1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
;;; "determ.scm" Matrix Algebra
;Copyright 2002, 2004 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(require 'array)
;;@code{(require 'determinant)}
;;@ftindex determinant
;;@noindent
;;A Matrix can be either a list of lists (rows) or an array.
;;Unlike linear-algebra texts, this package uses 0-based coordinates.
;;; Internal conversion routines
(define (matrix2array matrix prototype)
(let* ((dim1 (length matrix))
(dim2 (length (car matrix)))
(mat (make-array '#() dim1 dim2)))
(do ((idx 0 (+ 1 idx))
(rows matrix (cdr rows)))
((>= idx dim1) rows)
(do ((jdx 0 (+ 1 jdx))
(row (car rows) (cdr row)))
((>= jdx dim2))
(array-set! mat (car row) idx jdx)))
mat))
(define (matrix2lists matrix)
(let ((dims (array-dimensions matrix)))
(do ((idx (+ -1 (car dims)) (+ -1 idx))
(rows '()
(cons (do ((jdx (+ -1 (cadr dims)) (+ -1 jdx))
(row '() (cons (array-ref matrix idx jdx) row)))
((< jdx 0) row))
rows)))
((< idx 0) rows))))
(define (coerce-like-arg matrix arg)
(cond ((array? arg) (matrix2array matrix arg))
(else matrix)))
;;@body
;;Returns the list-of-lists form of @1.
(define (matrix->lists matrix)
(cond ((array? matrix)
(if (not (eqv? 2 (array-rank matrix)))
(slib:error 'not 'matrix matrix))
(matrix2lists matrix))
((and (pair? matrix) (list? (car matrix))) matrix)
((vector? matrix) (list (vector->list matrix)))
(else (slib:error 'not 'matrix matrix))))
;;@body
;;Returns the (ones-based) array form of @1.
(define (matrix->array matrix)
(cond ((array? matrix)
(if (not (eqv? 2 (array-rank matrix)))
(slib:error 'not 'matrix matrix))
matrix)
((and (pair? matrix) (list? (car matrix)))
(matrix2array matrix '#()))
((vector? matrix) matrix)
(else (slib:error 'not 'matrix matrix))))
(define (matrix:cofactor matrix i j)
(define mat (matrix->lists matrix))
(define (butnth n lst)
(if (<= n 1) (cdr lst) (cons (car lst) (butnth (+ -1 n) (cdr lst)))))
(define (minor matrix i j)
(map (lambda (x) (butnth j x)) (butnth i mat)))
(coerce-like-arg
(* (if (odd? (+ i j)) -1 1) (determinant (minor mat i j)))
matrix))
;;@body
;;@1 must be a square matrix.
;;@0 returns the determinant of @1.
;;
;;@example
;;(require 'determinant)
;;(determinant '((1 2) (3 4))) @result{} -2
;;(determinant '((1 2 3) (4 5 6) (7 8 9))) @result{} 0
;;@end example
(define (determinant matrix)
(define mat (matrix->lists matrix))
(let ((n (length mat)))
(if (eqv? 1 n) (caar mat)
(do ((j n (+ -1 j))
(ans 0 (+ ans (* (list-ref (car mat) (+ -1 j))
(matrix:cofactor mat 1 j)))))
((<= j 0) ans)))))
;;@body
;;Returns a copy of @1 flipped over the diagonal containing the 1,1
;;element.
(define (transpose matrix)
(if (number? matrix)
matrix
(let ((mat (matrix->lists matrix)))
(coerce-like-arg (apply map list mat)
matrix))))
;;@body
;;Returns the product of matrices @1 and @2.
(define (matrix:product m1 m2)
(define mat1 (matrix->lists m1))
(define mat2 (matrix->lists m2))
(define (dot-product v1 v2) (apply + (map * v1 v2)))
(coerce-like-arg
(map (lambda (arow)
(apply map
(lambda bcol (dot-product bcol arow))
mat2))
mat1)
m1))
;;@body
;;@1 must be a square matrix.
;;If @1 is singlar, then @0 returns #f; otherwise @0 returns the
;;@code{matrix:product} inverse of @1.
(define (matrix:inverse matrix)
(let* ((mat (matrix->lists matrix))
(det (determinant mat))
(rank (length mat)))
(and (not (zero? det))
(do ((i rank (+ -1 i))
(inv '() (cons
(do ((j rank (+ -1 j))
(row '()
(cons (/ (matrix:cofactor mat j i) det) row)))
((<= j 0) row))
inv)))
((<= i 0)
(coerce-like-arg inv matrix))))))
|