1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
;;;; "differ.scm" O(NP) Sequence Comparison Algorithm.
;;; Copyright (C) 2001, 2002, 2003, 2004, 2007 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;@noindent
;;@code{diff:edit-length} implements the algorithm:
;;
;;@ifinfo
;;@example
;;S. Wu, E. Myers, U. Manber, and W. Miller,
;; "An O(NP) Sequence Comparison Algorithm,"
;; Information Processing Letters 35, 6 (1990), 317-323.
;; @url{http://www.cs.arizona.edu/people/gene/PAPERS/np_diff.ps}
;;@end example
;;@end ifinfo
;;@ifset html
;;S. Wu, <A HREF="http://www.cs.arizona.edu/people/gene/vita.html">
;;E. Myers,</A> U. Manber, and W. Miller,
;;<A HREF="http://www.cs.arizona.edu/people/gene/PAPERS/np_diff.ps">
;;"An O(NP) Sequence Comparison Algorithm"</A>,
;;Information Processing Letters 35, 6 (1990), 317-323.
;;@end ifset
;;
;;@noindent
;;The values returned by @code{diff:edit-length} can be used to gauge
;;the degree of match between two sequences.
;;
;;@noindent
;;@code{diff:edits} and @code{diff:longest-common-subsequence} combine
;;the algorithm with the divide-and-conquer method outlined in:
;;
;;@ifinfo
;;@example
;;E. Myers and W. Miller,
;; "Optimal alignments in linear space",
;; Computer Application in the Biosciences (CABIOS), 4(1):11-17, 1988.
;; @url{http://www.cs.arizona.edu/people/gene/PAPERS/linear.ps}
;;@end example
;;@end ifinfo
;;@ifset html
;;<A HREF="http://www.cs.arizona.edu/people/gene/vita.html">
;;E. Myers,</A> and W. Miller,
;;<A HREF="http://www.cs.arizona.edu/people/gene/PAPERS/linear.ps">
;;"Optimal alignments in linear space"</A>,
;;Computer Application in the Biosciences (CABIOS), 4(1):11-17, 1988.
;;@end ifset
;;
;;@noindent
;;If the items being sequenced are text lines, then the computed
;;edit-list is equivalent to the output of the @dfn{diff} utility
;;program. If the items being sequenced are words, then it is like the
;;lesser known @dfn{spiff} program.
(require 'array)
;;; p-lim is half the number of gratuitous edits for strings of given
;;; lengths.
;;; When passed #f CC, fp:compare returns edit-distance if successful;
;;; #f otherwise (p > p-lim). When passed CC, fp:compare returns #f.
(define (fp:compare fp fpoff CC A M B N p-lim)
(define Delta (- N M))
;;(if (negative? Delta) (slib:error 'fp:compare (fp:subarray A 0 M) '> (fp:subarray B 0 N)))
;;(set! compares (+ 1 compares)) ;(print 'fp:compare M N p-lim)
(let loop ((p 0))
(do ((k (- p) (+ 1 k)))
((>= k Delta))
(fp:run fp fpoff k A M B N CC p))
(do ((k (+ Delta p) (+ -1 k)))
((<= k Delta))
(fp:run fp fpoff k A M B N CC p))
(let ((fpval (fp:run fp fpoff Delta A M B N CC p)))
;; At this point, the cost to (fpval-Delta, fpval) is Delta + 2*p
(cond ((and (not CC) (<= N fpval)) (+ Delta (* 2 p)))
((and (not (negative? p-lim)) (>= p p-lim)) #f)
(else (loop (+ 1 p)))))))
;;; Traces runs of matches until they end; then set fp[k]=y.
;;; If CC is supplied, set each CC[y] = min(CC[y], cost) for run.
;;; Returns furthest y reached.
(define (fp:run fp fpoff k A M B N CC p)
(define cost (+ k p p))
(let snloop ((y (max (+ (array-ref fp (+ -1 k fpoff)) 1)
(array-ref fp (+ 1 k fpoff)))))
(define x (- y k))
(and CC (<= y N)
(let ((xcst (- M x)))
(cond ((negative? xcst))
(else (array-set! CC
(min (+ xcst cost) (array-ref CC y))
y)))))
;;(set! tick (+ 1 tick))
(cond ((and (< x M) (< y N)
(eqv? (array-ref A x) (array-ref B y)))
(snloop (+ 1 y)))
(else (array-set! fp y (+ fpoff k))
y))))
;;; Check that only 1 and -1 steps between adjacent CC entries.
;;(define (fp:step-check A M B N CC)
;; (do ((cdx (+ -1 N) (+ -1 cdx)))
;; ((negative? cdx))
;; (case (- (array-ref CC cdx) (array-ref CC (+ 1 cdx)))
;; ((1 -1) #t)
;; (else (cond ((> 30 (car (array-dimensions CC)))
;; (display "A: ") (print A)
;; (display "B: ") (print B)))
;; (slib:warn
;; "CC" (append (list (max 0 (+ -5 cdx)) ': (min (+ 1 N) (+ 5 cdx))
;; 'of)
;; (array-dimensions CC))
;; (fp:subarray CC (max 0 (+ -5 cdx)) (min (+ 1 N) (+ 5 cdx))))))))
;;; Correct cost jumps left by fp:compare [which visits only a few (x,y)].
;;(define (smooth-costs CC N)
;; (do ((cdx (+ -1 N) (+ -1 cdx))) ; smooth from end
;; ((negative? cdx))
;; (array-set! CC (min (array-ref CC cdx) (+ 1 (array-ref CC (+ 1 cdx))))
;; cdx))
;; (do ((cdx 1 (+ 1 cdx))) ; smooth toward end
;; ((> cdx N))
;; (array-set! CC (min (array-ref CC cdx) (+ 1 (array-ref CC (+ -1 cdx))))
;; cdx))
;; CC)
(define (diff:mid-split N RR CC cost)
;; RR is not longer than CC. So do for each element of RR.
(let loop ((cdx (+ 1 (quotient N 2)))
(rdx (quotient N 2)))
;;(if (negative? rdx) (slib:error 'negative? 'rdx))
(cond ((eqv? cost (+ (array-ref CC rdx) (array-ref RR (- N rdx)))) rdx)
((eqv? cost (+ (array-ref CC cdx) (array-ref RR (- N cdx)))) cdx)
(else (loop (+ 1 cdx) (+ -1 rdx))))))
;;; Return 0-based shared array.
;;; Reverse RA if END < START.
(define (fp:subarray RA start end)
(define n-len (abs (- end start)))
(if (< end start)
(make-shared-array RA (lambda (idx) (list (+ -1 (- start idx)))) n-len)
(make-shared-array RA (lambda (idx) (list (+ start idx))) n-len)))
(define (fp:init! fp fpoff fill mindx maxdx)
(define mlim (+ fpoff mindx))
(do ((idx (+ fpoff maxdx) (+ -1 idx)))
((< idx mlim))
(array-set! fp fill idx)))
;;; Split A[start-a..end-a] (shorter array) into smaller and smaller chunks.
;;; EDX is index into EDITS.
;;; EPO is insert/delete polarity (+1 or -1)
(define (diff:divide-and-conquer fp fpoff CCRR A start-a end-a B start-b end-b edits edx epo p-lim)
(define mid-a (quotient (+ start-a end-a) 2))
(define len-b (- end-b start-b))
(define len-a (- end-a start-a))
(let ((tcst (+ p-lim p-lim (- len-b len-a))))
(define CC (fp:subarray CCRR 0 (+ len-b 1)))
(define RR (fp:subarray CCRR (+ len-b 1) (* 2 (+ len-b 1))))
(define M2 (- end-a mid-a))
(define M1 (- mid-a start-a))
(fp:init! CC 0 (+ len-a len-b) 0 len-b)
(fp:init! fp fpoff -1 (- (+ 1 p-lim)) (+ 1 p-lim (- len-b M1)))
(fp:compare fp fpoff CC
(fp:subarray A start-a mid-a) M1
(fp:subarray B start-b end-b) len-b
(min p-lim len-a))
(fp:init! RR 0 (+ len-a len-b) 0 len-b)
(fp:init! fp fpoff -1 (- (+ 1 p-lim)) (+ 1 p-lim (- len-b M2)))
(fp:compare fp fpoff RR
(fp:subarray A end-a mid-a) M2
(fp:subarray B end-b start-b) len-b
(min p-lim len-a))
;;(smooth-costs CC len-b) (smooth-costs RR len-b)
(let ((b-splt (diff:mid-split len-b RR CC tcst)))
(define est-c (array-ref CC b-splt))
(define est-r (array-ref RR (- len-b b-splt)))
;;(display "A: ") (array-for-each display (fp:subarray A start-a mid-a)) (display " + ") (array-for-each display (fp:subarray A mid-a end-a)) (newline)
;;(display "B: ") (array-for-each display (fp:subarray B start-b end-b)) (newline)
;;(print 'cc cc) (print 'rr (fp:subarray RR (+ 1 len-b) 0))
;;(print (make-string (+ 12 (* 2 b-splt)) #\-) '^ (list b-splt))
(check-cost! 'CC est-c
(diff2et fp fpoff CCRR
A start-a mid-a
B start-b (+ start-b b-splt)
edits edx epo
(quotient (- est-c (- b-splt (- mid-a start-a)))
2)))
(check-cost! 'RR est-r
(diff2et fp fpoff CCRR
A mid-a end-a
B (+ start-b b-splt) end-b
edits (+ est-c edx) epo
(quotient (- est-r (- (- len-b b-splt)
(- end-a mid-a)))
2)))
(+ est-c est-r))))
;;; Trim; then diff sub-arrays; either one longer. Returns edit-length
(define (diff2et fp fpoff CCRR A start-a end-a B start-b end-b edits edx epo p-lim)
;; (if (< (- end-a start-a) p-lim) (slib:warn 'diff2et 'len-a (- end-a start-a) 'len-b (- end-b start-b) 'p-lim p-lim))
(do ((bdx (+ -1 end-b) (+ -1 bdx))
(adx (+ -1 end-a) (+ -1 adx)))
((not (and (<= start-b bdx)
(<= start-a adx)
(eqv? (array-ref A adx) (array-ref B bdx))))
(do ((bsx start-b (+ 1 bsx))
(asx start-a (+ 1 asx)))
((not (and (< bsx bdx)
(< asx adx)
(eqv? (array-ref A asx) (array-ref B bsx))))
;;(print 'trim-et (- asx start-a) '+ (- end-a adx))
(let ((delta (- (- bdx bsx) (- adx asx))))
(if (negative? delta)
(diff2ez fp fpoff CCRR B bsx (+ 1 bdx) A asx (+ 1 adx)
edits edx (- epo) (+ delta p-lim))
(diff2ez fp fpoff CCRR A asx (+ 1 adx) B bsx (+ 1 bdx)
edits edx epo p-lim))))
;;(set! tick (+ 1 tick))
))
;;(set! tick (+ 1 tick))
))
;;; Diff sub-arrays, A not longer than B. Returns edit-length
(define (diff2ez fp fpoff CCRR A start-a end-a B start-b end-b edits edx epo p-lim)
(define len-a (- end-a start-a))
(define len-b (- end-b start-b))
;;(if (> len-a len-b) (slib:error 'diff2ez len-a '> len-b))
(cond ((zero? p-lim) ; B inserts only
(if (= len-b len-a)
0 ; A = B; no edits
(let loop ((adx start-a)
(bdx start-b)
(edx edx))
(cond ((>= bdx end-b) (- len-b len-a))
((>= adx end-a)
(do ((idx bdx (+ 1 idx))
(edx edx (+ 1 edx)))
((>= idx end-b) (- len-b len-a))
(array-set! edits (* epo (+ 1 idx)) edx)))
((eqv? (array-ref A adx) (array-ref B bdx))
;;(set! tick (+ 1 tick))
(loop (+ 1 adx) (+ 1 bdx) edx))
(else (array-set! edits (* epo (+ 1 bdx)) edx)
;;(set! tick (+ 1 tick))
(loop adx (+ 1 bdx) (+ 1 edx)))))))
((<= len-a p-lim) ; delete all A; insert all B
;;(if (< len-a p-lim) (slib:error 'diff2ez len-a len-b 'p-lim p-lim))
(do ((idx start-a (+ 1 idx))
(jdx start-b (+ 1 jdx)))
((and (>= idx end-a) (>= jdx end-b)) (+ len-a len-b))
(cond ((< jdx end-b)
(array-set! edits (* epo (+ 1 jdx)) edx)
(set! edx (+ 1 edx))))
(cond ((< idx end-a)
(array-set! edits (* epo (- -1 idx)) edx)
(set! edx (+ 1 edx))))))
(else (diff:divide-and-conquer
fp fpoff CCRR A start-a end-a B start-b end-b
edits edx epo p-lim))))
(define (check-cost! name est cost)
(if (not (eqv? est cost))
(slib:warn name "cost check failed" est '!= cost)))
;;;; Routines interfacing API layer to algorithms.
(define (diff:invert-edits! edits)
(define cost (car (array-dimensions edits)))
(do ((idx (+ -1 cost) (+ -1 idx)))
((negative? idx))
(array-set! edits (- (array-ref edits idx)) idx)))
;;; len-a < len-b
(define (edits2lcs! lcs edits A)
(define cost (car (array-dimensions edits)))
(define len-a (car (array-dimensions A)))
(let loop ((edx 0)
(sdx 0)
(adx 0))
(let ((edit (if (< edx cost) (array-ref edits edx) 0)))
(cond ((>= adx len-a))
((positive? edit)
(loop (+ 1 edx) sdx adx))
((zero? edit)
(array-set! lcs (array-ref A adx) sdx)
(loop edx (+ 1 sdx) (+ 1 adx)))
((>= adx (- -1 edit))
(loop (+ 1 edx) sdx (+ 1 adx)))
(else
(array-set! lcs (array-ref A adx) sdx)
(loop edx (+ 1 sdx) (+ 1 adx)))))))
;; A not longer than B (M <= N)
(define (diff2edits! edits fp CCRR A B)
(define N (car (array-dimensions B)))
(define M (car (array-dimensions A)))
(define est (car (array-dimensions edits)))
(let ((p-lim (quotient (- est (- N M)) 2)))
(check-cost! 'diff2edits!
est
(diff2et fp (+ 1 p-lim)
CCRR A 0 M B 0 N edits 0 1 p-lim))))
;; A not longer than B (M <= N)
(define (diff2editlen fp A B p-lim)
(define N (car (array-dimensions B)))
(define M (car (array-dimensions A)))
(let ((maxdx (if (negative? p-lim) (+ 1 N) (+ 1 p-lim (- N M))))
(mindx (if (negative? p-lim) (- (+ 1 M)) (- (+ 1 p-lim)))))
(fp:init! fp (- mindx) -1 mindx maxdx)
(fp:compare fp (- mindx) #f A M B N p-lim)))
;;;; API
;;@args array1 array2 p-lim
;;@args array1 array2
;;@1 and @2 are one-dimensional arrays.
;;
;;The non-negative integer @3, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns a one-dimensional array of length @code{(quotient (- (+
;;len1 len2) (diff:edit-length @1 @2)) 2)} holding the longest sequence
;;common to both @var{array}s.
(define (diff:longest-common-subsequence A B . p-lim)
(define M (car (array-dimensions A)))
(define N (car (array-dimensions B)))
(set! p-lim (if (null? p-lim) -1 (car p-lim)))
(let ((edits (if (< N M)
(diff:edits B A p-lim)
(diff:edits A B p-lim))))
(and edits
(let* ((cost (car (array-dimensions edits)))
(lcs (make-array A (/ (- (+ N M) cost) 2))))
(edits2lcs! lcs edits (if (< N M) B A))
lcs))))
;;@args array1 array2 p-lim
;;@args array1 array2
;;@1 and @2 are one-dimensional arrays.
;;
;;The non-negative integer @3, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns a vector of length @code{(diff:edit-length @1 @2)} composed
;;of a shortest sequence of edits transformaing @1 to @2.
;;
;;Each edit is an integer:
;;@table @asis
;;@item @var{k} > 0
;;Inserts @code{(array-ref @1 (+ -1 @var{j}))} into the sequence.
;;@item @var{k} < 0
;;Deletes @code{(array-ref @2 (- -1 @var{k}))} from the sequence.
;;@end table
(define (diff:edits A B . p-lim)
(define M (car (array-dimensions A)))
(define N (car (array-dimensions B)))
(define est (diff:edit-length A B (if (null? p-lim) -1 (car p-lim))))
(and est
(let ((CCRR (make-array (A:fixZ32b) (* 2 (+ (max M N) 1))))
(edits (make-array (A:fixZ32b) est)))
(define fp (make-array (A:fixZ32b)
(+ (max (- N (quotient M 2))
(- M (quotient N 2)))
(- est (abs (- N M))) ; 2 * p-lim
3)))
(cond ((< N M)
(diff2edits! edits fp CCRR B A)
(diff:invert-edits! edits))
(else
(diff2edits! edits fp CCRR A B)))
;;(diff:order-edits! edits est)
edits)))
;;@args array1 array2 p-lim
;;@args array1 array2
;;@1 and @2 are one-dimensional arrays.
;;
;;The non-negative integer @3, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns the length of the shortest sequence of edits transformaing
;;@1 to @2.
(define (diff:edit-length A B . p-lim)
(define M (car (array-dimensions A)))
(define N (car (array-dimensions B)))
(set! p-lim (if (null? p-lim) -1 (car p-lim)))
(let ((fp (make-array (A:fixZ32b) (if (negative? p-lim)
(+ 3 M N)
(+ 3 (abs (- N M)) p-lim p-lim)))))
(if (< N M)
(diff2editlen fp B A p-lim)
(diff2editlen fp A B p-lim))))
;;@example
;;(diff:longest-common-subsequence "fghiejcklm" "fgehijkpqrlm")
;;@result{} "fghijklm"
;;
;;(diff:edit-length "fghiejcklm" "fgehijkpqrlm")
;;@result{} 6
;;
;;(diff:edits "fghiejcklm" "fgehijkpqrlm")
;;@result{} #A:fixZ32b(3 -5 -7 8 9 10)
;; ; e c h p q r
;;@end example
;;(trace-all "/home/jaffer/slib/differ.scm")(set! *qp-width* 999)(untrace fp:run) ; fp:subarray
|