1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
;;;"root.scm" Newton's and Laguerre's methods for finding roots.
;Copyright (C) 1996, 1997 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(require 'logical)
;;;; Newton's Method explained in:
;;; D. E. Knuth, "The Art of Computer Programming", Vol 2 /
;;; Seminumerical Algorithms, Reading Massachusetts, Addison-Wesley
;;; Publishing Company, 2nd Edition, p. 510
;@
(define (newton:find-integer-root f df/dx x_0)
(let loop ((x x_0) (fx (f x_0)))
(cond
((zero? fx) x)
(else
(let ((df (df/dx x)))
(cond
((zero? df) #f) ; stuck at local min/max
(else
(let* ((delta (quotient (+ fx (quotient df 2)) df))
(next-x (cond ((not (zero? delta)) (- x delta))
((positive? fx) (- x 1))
(else (- x -1))))
(next-fx (f next-x)))
(cond ((>= (abs next-fx) (abs fx)) x)
(else (loop next-x next-fx)))))))))))
;;(define (integer-sqrt y)
;; (newton:find-integer-root (lambda (x) (- (* x x) y))
;; (lambda (x) (* 2 x))
;; (ash 1 (quotient (integer-length y) 2))))
;@
(define (newton:find-root f df/dx x_0 prec)
(if (and (negative? prec) (integer? prec))
(let loop ((x x_0) (fx (f x_0)) (count prec))
(cond ((zero? count) x)
(else (let ((df (df/dx x)))
(cond ((zero? df) #f) ; stuck at local min/max
(else (let* ((next-x (- x (/ fx df)))
(next-fx (f next-x)))
(cond ((= next-x x) x)
((> (abs next-fx) (abs fx)) #f)
(else (loop next-x next-fx
(+ 1 count)))))))))))
(let loop ((x x_0) (fx (f x_0)))
(cond ((< (abs fx) prec) x)
(else (let ((df (df/dx x)))
(cond ((zero? df) #f) ; stuck at local min/max
(else (let* ((next-x (- x (/ fx df)))
(next-fx (f next-x)))
(cond ((= next-x x) x)
((> (abs next-fx) (abs fx)) #f)
(else (loop next-x next-fx))))))))))))
;;; H. J. Orchard, "The Laguerre Method for Finding the Zeros of
;;; Polynomials", IEEE Transactions on Circuits and Systems, Vol. 36,
;;; No. 11, November 1989, pp 1377-1381.
;@
(define (laguerre:find-root f df/dz ddf/dz^2 z_0 prec)
(if (and (negative? prec) (integer? prec))
(let loop ((z z_0) (fz (f z_0)) (count prec))
(cond ((zero? count) z)
(else
(let* ((df (df/dz z))
(ddf (ddf/dz^2 z))
(disc (sqrt (- (* df df) (* fz ddf)))))
(if (zero? disc)
#f
(let* ((next-z
(- z (/ fz (if (negative? (+ (* (real-part df)
(real-part disc))
(* (imag-part df)
(imag-part disc))))
(- disc) disc))))
(next-fz (f next-z)))
(cond ((>= (magnitude next-fz) (magnitude fz)) z)
(else (loop next-z next-fz (+ 1 count))))))))))
(let loop ((z z_0) (fz (f z_0)) (delta-z #f))
(cond ((< (magnitude fz) prec) z)
(else
(let* ((df (df/dz z))
(ddf (ddf/dz^2 z))
(disc (sqrt (- (* df df) (* fz ddf)))))
;;(print 'disc disc)
(if (zero? disc)
#f
(let* ((next-z
(- z (/ fz (if (negative? (+ (* (real-part df)
(real-part disc))
(* (imag-part df)
(imag-part disc))))
(- disc) disc))))
(next-delta-z (magnitude (- next-z z))))
;;(print 'next-z next-z )
;;(print '(f next-z) (f next-z))
;;(print 'delta-z delta-z 'next-delta-z next-delta-z)
(cond ((zero? next-delta-z) z)
((and delta-z (>= next-delta-z delta-z)) z)
(else
(loop next-z (f next-z) next-delta-z)))))))))))
;@
(define (laguerre:find-polynomial-root deg f df/dz ddf/dz^2 z_0 prec)
(if (and (negative? prec) (integer? prec))
(let loop ((z z_0) (fz (f z_0)) (count prec))
(cond ((zero? count) z)
(else
(let* ((df (df/dz z))
(ddf (ddf/dz^2 z))
(tmp (* (+ deg -1) df))
(sqrt-H (sqrt (- (* tmp tmp) (* deg (+ deg -1) fz ddf))))
(df+sqrt-H (+ df sqrt-H))
(df-sqrt-H (- df sqrt-H))
(next-z
(- z (/ (* deg fz)
(if (>= (magnitude df+sqrt-H)
(magnitude df-sqrt-H))
df+sqrt-H
df-sqrt-H)))))
(loop next-z (f next-z) (+ 1 count))))))
(let loop ((z z_0) (fz (f z_0)))
(cond ((< (magnitude fz) prec) z)
(else
(let* ((df (df/dz z))
(ddf (ddf/dz^2 z))
(tmp (* (+ deg -1) df))
(sqrt-H (sqrt (- (* tmp tmp) (* deg (+ deg -1) fz ddf))))
(df+sqrt-H (+ df sqrt-H))
(df-sqrt-H (- df sqrt-H))
(next-z
(- z (/ (* deg fz)
(if (>= (magnitude df+sqrt-H)
(magnitude df-sqrt-H))
df+sqrt-H
df-sqrt-H)))))
(loop next-z (f next-z))))))))
(define (secant:find-root-1 f x0 x1 prec must-bracket?)
(letrec ((stop?
(cond ((procedure? prec) prec)
((and (integer? prec) (negative? prec))
(lambda (x0 f0 x1 f1 count)
(>= count (- prec))))
(else
(lambda (x0 f0 x1 f1 count)
(and (< (abs f0) prec)
(< (abs f1) prec))))))
(bracket-iter
(lambda (xlo flo glo xhi fhi ghi count)
(define (step xnew fnew)
(cond ((or (= xnew xlo)
(= xnew xhi))
(let ((xmid (+ xlo (* 1/2 (- xhi xlo)))))
(if (= xnew xmid)
xmid
(step xmid (f xmid)))))
((positive? fnew)
(bracket-iter xlo flo (if glo (* 0.5 glo) 1)
xnew fnew #f
(+ count 1)))
(else
(bracket-iter xnew fnew #f
xhi fhi (if ghi (* 0.5 ghi) 1)
(+ count 1)))))
(if (stop? xlo flo xhi fhi count)
(if (> (abs flo) (abs fhi)) xhi xlo)
(let* ((fflo (if glo (* glo flo) flo))
(ffhi (if ghi (* ghi fhi) fhi))
(del (- (/ fflo (- ffhi fflo))))
(xnew (+ xlo (* del (- xhi xlo))))
(fnew (f xnew)))
(step xnew fnew))))))
(let ((f0 (f x0))
(f1 (f x1)))
(cond ((<= f0 0 f1)
(bracket-iter x0 f0 #f x1 f1 #f 0))
((<= f1 0 f0)
(bracket-iter x1 f1 #f x0 f0 #f 0))
(must-bracket? #f)
(else
(let secant-iter ((x0 x0)
(f0 f0)
(x1 x1)
(f1 f1)
(count 0))
(cond ((stop? x0 f0 x1 f1 count)
(if (> (abs f0) (abs f1)) x1 x0))
((<= f0 0 f1)
(bracket-iter x0 f0 #f x1 f1 #f count))
((>= f0 0 f1)
(bracket-iter x1 f1 #f x0 f0 #f count))
((= f0 f1) #f)
(else
(let ((xnew (+ x0 (* (- (/ f0 (- f1 f0))) (- x1 x0)))))
(secant-iter x1 f1 xnew (f xnew) (+ count 1)))))))))))
;@
(define (secant:find-root f x0 x1 prec)
(secant:find-root-1 f x0 x1 prec #f))
(define (secant:find-bracketed-root f x0 x1 prec)
(secant:find-root-1 f x0 x1 prec #t))
|