1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
;;;"root.scm" Newton's and Laguerre's methods for finding roots.
;Copyright (C) 1996, 1997 Aubrey Jaffer
;
;Permission to copy this software, to redistribute it, and to use it
;for any purpose is granted, subject to the following restrictions and
;understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warrantee or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(require 'logical)
;;;; Newton's Method explained in:
;;; D. E. Knuth, "The Art of Computer Programming", Vol 2 /
;;; Seminumerical Algorithms, Reading Massachusetts, Addison-Wesley
;;; Publishing Company, 2nd Edition, p. 510
(define (newton:find-integer-root f df/dx x_0)
(let loop ((x x_0) (fx (f x_0)))
(cond
((zero? fx) x)
(else
(let ((df (df/dx x)))
(cond
((zero? df) #f) ; stuck at local min/max
(else
(let* ((delta (quotient (+ fx (quotient df 2)) df))
(next-x (cond ((not (zero? delta)) (- x delta))
((positive? fx) (- x 1))
(else (- x -1))))
(next-fx (f next-x)))
(cond ((>= (abs next-fx) (abs fx)) x)
(else (loop next-x next-fx)))))))))))
(define (integer-sqrt y)
(newton:find-integer-root (lambda (x) (- (* x x) y))
(lambda (x) (* 2 x))
(ash 1 (quotient (integer-length y) 2))))
(define (newton:find-root f df/dx x_0 prec)
(if (and (negative? prec) (integer? prec))
(let loop ((x x_0) (fx (f x_0)) (count prec))
(cond ((zero? count) x)
(else (let ((df (df/dx x)))
(cond ((zero? df) #f) ; stuck at local min/max
(else (let* ((next-x (- x (/ fx df)))
(next-fx (f next-x)))
(cond ((= next-x x) x)
((> (abs next-fx) (abs fx)) #f)
(else (loop next-x next-fx
(+ 1 count)))))))))))
(let loop ((x x_0) (fx (f x_0)))
(cond ((< (abs fx) prec) x)
(else (let ((df (df/dx x)))
(cond ((zero? df) #f) ; stuck at local min/max
(else (let* ((next-x (- x (/ fx df)))
(next-fx (f next-x)))
(cond ((= next-x x) x)
((> (abs next-fx) (abs fx)) #f)
(else (loop next-x next-fx))))))))))))
;;; H. J. Orchard, "The Laguerre Method for Finding the Zeros of
;;; Polynomials", IEEE Transactions on Circuits and Systems, Vol. 36,
;;; No. 11, November 1989, pp 1377-1381.
(define (laguerre:find-root f df/dz ddf/dz^2 z_0 prec)
(if (and (negative? prec) (integer? prec))
(let loop ((z z_0) (fz (f z_0)) (count prec))
(cond ((zero? count) z)
(else
(let* ((df (df/dz z))
(ddf (ddf/dz^2 z))
(disc (sqrt (- (* df df) (* fz ddf)))))
(if (zero? disc)
#f
(let* ((next-z
(- z (/ fz (if (negative? (+ (* (real-part df)
(real-part disc))
(* (imag-part df)
(imag-part disc))))
(- disc) disc))))
(next-fz (f next-z)))
(cond ((>= (magnitude next-fz) (magnitude fz)) z)
(else (loop next-z next-fz (+ 1 count))))))))))
(let loop ((z z_0) (fz (f z_0)) (delta-z #f))
(cond ((< (magnitude fz) prec) z)
(else
(let* ((df (df/dz z))
(ddf (ddf/dz^2 z))
(disc (sqrt (- (* df df) (* fz ddf)))))
;;(print 'disc disc)
(if (zero? disc)
#f
(let* ((next-z
(- z (/ fz (if (negative? (+ (* (real-part df)
(real-part disc))
(* (imag-part df)
(imag-part disc))))
(- disc) disc))))
(next-delta-z (magnitude (- next-z z))))
;;(print 'next-z next-z )
;;(print '(f next-z) (f next-z))
;;(print 'delta-z delta-z 'next-delta-z next-delta-z)
(cond ((zero? next-delta-z) z)
((and delta-z (>= next-delta-z delta-z)) z)
(else
(loop next-z (f next-z) next-delta-z)))))))))))
(define (laguerre:find-polynomial-root deg f df/dz ddf/dz^2 z_0 prec)
(if (and (negative? prec) (integer? prec))
(let loop ((z z_0) (fz (f z_0)) (count prec))
(cond ((zero? count) z)
(else
(let* ((df (df/dz z))
(ddf (ddf/dz^2 z))
(tmp (* (+ deg -1) df))
(sqrt-H (sqrt (- (* tmp tmp) (* deg (+ deg -1) fz ddf))))
(df+sqrt-H (+ df sqrt-H))
(df-sqrt-H (- df sqrt-H))
(next-z
(- z (/ (* deg fz)
(if (>= (magnitude df+sqrt-H)
(magnitude df-sqrt-H))
df+sqrt-H
df-sqrt-H)))))
(loop next-z (f next-z) (+ 1 count))))))
(let loop ((z z_0) (fz (f z_0)))
(cond ((< (magnitude fz) prec) z)
(else
(let* ((df (df/dz z))
(ddf (ddf/dz^2 z))
(tmp (* (+ deg -1) df))
(sqrt-H (sqrt (- (* tmp tmp) (* deg (+ deg -1) fz ddf))))
(df+sqrt-H (+ df sqrt-H))
(df-sqrt-H (- df sqrt-H))
(next-z
(- z (/ (* deg fz)
(if (>= (magnitude df+sqrt-H)
(magnitude df-sqrt-H))
df+sqrt-H
df-sqrt-H)))))
(loop next-z (f next-z))))))))
|