1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
;;; "limit.scm" Scheme Implementation of one-side limit algorithm.
;Copyright 2005 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;@code{(require 'limit)}
(require-if 'compiling 'root)
(define (finite? val)
(and (not (= val (+ 1 val val)))
(= val val)))
(define (inv-root f1 f2 f3 prec)
(define f1^2 (* f1 f1))
(define f2^2 (* f2 f2))
(define f3^2 (expt f3 2))
(require 'root) ; SLIB
(newton:find-root (lambda (f0)
(+ (- (* (expt f0 2) f1))
(* f0 f1^2)
(* (- (* 2 (expt f0 2)) (* 3 f1^2)) f2)
(* (+ (- (* 2 f0)) (* 3 f1)) f2^2)
(* (- (+ (- (expt f0 2)) (* 2 f1^2)) f2^2)
f3)
(* (+ (- f0 (* 2 f1)) f2) f3^2)))
(lambda (f0)
(+ (- (+ (* -2 f0 f1) f1^2 (* 4 f0 f2))
(* 2 f2^2)
(* 2 f0 f3))
f3^2))
f1
prec))
(define (invintp f1 f2 f3)
(define f1^2 (* f1 f1))
(define f2^2 (* f2 f2))
(define f3^2 (expt f3 2))
(let ((c (+ (* -3 f1^2 f2)
(* 3 f1 f2^2)
(* (- (* 2 f1^2) f2^2) f3)
(* (- f2 (* 2 f1)) f3^2)))
(b (+ (- f1^2 (* 2 f2^2)) f3^2))
(a (- (* 2 f2) f1 f3)))
(define disc (- (* b b) (* 4 a c)))
;;(printf "discriminant: %g\n" disc)
(if (negative? (real-part disc))
(/ b -2 a)
(let ((sqrt-disc (sqrt disc)))
(define root+ (/ (- sqrt-disc b) 2 a))
(define root- (/ (+ sqrt-disc b) -2 a))
(if (< (magnitude (- root+ f1)) (magnitude (- root- f1)))
root+
root-)))))
(define (extrapolate-0 fs)
(define n (length fs))
(define (choose n k)
(do ((kdx 1 (+ 1 kdx))
(prd 1 (/ (* (- n kdx -1) prd) kdx)))
((> kdx k) prd)))
(do ((k 1 (+ 1 k))
(lst fs (cdr lst))
(L 0 (+ (* -1 (expt -1 k) (choose n k) (car lst)) L)))
((null? lst) L)))
(define (sequence->limit proc sequence)
(define lval (proc (car sequence)))
(if (finite? lval)
(let ((val (proc (cadr sequence))))
(define h_n*nsamps (* (length sequence) (magnitude (- val lval))))
(if (finite? val)
(let loop ((sequence (cddr sequence))
(fxs (list val lval))
(trend #f)
(ldelta (- val lval))
(jdx (+ -1 (length sequence))))
(cond ((null? sequence)
(case trend
((diverging) (and (real? val) (/ ldelta 0.0)))
((bounded) (invintp val lval (caddr fxs)))
(else (cond ((zero? ldelta) val)
((not (real? val)) #f)
(else (extrapolate-0 fxs))))))
(else
(set! lval val)
(set! val (proc (car sequence)))
;;(printf "f(%12g)=%12g; delta=%12g hyp=%12g j=%3d %s\n" (car sequence) val (- val lval) (/ h_n*nsamps jdx) jdx (or trend ""))
(if (finite? val)
(let ((delta (- val lval)))
(define h_j (/ h_n*nsamps jdx))
(cond ((case trend
((converging) (<= (magnitude delta) h_j))
((bounded) (<= (magnitude ldelta) (magnitude delta)))
((diverging) (>= (magnitude delta) h_j))
(else #f))
(loop (cdr sequence) (cons val fxs) trend delta (+ -1 jdx)))
(trend #f)
(else
(loop (cdr sequence) (cons val fxs)
(cond ((> (magnitude delta) h_j) 'diverging)
((< (magnitude ldelta) (magnitude delta)) 'bounded)
(else 'converging))
delta (+ -1 jdx)))))
(and (eq? trend 'diverging) val)))))
(and (real? val) val)))
(and (real? lval) lval)))
(define (limit proc x1 x2 . k)
(set! k (if (null? k) 8 (car k)))
(cond ((not (finite? x2)) (slib:error 'limit 'infinite 'x2 x2))
((not (finite? x1))
(or (positive? (* x1 x2)) (slib:error 'limit 'start 'mismatch x1 x2))
(limit (lambda (x) (proc (/ x))) 0.0 (/ x2) k))
((= x1 (+ x1 x2)) (slib:error 'limit 'null 'range x1 (+ x1 x2)))
(else (let ((dec (/ x2 k)))
(do ((x (+ x1 x2 0.0) (- x dec))
(cnt (+ -1 k) (+ -1 cnt))
(lst '() (cons x lst)))
((negative? cnt)
(sequence->limit proc (reverse lst))))))))
|