1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
|
;; "wttree.scm" Weight balanced trees -*-Scheme-*-
;; Copyright (c) 1993-1994 Stephen Adams
;;
;; $Id: wttree.scm,v 1.1 1994/11/28 21:58:48 adams Exp adams $
;;
;; References:
;;
;; Stephen Adams, Implemeting Sets Efficiently in a Functional
;; Language, CSTR 92-10, Department of Electronics and Computer
;; Science, University of Southampton, 1992
;;
;;
;; Copyright (c) 1993-94 Massachusetts Institute of Technology
;;
;; This material was developed by the Scheme project at the Massachusetts
;; Institute of Technology, Department of Electrical Engineering and
;; Computer Science. Permission to copy this software, to redistribute
;; it, and to use it for any purpose is granted, subject to the following
;; restrictions and understandings.
;;
;; 1. Any copy made of this software must include this copyright notice
;; in full.
;;
;; 2. Users of this software agree to make their best efforts (a) to
;; return to the MIT Scheme project any improvements or extensions that
;; they make, so that these may be included in future releases; and (b)
;; to inform MIT of noteworthy uses of this software.
;;
;; 3. All materials developed as a consequence of the use of this
;; software shall duly acknowledge such use, in accordance with the usual
;; standards of acknowledging credit in academic research.
;;
;; 4. MIT has made no warrantee or representation that the operation of
;; this software will be error-free, and MIT is under no obligation to
;; provide any services, by way of maintenance, update, or otherwise.
;;
;; 5. In conjunction with products arising from the use of this material,
;; there shall be no use of the name of the Massachusetts Institute of
;; Technology nor of any adaptation thereof in any advertising,
;; promotional, or sales literature without prior written consent from
;; MIT in each case.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Weight Balanced Binary Trees
;;
;;
;;
;; This file has been modified from the MIT-Scheme library version to
;; make it more standard. The main changes are
;;
;; . The whole thing has been put in a LET as R4RS Scheme has no module
;; system.
;; . The MIT-Scheme define structure operations have been written out by
;; hand.
;;
;; It has been tested on MIT-Scheme, scheme48 and scm4e1
;;
;; If your system has a compiler and you want this code to run fast, you
;; should do whatever is necessary to inline all of the structure accessors.
;;
;; This is MIT-Scheme's way of saying that +, car etc should all be inlined.
;;
;;(declare (usual-integrations))
(define error
(case (scheme-implementation-type)
((MITScheme) error)
(else slib:error)))
(define error:wrong-type-argument
(case (scheme-implementation-type)
((MITScheme) error:wrong-type-argument)
(else (lambda (arg1 arg2 arg3)
(slib:error 'wrong-type-argument arg1 arg2 arg3)))))
(define error:bad-range-argument
(case (scheme-implementation-type)
((MITScheme) error:bad-range-argument)
(else (lambda (arg1 arg2)
(slib:error 'bad-range-argument arg1 arg2)))))
;;;
;;; Interface to this package.
;;;
;;; ONLY these procedures (and TEST at the end of the file) will be
;;; (re)defined in your system.
;;;
(define make-wt-tree-type #f)
(define number-wt-type #f)
(define string-wt-type #f)
(define make-wt-tree #f)
(define singleton-wt-tree #f)
(define alist->wt-tree #f)
(define wt-tree/empty? #f)
(define wt-tree/size #f)
(define wt-tree/add #f)
(define wt-tree/delete #f)
(define wt-tree/add! #f)
(define wt-tree/delete! #f)
(define wt-tree/member? #f)
(define wt-tree/lookup #f)
(define wt-tree/split< #f)
(define wt-tree/split> #f)
(define wt-tree/union #f)
(define wt-tree/intersection #f)
(define wt-tree/difference #f)
(define wt-tree/subset? #f)
(define wt-tree/set-equal? #f)
(define wt-tree/fold #f)
(define wt-tree/for-each #f)
(define wt-tree/index #f)
(define wt-tree/index-datum #f)
(define wt-tree/index-pair #f)
(define wt-tree/rank #f)
(define wt-tree/min #f)
(define wt-tree/min-datum #f)
(define wt-tree/min-pair #f)
(define wt-tree/delete-min #f)
(define wt-tree/delete-min! #f)
;; This LET sets all of the above variables.
(let ()
;; We use the folowing MIT-Scheme operation on fixnums (small
;; integers). R4RS compatible (but less efficient) definitions.
;; You should replace these with something that is efficient in your
;; system.
(define fix:fixnum? (lambda (x) (and (exact? x) (integer? x))))
(define fix:+ +)
(define fix:- -)
(define fix:< <)
(define fix:<= <=)
(define fix:> >)
(define fix:* *)
;; A TREE-TYPE is a collection of those procedures that depend on the
;; ordering relation.
;; MIT-Scheme structure definition
;;(define-structure
;; (tree-type
;; (conc-name tree-type/)
;; (constructor %make-tree-type))
;; (key<? #F read-only true)
;; (alist->tree #F read-only true)
;; (add #F read-only true)
;; (insert! #F read-only true)
;; (delete #F read-only true)
;; (delete! #F read-only true)
;; (member? #F read-only true)
;; (lookup #F read-only true)
;; (split-lt #F read-only true)
;; (split-gt #F read-only true)
;; (union #F read-only true)
;; (intersection #F read-only true)
;; (difference #F read-only true)
;; (subset? #F read-only true)
;; (rank #F read-only true)
;;)
;; Written out by hand, using vectors:
;;
;; If possible, you should teach your system to print out something
;; like #[tree-type <] instread of the whole vector.
(define tag:tree-type (string->symbol "#[(runtime wttree)tree-type]"))
(define (%make-tree-type key<? alist->tree
add insert!
delete delete!
member? lookup
split-lt split-gt
union intersection
difference subset?
rank )
(vector tag:tree-type
key<? alist->tree add insert!
delete delete! member? lookup
split-lt split-gt union intersection
difference subset? rank ))
(define (tree-type? tt)
(and (vector? tt)
(eq? (vector-ref tt 0) tag:tree-type)))
(define (tree-type/key<? tt) (vector-ref tt 1))
(define (tree-type/alist->tree tt) (vector-ref tt 2))
(define (tree-type/add tt) (vector-ref tt 3))
(define (tree-type/insert! tt) (vector-ref tt 4))
(define (tree-type/delete tt) (vector-ref tt 5))
(define (tree-type/delete! tt) (vector-ref tt 6))
(define (tree-type/member? tt) (vector-ref tt 7))
(define (tree-type/lookup tt) (vector-ref tt 8))
(define (tree-type/split-lt tt) (vector-ref tt 9))
(define (tree-type/split-gt tt) (vector-ref tt 10))
(define (tree-type/union tt) (vector-ref tt 11))
(define (tree-type/intersection tt) (vector-ref tt 12))
(define (tree-type/difference tt) (vector-ref tt 13))
(define (tree-type/subset? tt) (vector-ref tt 14))
(define (tree-type/rank tt) (vector-ref tt 15))
;; User level tree representation.
;;
;; WT-TREE is a wrapper for trees of nodes.
;;
;;MIT-Scheme:
;;(define-structure
;; (wt-tree
;; (conc-name tree/)
;; (constructor %make-wt-tree))
;; (type #F read-only true)
;; (root #F read-only false))
;; If possible, you should teach your system to print out something
;; like #[wt-tree] instread of the whole vector.
(define tag:wt-tree (string->symbol "#[(runtime wttree)wt-tree]"))
(define (%make-wt-tree type root)
(vector tag:wt-tree type root))
(define (wt-tree? t)
(and (vector? t)
(eq? (vector-ref t 0) tag:wt-tree)))
(define (tree/type t) (vector-ref t 1))
(define (tree/root t) (vector-ref t 2))
(define (set-tree/root! t v) (vector-set! t 2 v))
;; Nodes are the thing from which the real trees are built. There are
;; lots of these and the uninquisitibe user will never see them, so
;; they are represented as untagged to save the slot that would be
;; used for tagging structures.
;; In MIT-Scheme these were all DEFINE-INTEGRABLE
(define (make-node k v l r w) (vector w l k r v))
(define (node/k node) (vector-ref node 2))
(define (node/v node) (vector-ref node 4))
(define (node/l node) (vector-ref node 1))
(define (node/r node) (vector-ref node 3))
(define (node/w node) (vector-ref node 0))
(define empty 'empty)
(define (empty? x) (eq? x 'empty))
(define (node/size node)
(if (empty? node) 0 (node/w node)))
(define (node/singleton k v) (make-node k v empty empty 1))
(define (with-n-node node receiver)
(receiver (node/k node) (node/v node) (node/l node) (node/r node)))
;;
;; Constructors for building node trees of various complexity
;;
(define (n-join k v l r)
(make-node k v l r (fix:+ 1 (fix:+ (node/size l) (node/size r)))))
(define (single-l a.k a.v x r)
(with-n-node r
(lambda (b.k b.v y z) (n-join b.k b.v (n-join a.k a.v x y) z))))
(define (double-l a.k a.v x r)
(with-n-node r
(lambda (c.k c.v r.l z)
(with-n-node r.l
(lambda (b.k b.v y1 y2)
(n-join b.k b.v
(n-join a.k a.v x y1)
(n-join c.k c.v y2 z)))))))
(define (single-r b.k b.v l z)
(with-n-node l
(lambda (a.k a.v x y) (n-join a.k a.v x (n-join b.k b.v y z)))))
(define (double-r c.k c.v l z)
(with-n-node l
(lambda (a.k a.v x l.r)
(with-n-node l.r
(lambda (b.k b.v y1 y2)
(n-join b.k b.v
(n-join a.k a.v x y1)
(n-join c.k c.v y2 z)))))))
;; (define-integrable wt-tree-ratio 5)
(define wt-tree-ratio 5)
(define (t-join k v l r)
(define (simple-join) (n-join k v l r))
(let ((l.n (node/size l))
(r.n (node/size r)))
(cond ((fix:< (fix:+ l.n r.n) 2) (simple-join))
((fix:> r.n (fix:* wt-tree-ratio l.n))
;; right is too big
(let ((r.l.n (node/size (node/l r)))
(r.r.n (node/size (node/r r))))
(if (fix:< r.l.n r.r.n)
(single-l k v l r)
(double-l k v l r))))
((fix:> l.n (fix:* wt-tree-ratio r.n))
;; left is too big
(let ((l.l.n (node/size (node/l l)))
(l.r.n (node/size (node/r l))))
(if (fix:< l.r.n l.l.n)
(single-r k v l r)
(double-r k v l r))))
(else
(simple-join)))))
;;
;; Node tree procedures that are independent of key<?
;;
(define (node/min node)
(cond ((empty? node) (error:empty 'min))
((empty? (node/l node)) node)
(else (node/min (node/l node)))))
(define (node/delmin node)
(cond ((empty? node) (error:empty 'delmin))
((empty? (node/l node)) (node/r node))
(else (t-join (node/k node) (node/v node)
(node/delmin (node/l node)) (node/r node)))))
(define (node/concat2 node1 node2)
(cond ((empty? node1) node2)
((empty? node2) node1)
(else
(let ((min-node (node/min node2)))
(t-join (node/k min-node) (node/v min-node)
node1 (node/delmin node2))))))
(define (node/inorder-fold procedure base node)
(define (fold base node)
(if (empty? node)
base
(with-n-node node
(lambda (k v l r)
(fold (procedure k v (fold base r)) l)))))
(fold base node))
(define (node/for-each procedure node)
(if (not (empty? node))
(with-n-node node
(lambda (k v l r)
(node/for-each procedure l)
(procedure k v)
(node/for-each procedure r)))))
(define (node/height node)
(if (empty? node)
0
(+ 1 (max (node/height (node/l node))
(node/height (node/r node))))))
(define (node/index node index)
(define (loop node index)
(let ((size.l (node/size (node/l node))))
(cond ((fix:< index size.l) (loop (node/l node) index))
((fix:> index size.l) (loop (node/r node)
(fix:- index (fix:+ 1 size.l))))
(else node))))
(let ((bound (node/size node)))
(if (or (< index 0)
(>= index bound)
(not (fix:fixnum? index)))
(error:bad-range-argument index 'node/index)
(loop node index))))
(define (error:empty owner)
(error "Operation requires non-empty tree:" owner))
(define (local:make-wt-tree-type key<?)
;; MIT-Scheme definitions:
;;(declare (integrate key<?))
;;(define-integrable (key>? x y) (key<? y x))
(define (key>? x y) (key<? y x))
(define (node/find k node)
;; Returns either the node or #f.
;; Loop takes D comparisons where D is the depth of the tree
;; rather than the traditional compare-low, compare-high which
;; takes on average 1.5(D-1) comparisons
(define (loop this best)
(cond ((empty? this) best)
((key<? k (node/k this)) (loop (node/l this) best))
(else (loop (node/r this) this))))
(let ((best (loop node #f)))
(cond ((not best) #f)
((key<? (node/k best) k) #f)
(else best))))
(define (node/rank k node rank)
(cond ((empty? node) #f)
((key<? k (node/k node)) (node/rank k (node/l node) rank))
((key>? k (node/k node))
(node/rank k (node/r node)
(fix:+ 1 (fix:+ rank (node/size (node/l node))))))
(else (fix:+ rank (node/size (node/l node))))))
(define (node/add node k v)
(if (empty? node)
(node/singleton k v)
(with-n-node node
(lambda (key val l r)
(cond ((key<? k key) (t-join key val (node/add l k v) r))
((key<? key k) (t-join key val l (node/add r k v)))
(else (n-join key v l r)))))))
(define (node/delete x node)
(if (empty? node)
empty
(with-n-node node
(lambda (key val l r)
(cond ((key<? x key) (t-join key val (node/delete x l) r))
((key<? key x) (t-join key val l (node/delete x r)))
(else (node/concat2 l r)))))))
(define (node/concat tree1 tree2)
(cond ((empty? tree1) tree2)
((empty? tree2) tree1)
(else
(let ((min-node (node/min tree2)))
(node/concat3 (node/k min-node) (node/v min-node) tree1
(node/delmin tree2))))))
(define (node/concat3 k v l r)
(cond ((empty? l) (node/add r k v))
((empty? r) (node/add l k v))
(else
(let ((n1 (node/size l))
(n2 (node/size r)))
(cond ((fix:< (fix:* wt-tree-ratio n1) n2)
(with-n-node r
(lambda (k2 v2 l2 r2)
(t-join k2 v2 (node/concat3 k v l l2) r2))))
((fix:< (fix:* wt-tree-ratio n2) n1)
(with-n-node l
(lambda (k1 v1 l1 r1)
(t-join k1 v1 l1 (node/concat3 k v r1 r)))))
(else
(n-join k v l r)))))))
(define (node/split-lt node x)
(cond ((empty? node) empty)
((key<? x (node/k node))
(node/split-lt (node/l node) x))
((key<? (node/k node) x)
(node/concat3 (node/k node) (node/v node) (node/l node)
(node/split-lt (node/r node) x)))
(else (node/l node))))
(define (node/split-gt node x)
(cond ((empty? node) empty)
((key<? (node/k node) x)
(node/split-gt (node/r node) x))
((key<? x (node/k node))
(node/concat3 (node/k node) (node/v node)
(node/split-gt (node/l node) x) (node/r node)))
(else (node/r node))))
(define (node/union tree1 tree2)
(cond ((empty? tree1) tree2)
((empty? tree2) tree1)
(else
(with-n-node tree2
(lambda (ak av l r)
(let ((l1 (node/split-lt tree1 ak))
(r1 (node/split-gt tree1 ak)))
(node/concat3 ak av (node/union l1 l) (node/union r1 r))))))))
(define (node/difference tree1 tree2)
(cond ((empty? tree1) empty)
((empty? tree2) tree1)
(else
(with-n-node tree2
(lambda (ak av l r)
(let ((l1 (node/split-lt tree1 ak))
(r1 (node/split-gt tree1 ak)))
av
(node/concat (node/difference l1 l)
(node/difference r1 r))))))))
(define (node/intersection tree1 tree2)
(cond ((empty? tree1) empty)
((empty? tree2) empty)
(else
(with-n-node tree2
(lambda (ak av l r)
(let ((l1 (node/split-lt tree1 ak))
(r1 (node/split-gt tree1 ak)))
(if (node/find ak tree1)
(node/concat3 ak av (node/intersection l1 l)
(node/intersection r1 r))
(node/concat (node/intersection l1 l)
(node/intersection r1 r)))))))))
(define (node/subset? tree1 tree2)
(or (empty? tree1)
(and (fix:<= (node/size tree1) (node/size tree2))
(with-n-node tree1
(lambda (k v l r)
v
(cond ((key<? k (node/k tree2))
(and (node/subset? l (node/l tree2))
(node/find k tree2)
(node/subset? r tree2)))
((key>? k (node/k tree2))
(and (node/subset? r (node/r tree2))
(node/find k tree2)
(node/subset? l tree2)))
(else
(and (node/subset? l (node/l tree2))
(node/subset? r (node/r tree2))))))))))
;;; Tree interface: stripping off or injecting the tree types
(define (tree/map-add tree k v)
(%make-wt-tree (tree/type tree)
(node/add (tree/root tree) k v)))
(define (tree/insert! tree k v)
(set-tree/root! tree (node/add (tree/root tree) k v)))
(define (tree/delete tree k)
(%make-wt-tree (tree/type tree)
(node/delete k (tree/root tree))))
(define (tree/delete! tree k)
(set-tree/root! tree (node/delete k (tree/root tree))))
(define (tree/split-lt tree key)
(%make-wt-tree (tree/type tree)
(node/split-lt (tree/root tree) key)))
(define (tree/split-gt tree key)
(%make-wt-tree (tree/type tree)
(node/split-gt (tree/root tree) key)))
(define (tree/union tree1 tree2)
(%make-wt-tree (tree/type tree1)
(node/union (tree/root tree1) (tree/root tree2))))
(define (tree/intersection tree1 tree2)
(%make-wt-tree (tree/type tree1)
(node/intersection (tree/root tree1) (tree/root tree2))))
(define (tree/difference tree1 tree2)
(%make-wt-tree (tree/type tree1)
(node/difference (tree/root tree1) (tree/root tree2))))
(define (tree/subset? tree1 tree2)
(node/subset? (tree/root tree1) (tree/root tree2)))
(define (alist->tree alist)
(define (loop alist node)
(cond ((null? alist) node)
((pair? alist) (loop (cdr alist)
(node/add node (caar alist) (cdar alist))))
(else
(error:wrong-type-argument alist "alist" 'alist->tree))))
(%make-wt-tree my-type (loop alist empty)))
(define (tree/get tree key default)
(let ((node (node/find key (tree/root tree))))
(if node
(node/v node)
default)))
(define (tree/rank tree key) (node/rank key (tree/root tree) 0))
(define (tree/member? key tree)
(and (node/find key (tree/root tree))
#t))
(define my-type #F)
(set! my-type
(%make-tree-type
key<? ; key<?
alist->tree ; alist->tree
tree/map-add ; add
tree/insert! ; insert!
tree/delete ; delete
tree/delete! ; delete!
tree/member? ; member?
tree/get ; lookup
tree/split-lt ; split-lt
tree/split-gt ; split-gt
tree/union ; union
tree/intersection ; intersection
tree/difference ; difference
tree/subset? ; subset?
tree/rank ; rank
))
my-type)
(define (guarantee-tree tree procedure)
(if (not (wt-tree? tree))
(error:wrong-type-argument tree "weight-balanced tree" procedure)))
(define (guarantee-tree-type type procedure)
(if (not (tree-type? type))
(error:wrong-type-argument type "weight-balanced tree type" procedure)))
(define (guarantee-compatible-trees tree1 tree2 procedure)
(guarantee-tree tree1 procedure)
(guarantee-tree tree2 procedure)
(if (not (eq? (tree/type tree1) (tree/type tree2)))
(error "The trees" tree1 'and tree2 'have 'incompatible 'types
(tree/type tree1) 'and (tree/type tree2))))
;;;______________________________________________________________________
;;;
;;; Export interface
;;;
(set! make-wt-tree-type local:make-wt-tree-type)
(set! make-wt-tree
(lambda (tree-type)
(%make-wt-tree tree-type empty)))
(set! singleton-wt-tree
(lambda (type key value)
(guarantee-tree-type type 'singleton-wt-tree)
(%make-wt-tree type (node/singleton key value))))
(set! alist->wt-tree
(lambda (type alist)
(guarantee-tree-type type 'alist->wt-tree)
((tree-type/alist->tree type) alist)))
(set! wt-tree/empty?
(lambda (tree)
(guarantee-tree tree 'wt-tree/empty?)
(empty? (tree/root tree))))
(set! wt-tree/size
(lambda (tree)
(guarantee-tree tree 'wt-tree/size)
(node/size (tree/root tree))))
(set! wt-tree/add
(lambda (tree key datum)
(guarantee-tree tree 'wt-tree/add)
((tree-type/add (tree/type tree)) tree key datum)))
(set! wt-tree/delete
(lambda (tree key)
(guarantee-tree tree 'wt-tree/delete)
((tree-type/delete (tree/type tree)) tree key)))
(set! wt-tree/add!
(lambda (tree key datum)
(guarantee-tree tree 'wt-tree/add!)
((tree-type/insert! (tree/type tree)) tree key datum)))
(set! wt-tree/delete!
(lambda (tree key)
(guarantee-tree tree 'wt-tree/delete!)
((tree-type/delete! (tree/type tree)) tree key)))
(set! wt-tree/member?
(lambda (key tree)
(guarantee-tree tree 'wt-tree/member?)
((tree-type/member? (tree/type tree)) key tree)))
(set! wt-tree/lookup
(lambda (tree key default)
(guarantee-tree tree 'wt-tree/lookup)
((tree-type/lookup (tree/type tree)) tree key default)))
(set! wt-tree/split<
(lambda (tree key)
(guarantee-tree tree 'wt-tree/split<)
((tree-type/split-lt (tree/type tree)) tree key)))
(set! wt-tree/split>
(lambda (tree key)
(guarantee-tree tree 'wt-tree/split>)
((tree-type/split-gt (tree/type tree)) tree key)))
(set! wt-tree/union
(lambda (tree1 tree2)
(guarantee-compatible-trees tree1 tree2 'wt-tree/union)
((tree-type/union (tree/type tree1)) tree1 tree2)))
(set! wt-tree/intersection
(lambda (tree1 tree2)
(guarantee-compatible-trees tree1 tree2 'wt-tree/intersection)
((tree-type/intersection (tree/type tree1)) tree1 tree2)))
(set! wt-tree/difference
(lambda (tree1 tree2)
(guarantee-compatible-trees tree1 tree2 'wt-tree/difference)
((tree-type/difference (tree/type tree1)) tree1 tree2)))
(set! wt-tree/subset?
(lambda (tree1 tree2)
(guarantee-compatible-trees tree1 tree2 'wt-tree/subset?)
((tree-type/subset? (tree/type tree1)) tree1 tree2)))
(set! wt-tree/set-equal?
(lambda (tree1 tree2)
(and (wt-tree/subset? tree1 tree2)
(wt-tree/subset? tree2 tree1))))
(set! wt-tree/fold
(lambda (combiner-key-datum-result init tree)
(guarantee-tree tree 'wt-tree/fold)
(node/inorder-fold combiner-key-datum-result
init
(tree/root tree))))
(set! wt-tree/for-each
(lambda (action-key-datum tree)
(guarantee-tree tree 'wt-tree/for-each)
(node/for-each action-key-datum (tree/root tree))))
(set! wt-tree/index
(lambda (tree index)
(guarantee-tree tree 'wt-tree/index)
(let ((node (node/index (tree/root tree) index)))
(and node (node/k node)))))
(set! wt-tree/index-datum
(lambda (tree index)
(guarantee-tree tree 'wt-tree/index-datum)
(let ((node (node/index (tree/root tree) index)))
(and node (node/v node)))))
(set! wt-tree/index-pair
(lambda (tree index)
(guarantee-tree tree 'wt-tree/index-pair)
(let ((node (node/index (tree/root tree) index)))
(and node (cons (node/k node) (node/v node))))))
(set! wt-tree/rank
(lambda (tree key)
(guarantee-tree tree 'wt-tree/rank)
((tree-type/rank (tree/type tree)) tree key)))
(set! wt-tree/min
(lambda (tree)
(guarantee-tree tree 'wt-tree/min)
(node/k (node/min (tree/root tree)))))
(set! wt-tree/min-datum
(lambda (tree)
(guarantee-tree tree 'wt-tree/min-datum)
(node/v (node/min (tree/root tree)))))
(set! wt-tree/min-pair
(lambda (tree)
(guarantee-tree tree 'wt-tree/min-pair)
(let ((node (node/min (tree/root tree))))
(cons (node/k node) (node/v node)))))
(set! wt-tree/delete-min
(lambda (tree)
(guarantee-tree tree 'wt-tree/delete-min)
(%make-wt-tree (tree/type tree)
(node/delmin (tree/root tree)))))
(set! wt-tree/delete-min!
(lambda (tree)
(guarantee-tree tree 'wt-tree/delete-min!)
(set-tree/root! tree (node/delmin (tree/root tree)))))
;; < is a lexpr. Many compilers can open-code < so the lambda is faster
;; than passing <.
(set! number-wt-type (local:make-wt-tree-type (lambda (u v) (< u v))))
(set! string-wt-type (local:make-wt-tree-type string<?))
'done)
;;; Local Variables:
;;; eval: (put 'with-n-node 'scheme-indent-function 1)
;;; eval: (put 'with-n-node 'scheme-indent-hook 1)
;;; End:
|