1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
;;; "srfi-1.scm" SRFI-1 list-processing library -*-scheme-*-
;; Copyright 2001 Aubrey Jaffer
;; Copyright 2003 Sven Hartrumpf
;; Copyright 2003-2004 Lars Buitinck
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
; Some pieces from:
;;;
;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
;;; this code as long as you do not remove this copyright notice or
;;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;;; -Olin
;;@code{(require 'srfi-1)}
;;@ftindex srfi-1
;;
;;@noindent
;;Implements the @dfn{SRFI-1} @dfn{list-processing library} as described
;;at @url{http://srfi.schemers.org/srfi-1/srfi-1.html}
(require 'common-list-functions)
(require 'rev2-procedures) ;for append!
(require 'multiarg-apply)
(require 'values)
;;@subheading Constructors
;;@body
;; @code{(define (xcons d a) (cons a d))}.
(define (xcons d a) (cons a d))
;;@body
;; Returns a list of length @1. Element @var{i} is
;;@code{(@2 @var{i})} for 0 <= @var{i} < @1.
(define (list-tabulate len proc)
(do ((i (- len 1) (- i 1))
(ans '() (cons (proc i) ans)))
((< i 0) ans)))
;;@args obj1 obj2
(define cons* list*)
;;@args flist
(define list-copy copy-list)
;;@args count start step
;;@args count start
;;@args count
;;Returns a list of @1 numbers: (@2, @2+@3, @dots{}, @2+(@1-1)*@3).
(define (iota count . args)
(let ((start (if (null? args) 0 (car args)))
(step (if (or (null? args) (null? (cdr args))) 1 (cadr args))))
(list-tabulate count (lambda (idx) (+ start (* step idx))))))
;;@body
;;Returns a circular list of @1, @2, @dots{}.
(define (circular-list obj1 . obj2)
(let ((ans (cons obj1 obj2)))
(set-cdr! (last-pair ans) ans)
ans))
;;@subheading Predicates
;;@args obj
(define proper-list? list?)
;;@body
(define (circular-list? x)
(let lp ((x x) (lag x))
(and (pair? x)
(let ((x (cdr x)))
(and (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(or (eq? x lag) (lp x lag))))))))
;;@body
(define (dotted-list? obj)
(not (or (proper-list? obj) (circular-list? obj))))
;;@args obj
(define null-list? null?)
;;@body
(define (not-pair? obj) (not (pair? obj)))
;;@body
(define (list= =pred . lists)
(or (null? lists) ; special case
(let lp1 ((list-a (car lists)) (others (cdr lists)))
(or (null? others)
(let ((list-b (car others))
(others (cdr others)))
(if (eq? list-a list-b) ; EQ? => LIST=
(lp1 list-b others)
(let lp2 ((list-a list-a) (list-b list-b))
(if (null-list? list-a)
(and (null-list? list-b)
(lp1 list-b others))
(and (not (null-list? list-b))
(=pred (car list-a) (car list-b))
(lp2 (cdr list-a) (cdr list-b)))))))))))
;;@subheading Selectors
;;@args pair
(define first car)
;;@args pair
(define second cadr)
;;@args pair
(define third caddr)
;;@args pair
(define fourth cadddr)
;;@body
(define (fifth pair) (car (cddddr pair)))
(define (sixth pair) (cadr (cddddr pair)))
(define (seventh pair) (caddr (cddddr pair)))
(define (eighth pair) (cadddr (cddddr pair)))
(define (ninth pair) (car (cddddr (cddddr pair))))
(define (tenth pair) (cadr (cddddr (cddddr pair))))
;;@body
(define (car+cdr pair) (values (car pair) (cdr pair)))
;;@args lst k
(define (drop lst k) (nthcdr k lst))
(define (take lst k) (butnthcdr k lst))
(define (take! lst k)
(if (or (null? lst) (<= k 0))
'()
(begin (set-cdr! (drop (- k 1) lst) '()) lst)))
;;@args lst k
(define take-right last)
;;@args lst k
(define drop-right butlast)
;;@args lst k
(define drop-right! drop-right)
;;@body
(define (split-at lst k)
(let loop ((l '()) (r lst) (k k))
(if (or (null? r) (= k 0))
(values (reverse! l) r)
(loop (cons (car r) l) (cdr r) (- k 1)))))
(define (split-at! lst k)
(if (= k 0)
(values '() lst)
(let* ((half (drop lst (- k 1)))
(r (cdr half)))
(set-cdr! half '())
(values lst r))))
;;@body
(define (last lst . k)
(if (null? k)
(car (last-pair lst))
(apply take-right lst k)))
;;@subheading Miscellaneous
;;@body
(define (length+ clist) (and (list? clist) (length clist)))
;;Append and append! are provided by R4RS and rev2-procedures.
;;@body
(define (concatenate lists) (reduce-right append '() lists))
(define (concatenate! lists) (reduce-right append! '() lists))
;;Reverse is provided by R4RS.
;;@args lst
(define reverse! nreverse)
;;@body
(define (append-reverse rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(lp (cdr rev-head) (cons (car rev-head) tail)))))
(define (append-reverse! rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(let ((next-rev (cdr rev-head)))
(set-cdr! rev-head tail)
(lp next-rev rev-head)))))
;;@body
(define (zip list1 . list2) (apply map list list1 list2))
;;@body
(define (unzip1 lst) (map car lst))
(define (unzip2 lst) (values (map car lst) (map cadr lst)))
(define (unzip3 lst) (values (map car lst) (map cadr lst) (map caddr lst)))
(define (unzip4 lst) (values (map car lst) (map cadr lst) (map caddr lst)
(map cadddr lst)))
(define (unzip5 lst) (values (map car lst) (map cadr lst) (map caddr lst)
(map cadddr lst) (map fifth lst)))
;;@body
(define (count pred list1 . list2)
(cond ((null? list2)
(let mapf ((l list1) (count 0))
(if (null? l)
count (mapf (cdr l)
(+ count (if (pred (car l)) 1 0))))))
(else (let mapf ((l list1) (rest list2) (count 0))
(if (null? l)
count
(mapf (cdr l)
(map cdr rest)
(+ count (if (apply pred (car l) (map car rest))
1 0))))))))
;;@subheading Fold and Unfold
;;@args kons knil clist1 clist2 ...
(define (fold f z l1 . l)
(set! l (cons l1 l))
(if (any null? l)
z
(apply fold (cons* f (apply f (append! (map car l) (list z)))
(map cdr l)))))
;;@args kons knil clist1 clist2 ...
(define (fold-right f z l1 . l)
(set! l (cons l1 l))
(if (any null? l)
z
(apply f (append! (map car l)
(list (apply fold-right (cons* f z (map cdr l))))))))
;;@args kons knil clist1 clist2 ...
(define (pair-fold f z l) ;XXX should be multi-arg
(if (null? l)
z
(let ((tail (cdr l)))
(pair-fold f (f l z) tail))))
;;@args kons knil clist1 clist2 ...
(define (pair-fold-right f z l) ;XXX should be multi-arg
(if (null? l)
z
(f l (pair-fold-right f z (cdr l)))))
;;@body
(define reduce
(let ((comlist-reduce reduce))
(lambda args
(apply (if (= 2 (length args))
comlist-reduce
(lambda (f ridentity list)
(if (null? list)
ridentity
(fold f (car list) (cdr list)))))
args))))
(define (reduce-right f ridentity list)
(if (null? list)
ridentity
(let red ((l (cdr list)) (ridentity (car list)))
(if (null? l)
ridentity
(f ridentity (red (cdr l) (car l)))))))
;;; We stop when CLIST1 runs out, not when any list runs out.
;;@args f clist1 clist2 ...
(define (map! f clist1 . lists)
(if (pair? lists)
(let lp ((clist1 clist1) (lists lists))
(if (not (null-list? clist1))
(call-with-values ; expanded a receive call
(lambda () (%cars+cdrs/no-test lists))
(lambda (heads tails)
(set-car! clist1 (apply f (car clist1) heads))
(lp (cdr clist1) tails)))))
;; Fast path.
(pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) clist1))
clist1)
;;@args f clist1 clist2 ...
(define (pair-for-each proc clist1 . lists)
(if (pair? lists)
(let lp ((lists (cons clist1 lists)))
(let ((tails (%cdrs lists)))
(if (pair? tails)
(begin (apply proc lists)
(lp tails)))))
;; Fast path.
(let lp ((lis clist1))
(if (not (null-list? lis))
(let ((tail (cdr lis))) ; Grab the cdr now,
(proc lis) ; in case PROC SET-CDR!s LIS.
(lp tail))))))
(define (filter-map f l1 . l)
(let loop ((l (cons l1 l)) (r '()))
(if (any null? l)
(reverse! r)
(let ((x (apply f (map car l))))
(loop (map! cdr l) (if x (cons x r) r))))))
;;@subheading Filtering and Partitioning
;;@args pred list
(define (filter pred lis) ; Sleazing with EQ? makes this one faster.
(let recur ((lis lis))
(if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
(let ((head (car lis))
(tail (cdr lis)))
(if (pred head)
(let ((new-tail (recur tail))) ; Replicate the RECUR call so
(if (eq? tail new-tail) lis
(cons head new-tail)))
(recur tail)))))) ; this one can be a tail call.
;;@args pred list
(define (filter! p? l)
(call-with-values (lambda () (partition! p? l))
(lambda (x y) x)))
;;@args pred list
(define (partition pred lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle dotted lists.
(let ((elt (car lis))
(tail (cdr lis)))
(call-with-values ; expanded a receive call
(lambda () (recur tail))
(lambda (in out)
(if (pred elt)
(values (if (pair? out) (cons elt in) lis) out)
(values in (if (pair? in) (cons elt out) lis)))))))))
;;@args pred list
(define remove
(let ((comlist-remove remove))
(lambda (pred l)
(if (procedure? pred)
(filter (lambda (x) (not (pred x))) l)
(comlist-remove pred l))))) ; 'remove' has incompatible semantics in comlist of SLIB!
;;@args pred list
(define (partition! p? l)
(if (null? l)
(values l l)
(let ((p-ptr (cons '*unused* l)) (not-ptr (cons '*unused* l)))
(let loop ((l l) (p-prev p-ptr) (not-prev not-ptr))
(cond ((null? l) (values (cdr p-ptr) (cdr not-ptr)))
((p? (car l)) (begin (set-cdr! not-prev (cdr l))
(loop (cdr l) l not-prev)))
(else (begin (set-cdr! p-prev (cdr l))
(loop (cdr l) p-prev l))))))))
;;@args pred list
(define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
;;@subheading Searching
;;@args pred clist
(define find find-if)
;;@args pred clist
(define find-tail member-if)
;;@args pred list
(define (span pred lis)
(let recur ((lis lis))
(if (null-list? lis) (values '() '())
(let ((x (car lis)))
(if (pred x)
(call-with-values ; eliminated a receive call
(lambda () (recur (cdr lis)))
(lambda (prefix suffix)
(values (cons x prefix) suffix)))
(values '() lis))))))
;;@args pred list
(define (span! p? lst)
(let loop ((l lst) (prev (cons '*unused* lst)))
(cond ((null? l) (values lst '()))
((p? (car l)) (loop (cdr l) l))
(else (begin (set-cdr! prev '()) (values lst l))))))
;;@args pred list
(define (break p? l) (span (lambda (x) (not (p? x))) l))
;;@args pred list
(define (break! p? l) (span! (lambda (x) (not (p? x))) l))
;;@args pred clist1 clist2 ...
(define (any pred lis1 . lists)
(if (pair? lists)
;; N-ary case
(call-with-values ; expanded a receive call
(lambda () (%cars+cdrs (cons lis1 lists)))
(lambda (heads tails)
(and (pair? heads)
(let lp ((heads heads) (tails tails))
(call-with-values ; expanded a receive call
(lambda () (%cars+cdrs tails))
(lambda (next-heads next-tails)
(if (pair? next-heads)
(or (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))))) ; Last PRED app is tail call.
;; Fast path
(and (not (null-list? lis1))
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(or (pred head) (lp (car tail) (cdr tail))))))))
;;@args pred clist1 clist2 ...
(define (list-index pred lis1 . lists)
(if (pair? lists)
;; N-ary case
(let lp ((lists (cons lis1 lists)) (n 0))
(call-with-values ; expanded a receive call
(lambda () (%cars+cdrs lists))
(lambda (heads tails)
(and (pair? heads)
(if (apply pred heads) n
(lp tails (+ n 1)))))))
;; Fast path
(let lp ((lis lis1) (n 0))
(and (not (null-list? lis))
(if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
;;@args obj list =
;;@args obj list
(define member
(let ((old-member member))
(lambda (obj list . pred)
(if (null? pred)
(old-member obj list)
(let ((pred (car pred)))
(find-tail (lambda (ob) (pred ob obj)) list))))))
;;@subheading Deleting
;;@args x list =
;;@args x list
(define (delete-duplicates l =?)
(let loop ((l l) (r '()))
(if (null? l)
(reverse! r)
(loop (cdr l)
(if (member (car l) r =?) r (cons (car l) r))))))
;;@args x list =
;;@args x list
(define delete-duplicates! delete-duplicates)
;;@subheading Association lists
;;@args obj alist pred
;;@args obj alist
(define assoc
(let ((old-assoc assoc))
(lambda (obj alist . pred)
(if (null? pred)
(old-assoc obj alist)
(let ((pred (car pred)))
(find (lambda (pair) (pred obj (car pair))) alist))))))
;; XXX maybe define the following in alist and require that module here?
;;@args key datum alist
(define (alist-cons k d l) (cons (cons k d) l))
;;@args alist
(define (alist-copy l)
(map (lambda (x) (cons (car x) (cdr x))) l))
;;@args key alist =
;;@args key alist
(define (alist-delete k l . opt)
(let ((key=? (if (pair? opt) (car opt) equal?)))
(remove (lambda (x) (key=? (car x) k)) l)))
;;@args key alist =
;;@args key alist
(define (alist-delete! k l . opt)
(let ((key=? (if (pair? opt) (car opt) equal?)))
(remove! (lambda (x) (key=? (car x) k)) l)))
;;@subheading Set operations
;;@args = list1 @dots{}
;;Determine if a transitive subset relation exists between the lists @2
;;@dots{}, using @1 to determine equality of list members.
(define (lset<= =? . l)
(or (null? l)
(letrec ((subset? (lambda (l1 l2)
(or (eq? l1 l2)
(every (lambda (x) (member x l2 =?)) l1)))))
(let loop ((l1 (car l)) (l (cdr l)))
(or (null? l)
(let ((l2 (car l)))
(and (subset? l1 l2)
(loop l2 (cdr l)))))))))
;;@args = list1 list2 @dots{}
(define (lset= =? . l)
(or (null? l)
(let loop ((l1 (car l)) (l (cdr l)))
(or (null? l)
(let ((l2 (car l)))
(and (lset<= =? l1 l2)
(lset<= =? l2 l1)
(loop (if (< (length l1) (length l2)) l1 l2)
(cdr l))))))))
;;@args list elt1 @dots{}
(define (lset-adjoin =? l1 . l2)
(let ((adjoin (lambda (x l)
(if (member x l =?) l (cons x l)))))
(fold adjoin l1 l2)))
;;@args = list1 @dots{}
(define (lset-union =? . l)
(let ((union (lambda (l1 l2)
(if (or (null? l2) (eq? l1 l2))
l1
(apply lset-adjoin (cons* =? l2 l1))))))
(fold union '() l)))
;;@args = list1 list2 @dots{}
(define (lset-intersection =? l1 . l)
(let loop ((l l) (r l1))
(cond ((null? l) r)
((null? (car l)) '())
(else (loop (cdr l)
(filter (lambda (x) (member x (car l) =?)) r))))))
;;@args = list1 list2 ...
(define (lset-difference =? l1 . l)
(call-with-current-continuation
(lambda (return)
(let ((diff (lambda (l1 l2)
(cond ((null? l2) (return '()))
((null? l1) l2)
(else (remove (lambda (x) (member x l1 =?))
l2))))))
(fold diff l1 l)))))
;; Alternatively definition of lset-difference, for large numbers of sets.
;(define (lset-difference =? l1 . l)
; (set! l (cdr (delete-duplicates! (cons l1 l) eq?)))
; (case (length l)
; ((0) l1)
; ((1) (remove (lambda (x) (member x l1 =?)) (car l)))
; (else (apply (lset-difference! (cons* =? (list-copy l1) l))))))
;;@args = list1 ...
(define (lset-xor =? . l)
(let ((xor (lambda (l1 l2) (lset-union =? (lset-difference =? l1 l2)
(lset-difference =? l2 l1)))))
(fold xor '() l)))
;;@args = list1 list2 ...
(define (lset-diff+intersection =? l1 . l)
(let ((u (apply lset-union (cons =? l))))
(values (lset-difference =? l1 u)
(lset-intersection =? l1 u))))
;;@noindent
;;These are linear-update variants. They are allowed, but not
;;required, to use the cons cells in their first list parameter to
;;construct their answer. @code{lset-union!} is permitted to recycle
;;cons cells from any of its list arguments.
;;@args = list1 list2 ...
(define lset-intersection! lset-intersection)
;;@args = list1 list2 ...
(define (lset-difference! =? l1 . l)
(let loop ((l l) (d l1))
(if (or (null? l) (null? d))
d
(loop (cdr l)
(let ((l1 (car l)))
(if (null? l1) d (remove! (lambda (x) (member x l1 =?)) d)))))))
;;@args = list1 ...
(define (lset-union! =? . l)
(let loop ((l l) (u '()))
(if (null? l)
u
(loop (cdr l)
(cond ((null? (car l)) u)
((eq? (car l) u) u)
((null? u) (car l))
(else (append-reverse! (lset-difference! =? (car l) u)
u)))))))
;;@args = list1 ...
(define lset-xor! lset-xor)
;;@args = list1 list2 ...
(define lset-diff+intersection! lset-diff+intersection)
;;;; helper functions from the reference implementation:
;;; LISTS is a (not very long) non-empty list of lists.
;;; Return two lists: the cars & the cdrs of the lists.
;;; However, if any of the lists is empty, just abort and return [() ()].
(define (%cars+cdrs lists)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(call-with-values ; expanded a receive call
(lambda () (car+cdr lists))
(lambda (list other-lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(call-with-values ; expanded a receive call
(lambda () (car+cdr list))
(lambda (a d)
(call-with-values ; expanded a receive call
(lambda () (recur other-lists))
(lambda (cars cdrs)
(values (cons a cars) (cons d cdrs)))))))))
(values '() '()))))))
;;; Like %CARS+CDRS, but blow up if any list is empty.
(define (%cars+cdrs/no-test lists)
(let recur ((lists lists))
(if (pair? lists)
(call-with-values ; expanded a receive call
(lambda () (car+cdr lists))
(lambda (list other-lists)
(call-with-values ; expanded a receive call
(lambda () (car+cdr list))
(lambda (a d)
(call-with-values ; expanded a receive call
(lambda () (recur other-lists))
(lambda (cars cdrs)
(values (cons a cars) (cons d cdrs))))))))
(values '() '()))))
(define (%cdrs lists)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(let ((lis (car lists)))
(if (null-list? lis) (abort '())
(cons (cdr lis) (recur (cdr lists)))))
'())))))
|