1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
;;;; "modular.scm", modular fixnum arithmetic for Scheme
;;; Copyright (C) 1991, 1993, 1995 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warrantee or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(define (symmetric:modulus n)
(cond ((or (not (number? n)) (not (positive? n)) (even? n))
(slib:error 'symmetric:modulus n))
(else (quotient (+ -1 n) -2))))
(define (modulus->integer m)
(cond ((negative? m) (- 1 m m))
((zero? m) #f)
(else m)))
(define (modular:normalize m k)
(cond ((positive? m) (modulo k m))
((zero? m) k)
((<= m k (- m)) k)
((or (provided? 'bignum)
(<= m (quotient (+ -1 most-positive-fixnum) 2)))
(let* ((pm (+ 1 (* -2 m)))
(s (modulo k pm)))
(if (<= s (- m)) s (- s pm))))
((positive? k) (+ (+ (+ k -1) m) m))
(else (- (- (+ k 1) m) m))))
;;;; NOTE: The rest of these functions assume normalized arguments!
(require 'logical)
(define (modular:extended-euclid x y)
(define q 0)
(do ((r0 x r1) (r1 y (remainder r0 r1))
(u0 1 u1) (u1 0 (- u0 (* q u1)))
(v0 0 v1) (v1 1 (- v0 (* q v1))))
;; (assert (= r0 (+ (* u0 x) (* v0 y))))
;; (assert (= r1 (+ (* u1 x) (* v1 y))))
((zero? r1) (list r0 u0 v0))
(set! q (quotient r0 r1))))
(define (modular:invertable? m a)
(eqv? 1 (gcd (or (modulus->integer m) 0) a)))
(define (modular:invert m a)
(cond ((eqv? 1 (abs a)) a) ; unit
(else
(let ((pm (modulus->integer m)))
(cond
(pm
(let ((d (modular:extended-euclid (modular:normalize pm a) pm)))
(if (= 1 (car d))
(modular:normalize m (cadr d))
(slib:error 'modular:invert "can't invert" m a))))
(else (slib:error 'modular:invert "can't invert" m a)))))))
(define (modular:negate m a)
(if (zero? a) 0
(if (negative? m) (- a)
(- m a))))
;;; Being careful about overflow here
(define (modular:+ m a b)
(cond ((positive? m)
(modulo (+ (- a m) b) m))
((zero? m) (+ a b))
((negative? a)
(if (negative? b)
(let ((s (+ (- a m) b)))
(if (negative? s)
(- s -1 m)
(+ s m)))
(+ a b)))
((negative? b) (+ a b))
(else (let ((s (+ (+ a m) b)))
(if (positive? s)
(+ s -1 m)
(- s m))))))
(define (modular:- m a b)
(cond ((positive? m) (modulo (- a b) m))
((zero? m) (- a b))
(else (modular:+ m a (- b)))))
;;; See: L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
;;; with Splitting Facilities." ACM Transactions on Mathematical
;;; Software, 17:98-111 (1991)
;;; modular:r = 2**((nb-2)/2) where nb = number of bits in a word.
(define modular:r
(ash 1 (quotient (integer-length most-positive-fixnum) 2)))
(define modular:*
(if (provided? 'bignum)
(lambda (m a b)
(cond ((zero? m) (* a b))
((positive? m) (modulo (* a b) m))
(else (modular:normalize m (* a b)))))
(lambda (m a b)
(let ((a0 a)
(p 0))
(cond
((zero? m) (* a b))
((negative? m)
"This doesn't work for the full range of modulus M;"
"Someone please create or convert the following"
"algorighm to work with symmetric representation"
(modular:normalize m (* a b)))
(else
(cond
((< a modular:r))
((< b modular:r) (set! a b) (set! b a0) (set! a0 a))
(else
(set! a0 (modulo a modular:r))
(let ((a1 (quotient a modular:r))
(qh (quotient m modular:r))
(rh (modulo m modular:r)))
(cond ((>= a1 modular:r)
(set! a1 (- a1 modular:r))
(set! p (modulo (- (* modular:r (modulo b qh))
(* (quotient b qh) rh)) m))))
(cond ((not (zero? a1))
(let ((q (quotient m a1)))
(set! p (- p (* (quotient b q) (modulo m a1))))
(set! p (modulo (+ (if (positive? p) (- p m) p)
(* a1 (modulo b q))) m)))))
(set! p (modulo (- (* modular:r (modulo p qh))
(* (quotient p qh) rh)) m)))))
(if (zero? a0)
p
(let ((q (quotient m a0)))
(set! p (- p (* (quotient b q) (modulo m a0))))
(modulo (+ (if (positive? p) (- p m) p)
(* a0 (modulo b q))) m)))))))))
(define (modular:expt m a b)
(cond ((= a 1) 1)
((= a (- m 1)) (if (odd? b) a 1))
((zero? a) 0)
((zero? m) (integer-expt a b))
(else
(logical:ipow-by-squaring a b 1
(lambda (c d) (modular:* m c d))))))
(define extended-euclid modular:extended-euclid)
|