Zone, Trace, Session Support
@subsection System Interface
@noindent
If @code{(provided? 'getenv)}:
@defun getenv name
Looks up @var{name}, a string, in the program environment. If @var{name} is
found a string of its value is returned. Otherwise, @code{#f} is returned.
@end defun
@noindent
If @code{(provided? 'system)}:
@defun system command-string
Executes the @var{command-string} on the computer and returns the
integer status code.
@end defun
@noindent
If @code{(provided? 'current-time)}:
@noindent
The procedures @code{current-time}, @code{difftime}, and
@code{offset-time} deal with a @dfn{calendar time} datatype
@cindex time
@cindex calendar time
which may or may not be disjoint from other Scheme datatypes.
@defun current-time
Returns the time since 00:00:00 GMT, January 1, 1970, measured in
seconds. Note that the reference time is different from the reference
time for @code{get-universal-time} in @ref{Common-Lisp Time}.
@end defun
@defun difftime caltime1 caltime0
Returns the difference (number of seconds) between twe calendar times:
@var{caltime1} - @var{caltime0}. @var{caltime0} may also be a number.
@end defun
@defun offset-time caltime offset
Returns the calendar time of @var{caltime} offset by @var{offset} number
of seconds @code{(+ caltime offset)}.
@end defun
@node Time Zone, , System Interface, Session Support
@subsection Time Zone
(require 'time-zone)
@deftp {Data Format} TZ-string
POSIX standards specify several formats for encoding time-zone rules.
@table @t
@item :@i{<pathname>}
If the first character of @i{<pathname>} is @samp{/}, then
@i{<pathname>} specifies the absolute pathname of a tzfile(5) format
time-zone file. Otherwise, @i{<pathname>} is interpreted as a pathname
within @var{tzfile:vicinity} (/usr/lib/zoneinfo/) naming a tzfile(5)
format time-zone file.
@item @i{<std>}@i{<offset>}
The string @i{<std>} consists of 3 or more alphabetic characters.
@i{<offset>} specifies the time difference from GMT. The @i{<offset>}
is positive if the local time zone is west of the Prime Meridian and
negative if it is east. @i{<offset>} can be the number of hours or
hours and minutes (and optionally seconds) separated by @samp{:}. For
example, @code{-4:30}.
@item @i{<std>}@i{<offset>}@i{<dst>}
@i{<dst>} is the at least 3 alphabetic characters naming the local
daylight-savings-time.
@item @i{<std>}@i{<offset>}@i{<dst>}@i{<doffset>}
@i{<doffset>} specifies the offset from the Prime Meridian when
daylight-savings-time is in effect.
@end table
The non-tzfile formats can optionally be followed by transition times
specifying the day and time when a zone changes from standard to
daylight-savings and back again.
@table @t
@item ,@i{<date>}/@i{<time>},@i{<date>}/@i{<time>}
The @i{<time>}s are specified like the @i{<offset>}s above, except that
leading @samp{+} and @samp{-} are not allowed.
Each @i{<date>} has one of the formats:
@table @t
@item J@i{<day>}
specifies the Julian day with @i{<day>} between 1 and 365. February 29
is never counted and cannot be referenced.
@item @i{<day>}
This specifies the Julian day with n between 0 and 365. February 29 is
counted in leap years and can be specified.
@item M@i{<month>}.@i{<week>}.@i{<day>}
This specifies day @i{<day>} (0 <= @i{<day>} <= 6) of week @i{<week>} (1
<= @i{<week>} <= 5) of month @i{<month>} (1 <= @i{<month>} <= 12). Week
1 is the first week in which day d occurs and week 5 is the last week in
which day @i{<day>} occurs. Day 0 is a Sunday.
@end table
@end table
@end deftp
@deftp {Data Type} time-zone
is a datatype encoding how many hours from Greenwich Mean Time the local
time is, and the @dfn{Daylight Savings Time} rules for changing it.
@end deftp
@defun time-zone TZ-string
Creates and returns a time-zone object specified by the string
@var{TZ-string}. If @code{time-zone} cannot interpret @var{TZ-string},
@code{#f} is returned.
@end defun
@defun tz:params caltime tz
@var{tz} is a time-zone object. @code{tz:params} returns a list of
three items:
@enumerate 0
@item
An integer. 0 if standard time is in effect for timezone @var{tz} at
@var{caltime}; 1 if daylight savings time is in effect for timezone
@var{tz} at @var{caltime}.
@item
The number of seconds west of the Prime Meridian timezone @var{tz} is at
@var{caltime}.
@item
The name for timezone @var{tz} at @var{caltime}.
@end enumerate
@code{tz:params} is unaffected by the default timezone; inquiries can be
made of any timezone at any calendar time.
@end defun
@noindent
The rest of these procedures and variables are provided for POSIX
compatability. Because of shared state they are not thread-safe.
@defun tzset
Returns the default time-zone.
@defunx tzset tz
Sets (and returns) the default time-zone to @var{tz}.
@defunx tzset TZ-string
Sets (and returns) the default time-zone to that specified by
@var{TZ-string}.
@code{tzset} also sets the variables @var{*timezone*}, @var{daylight?},
and @var{tzname}. This function is automatically called by the time
conversion procedures which depend on the time zone (@pxref{Time and
Date}).
@end defun
@defvar *timezone*
Contains the difference, in seconds, between Greenwich Mean Time and
local standard time (for example, in the U.S. Eastern time zone (EST),
timezone is 5*60*60). @code{*timezone*} is initialized by @code{tzset}.
@end defvar
@defvar daylight?
is @code{#t} if the default timezone has rules for @dfn{Daylight Savings
Time}. @emph{Note:} @var{daylight?} does not tell you when Daylight
Savings Time is in effect, just that the default zone sometimes has
Daylight Savings Time.
@end defvar
@defvar tzname
is a vector of strings. Index 0 has the abbreviation for the standard
timezone; If @var{daylight?}, then index 1 has the abbreviation for the
Daylight Savings timezone.
@end defvar
@node Extra-SLIB Packages, , Session Support, Other Packages
@section Extra-SLIB Packages
Several Scheme packages have been written using SLIB. There are several
reasons why a package might not be included in the SLIB distribution:
@itemize @bullet
@item
Because it requires special hardware or software which is not universal.
@item
Because it is large and of limited interest to most Scheme users.
@item
Because it has copying terms different enough from the other SLIB
packages that its inclusion would cause confusion.
@item
Because it is an application program, rather than a library module.
@item
Because I have been too busy to integrate it.
@end itemize
Once an optional package is installed (and an entry added to
@code{*catalog*}, the @code{require} mechanism allows it to be called up
and used as easily as any other SLIB package. Some optional packages
(for which @code{*catalog*} already has entries) available from SLIB
sites are:
@table @asis
@item SLIB-PSD is a portable debugger for Scheme (requires emacs editor).
@lisp
ftp-swiss.ai.mit.edu:pub/scm/slib-psd1-3.tar.gz
prep.ai.mit.edu:pub/gnu/jacal/slib-psd1-3.tar.gz
ftp.maths.tcd.ie:pub/bosullvn/jacal/slib-psd1-3.tar.gz
ftp.cs.indiana.edu:/pub/scheme-repository/utl/slib-psd1-3.tar.gz
@end lisp
With PSD, you can run a Scheme program in an Emacs buffer, set
breakpoints, single step evaluation and access and modify the program's
variables. It works by instrumenting the original source code, so it
should run with any R4RS compliant Scheme. It has been tested with SCM,
Elk 1.5, and the sci interpreter in the Scheme->C system, but should
work with other Schemes with a minimal amount of porting, if at
all. Includes documentation and user's manual. Written by Pertti
Kellom\"aki, pk@@cs.tut.fi. The Lisp Pointers article describing PSD
(Lisp Pointers VI(1):15-23, January-March 1993) is available as
@ifset html
<A HREF="http://www.cs.tut.fi/staff/pk/scheme/psd/article/article.html">
@end ifset
@lisp
http://www.cs.tut.fi/staff/pk/scheme/psd/article/article.html
@end lisp
@ifset html
</A>
@end ifset
@item SCHELOG is an embedding of Prolog in Scheme.
@ifset html
<A HREF="http://www.cs.rice.edu/CS/PLT/packages/schelog/">
@end ifset
@lisp
http://www.cs.rice.edu/CS/PLT/packages/schelog/
@end lisp
@ifset html
</A>
@end ifset
@end table
@node About SLIB, Index, Other Packages, Top
@chapter About SLIB
@menu
* Installation:: How to install SLIB on your system.
* Porting:: SLIB to new platforms.
* Coding Standards:: How to write modules for SLIB.
* Copyrights:: Intellectual propery issues.
@end menu
@noindent
More people than I can name have contributed to SLIB. Thanks to all of
you.
@node Installation, Porting, About SLIB, About SLIB
@section Installation
Check the manifest in @file{/usr/doc/slib/README.gz} to find a
configuration file for your Scheme implementation. Initialization files
for most IEEE P1178 compliant Scheme Implementations are included with
this distribution.
If the Scheme implementation supports @code{getenv}, then the value of
the shell environment variable @var{SCHEME_LIBRARY_PATH} will be used
for @code{(library-vicinity)} if it is defined. Currently, Chez, Elk,
MITScheme, scheme->c, VSCM, and SCM support @code{getenv}. Scheme48
supports @code{getenv} but does not use it for determining
@code{library-vicinity}. (That is done from the Makefile.)
You should check the definitions of @code{software-type},
@code{scheme-implementation-version},
@iftex
@*
@end iftex
@code{implementation-vicinity},
and @code{library-vicinity} in the initialization file. There are
comments in the file for how to configure it.
Once this is done you can modify the startup file for your Scheme
implementation to @code{load} this initialization file. SLIB is then
installed. The startup files are located in
@file{/usr/lib/slib/init/}.
Multiple implementations of Scheme can all use the same SLIB directory.
Simply configure each implementation's initialization file as outlined
above.
The SCM implementation does not require any initialization file as SLIB
support is already built in to SCM. See the documentation with SCM for
installation instructions.
SLIB includes methods to create heap images for the VSCM and Scheme48
implementations. The instructions for creating a VSCM image are in
comments in @file{vscm.init}. To make a Scheme48 image for an
installation under @code{<prefix>}, @code{cd} to the SLIB directory and
type @code{make prefix=<prefix> slib48}. To install the image, type
@code{make prefix=<prefix> install48}. This will also create a shell
script with the name @code{slib48} which will invoke the saved image.
@node Porting, Coding Standards, Installation, About SLIB
@section Porting
If there is no initialization file for your Scheme implementation, you
will have to create one. Your Scheme implementation must be largely
compliant with @cite{IEEE Std 1178-1990} or @cite{Revised^4 Report on
the Algorithmic Language Scheme} to support SLIB. @footnote{If you are
porting a @cite{Revised^3 Report on the Algorithmic Language Scheme}
implementation, then you will need to finish writing @file{sc4sc3.scm}
and @code{load} it from your initialization file.}
@file{Template.scm} is an example configuration file. The comments
inside will direct you on how to customize it to reflect your system.
Give your new initialization file the implementation's name with
@file{.init} appended. For instance, if you were porting
@code{foo-scheme} then the initialization file might be called
@file{foo.init}.
Your customized version should then be loaded as part of your scheme
implementation's initialization. It will load @file{require.scm} from
the library; this will allow the use of @code{provide},
@code{provided?}, and @code{require} along with the @dfn{vicinity}
functions (these functions are documented in the section
@xref{Require}). The rest of the library will then be accessible in a
system independent fashion.@refill
Please mail new working configuration files to @code{jaffer@@ai.mit.edu}
so that they can be included in the SLIB distribution.@refill
@node Coding Standards, Copyrights, Porting, About SLIB
@section Coding Standards
All library packages are written in IEEE P1178 Scheme and assume that a
configuration file and @file{require.scm} package have already been
loaded. Other versions of Scheme can be supported in library packages
as well by using, for example, @code{(provided? 'rev3-report)} or
@code{(require 'rev3-report)} (@xref{Require}).@refill
@ftindex rev3-report
The module name and @samp{:} should prefix each symbol defined in the
package. Definitions for external use should then be exported by having
@code{(define foo module-name:foo)}.@refill
Code submitted for inclusion in SLIB should not duplicate routines
already in SLIB files. Use @code{require} to force those library
routines to be used by your package. Care should be taken that there
are no circularities in the @code{require}s and @code{load}s between the
library packages.@refill
Documentation should be provided in Emacs Texinfo format if possible,
But documentation must be provided.
Your package will be released sooner with SLIB if you send me a file
which tests your code. Please run this test @emph{before} you send me
the code!
@subheading Modifications
Please document your changes. A line or two for @file{ChangeLog} is
sufficient for simple fixes or extensions. Look at the format of
@file{ChangeLog} to see what information is desired. Please send me
@code{diff} files from the latest SLIB distribution (remember to send
@code{diff}s of @file{slib.texi} and @file{ChangeLog}). This makes for
less email traffic and makes it easier for me to integrate when more
than one person is changing a file (this happens a lot with
@file{slib.texi} and @samp{*.init} files).
If someone else wrote a package you want to significantly modify, please
try to contact the author, who may be working on a new version. This
will insure against wasting effort on obsolete versions.
Please @emph{do not} reformat the source code with your favorite
beautifier, make 10 fixes, and send me the resulting source code. I do
not have the time to fish through 10000 diffs to find your 10 real fixes.
@node Copyrights, , Coding Standards, About SLIB
@section Copyrights
This section has instructions for SLIB authors regarding copyrights.
Each package in SLIB must either be in the public domain, or come with a
statement of terms permitting users to copy, redistribute and modify it.
The comments at the beginning of @file{require.scm} and
@file{macwork.scm} illustrate copyright and appropriate terms.
If your code or changes amount to less than about 10 lines, you do not
need to add your copyright or send a disclaimer.
@subheading Putting code into the Public Domain
In order to put code in the public domain you should sign a copyright
disclaimer and send it to the SLIB maintainer. Contact
jaffer@@ai.mit.edu for the address to mail the disclaimer to.
@quotation
I, @var{name}, hereby affirm that I have placed the software package
@var{name} in the public domain.
I affirm that I am the sole author and sole copyright holder for the
software package, that I have the right to place this software package
in the public domain, and that I will do nothing to undermine this
status in the future.
@flushright
@var{signature and date}
@end flushright
@end quotation
This wording assumes that you are the sole author. If you are not the
sole author, the wording needs to be different. If you don't want to be
bothered with sending a letter every time you release or modify a
module, make your letter say that it also applies to your future
revisions of that module.
Make sure no employer has any claim to the copyright on the work you are
submitting. If there is any doubt, create a copyright disclaimer and
have your employer sign it. Mail the signed disclaimer to the SLIB
maintainer. Contact jaffer@@ai.mit.edu for the address to mail the
disclaimer to. An example disclaimer follows.
@subheading Explicit copying terms
@noindent
If you submit more than about 10 lines of code which you are not placing
into the Public Domain (by sending me a disclaimer) you need to:
@itemize @bullet
@item
Arrange that your name appears in a copyright line for the appropriate
year. Multiple copyright lines are acceptable.
@item
With your copyright line, specify any terms you require to be different
from those already in the file.
@item
Make sure no employer has any claim to the copyright on the work you are
submitting. If there is any doubt, create a copyright disclaimer and
have your employer sign it. Mail the signed disclaim to the SLIB
maintainer. Contact jaffer@@ai.mit.edu for the address to mail the
disclaimer to.
@end itemize
@subheading Example: Company Copyright Disclaimer
This disclaimer should be signed by a vice president or general manager
of the company. If you can't get at them, anyone else authorized to
license out software produced there will do. Here is a sample wording:
@quotation
@var{employer} Corporation hereby disclaims all copyright
interest in the program @var{program} written by @var{name}.
@var{employer} Corporation affirms that it has no other intellectual
property interest that would undermine this release, and will do nothing
to undermine it in the future.
@flushleft
@var{signature and date},
@var{name}, @var{title}, @var{employer} Corporation
@end flushleft
@end quotation
@node Index, , About SLIB, Top
@c @node Procedure and Macro Index, Variable Index, About SLIB, Top
@unnumbered Procedure and Macro Index
This is an alphabetical list of all the procedures and macros in SLIB.
@printindex fn
@c @node Variable Index, Concept Index, Procedure and Macro Index, Top
@unnumbered Variable Index
This is an alphabetical list of all the global variables in SLIB.
@printindex vr
@c @node Concept Index, , Variable Index, Top
@unnumbered Concept and Feature Index
@printindex cp
@contents
@bye
|