File: test_emboss.cpp

package info (click to toggle)
slic3r-prusa 2.9.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 196,524 kB
  • sloc: cpp: 534,736; ansic: 71,269; yacc: 1,311; makefile: 256; lex: 241; sh: 113
file content (1363 lines) | stat: -rw-r--r-- 56,617 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
#include <catch2/catch_test_macros.hpp>

#include <libslic3r/Emboss.hpp>
#include <libslic3r/SVG.hpp> // only debug visualization

#include <optional>
#include <libslic3r/AABBTreeIndirect.hpp>
#include <libslic3r/Utils.hpp> // for next_highest_power_of_2()
#include <libslic3r/IntersectionPoints.hpp>
using namespace Slic3r;

template <typename T>
auto access_pmap(std::optional<T> opt) -> T {
    return opt.value();
}

template <typename Pair>
auto access_pmap(Pair pair) { return pair.first; }

namespace Private{

// calculate multiplication of ray dir to intersect - inspired by
// segment_segment_intersection when ray dir is normalized retur distance from
// ray point to intersection No value mean no intersection
std::optional<double> ray_segment_intersection(const Vec2d &r_point,
                                               const Vec2d &r_dir,
                                               const Vec2d &s0,
                                               const Vec2d &s1)
{
    auto denominate = [](const Vec2d &v0, const Vec2d &v1) -> double {
        return v0.x() * v1.y() - v1.x() * v0.y();
    };

    Vec2d  segment_dir = s1 - s0;
    double d           = denominate(segment_dir, r_dir);
    if (std::abs(d) < std::numeric_limits<double>::epsilon())
        // Line and ray are collinear.
        return {};

    Vec2d  s12         = s0 - r_point;
    double s_number    = denominate(r_dir, s12);
    bool   change_sign = false;
    if (d < 0.) {
        change_sign = true;
        d           = -d;
        s_number    = -s_number;
    }

    if (s_number < 0. || s_number > d)
        // Intersection outside of segment.
        return {};

    double r_number = denominate(segment_dir, s12);
    if (change_sign) r_number = -r_number;

    if (r_number < 0.)
        // Intersection before ray start.
        return {};

    return r_number / d;
}

Vec2d get_intersection(const Vec2d &               point,
                       const Vec2d &               dir,
                       const std::array<Vec2d, 3> &triangle)
{
    std::optional<double> t;
    for (size_t i = 0; i < 3; ++i) {
        size_t i2 = i + 1;
        if (i2 == 3) i2 = 0;
        if (!t.has_value()) {
            t = ray_segment_intersection(point, dir, triangle[i],
                                         triangle[i2]);
            continue;
        }

        // small distance could be preccission inconsistance
        std::optional<double> t2 = ray_segment_intersection(point, dir,
                                                            triangle[i],
                                                            triangle[i2]);
        if (t2.has_value() && *t2 > *t) t = t2;
    }
    assert(t.has_value()); // Not found intersection.
    return point + dir * (*t);
}

Vec3d calc_hit_point(const igl::Hit &          h,
                     const Vec3i &             triangle,
                     const std::vector<Vec3f> &vertices)
{
    double c1 = h.u;
    double c2 = h.v;
    double c0 = 1.0 - c1 - c2;
    Vec3d  v0 = vertices[triangle[0]].cast<double>();
    Vec3d  v1 = vertices[triangle[1]].cast<double>();
    Vec3d  v2 = vertices[triangle[2]].cast<double>();
    return v0 * c0 + v1 * c1 + v2 * c2;
}

Vec3d calc_hit_point(const igl::Hit &h, indexed_triangle_set &its)
{
    return calc_hit_point(h, its.indices[h.id], its.vertices);
}
} // namespace Private

std::string get_font_filepath() {
    std::string resource_dir = 
        std::string(TEST_DATA_DIR) + "/../../resources/";
    return resource_dir + "fonts/NotoSans-Regular.ttf";
}

// Explicit horror include (used to be implicit) - libslic3r "officialy" does not depend on imgui.
#include "../../bundled_deps/imgui/imgui/imstb_truetype.h" // stbtt_fontinfo
#include "boost/nowide/cstdio.hpp"
TEST_CASE("Read glyph C shape from font, stb library calls ONLY", "[Emboss]") {
    std::string font_path = get_font_filepath();
    char  letter   = 'C';
    
    // Read  font file
    FILE *file = boost::nowide::fopen(font_path.c_str(), "rb");
    REQUIRE(file != nullptr);
    // find size of file
    REQUIRE(fseek(file, 0L, SEEK_END) == 0);
    size_t size = ftell(file);
    REQUIRE(size != 0);
    rewind(file);
    std::vector<unsigned char> buffer(size);
    size_t count_loaded_bytes = fread((void *) &buffer.front(), 1, size, file);
    REQUIRE(count_loaded_bytes == size);

    // Use stb true type library
    int font_offset = stbtt_GetFontOffsetForIndex(buffer.data(), 0);
    REQUIRE(font_offset >= 0);
    stbtt_fontinfo font_info;
    REQUIRE(stbtt_InitFont(&font_info, buffer.data(), font_offset) != 0);    
    int unicode_letter = (int) letter;
    int glyph_index = stbtt_FindGlyphIndex(&font_info, unicode_letter);
    REQUIRE(glyph_index != 0);
    stbtt_vertex *vertices;
    int num_verts = stbtt_GetGlyphShape(&font_info, glyph_index, &vertices);
    CHECK(num_verts > 0);
    free(vertices);
}

#include <libslic3r/Utils.hpp>
TEST_CASE("Convert glyph % to model", "[Emboss]") 
{
    std::string font_path = get_font_filepath();
    unsigned int font_index = 0; // collection
    char  letter   = '%';
    float flatness = 2.;

    auto font = Emboss::create_font_file(font_path.c_str());
    REQUIRE(font != nullptr);

    std::optional<Emboss::Glyph> glyph = 
        Emboss::letter2glyph(*font, font_index, letter, flatness);
    REQUIRE(glyph.has_value());

    ExPolygons shape = glyph->shape;    
    REQUIRE(!shape.empty());

    float z_depth = 1.f;
    Emboss::ProjectZ projection(z_depth);
    indexed_triangle_set its = Emboss::polygons2model(shape, projection);

    CHECK(!its.indices.empty());    
}

//#define VISUALIZE
#ifdef VISUALIZE
TEST_CASE("Visualize glyph from font", "[Emboss]")
{
    std::string font_path = "C:/data/ALIENATO.TTF";
    std::string text      = "i";

    Emboss::FontFileWithCache font(
        Emboss::create_font_file(font_path.c_str()));
    REQUIRE(font.has_value());
    FontProp fp;
    fp.size_in_mm     = 8;
    fp.emboss         = 4;
    ExPolygons shapes = Emboss::text2shapes(font, text.c_str(), fp);

    // char letter = 'i';
    // unsigned int font_index = 0; // collection
    // float        flatness   = 5;
    // auto glyph = Emboss::letter2glyph(*font.font_file, font_index, letter,
    // flatness); ExPolygons shapes2 = glyph->shape; { SVG
    //svg("C:/data/temp/stored_letter.svg", get_extents(shapes2));
    //svg.draw(shapes2); } // debug shape

    REQUIRE(!shapes.empty());
    //{ SVG svg("C:/data/temp/shapes.svg"); svg.draw(shapes); } // debug shape

    float                z_depth = 100.f;
    Emboss::ProjectZ     projection(z_depth);
    indexed_triangle_set its = Emboss::polygons2model(shapes, projection);
    its_write_obj(its, "C:/data/temp/bad_glyph.obj");

    CHECK(!its.indices.empty());
    TriangleMesh tm(its);
    auto         s = tm.stats();
}
#endif // VISUALIZE

#include "test_utils.hpp"
#include <nanosvg/nanosvg.h>    // load SVG file
#include <libslic3r/NSVGUtils.hpp>
#include <libslic3r/IntersectionPoints.hpp>
ExPolygons heal_and_check(const Polygons &polygons)
{
    IntersectionsLines intersections_prev = get_intersections(polygons);
    Points  polygons_points    = to_points(polygons);
    Points  duplicits_prev     = collect_duplicates(polygons_points);

    auto [shape, success] = Emboss::heal_polygons(polygons);
    CHECK(success);

    // Is default shape for unhealabled shape?
    bool is_default_shape = 
        shape.size() == 1 && 
        shape.front().contour.points.size() == 4 &&
        shape.front().holes.size() == 1 &&
        shape.front().holes.front().points.size() == 4 ;
    CHECK(!is_default_shape);

    IntersectionsLines intersections = get_intersections(shape);
    Points  shape_points  = to_points(shape);
    Points  duplicits     = collect_duplicates(shape_points);
    //{
    //    BoundingBox bb(polygons_points);
    //    // bb.scale(svg_scale);
    //    SVG svg("C:/data/temp/test_visualization.svg", bb);
    //    svg.draw(polygons, "gray"); // input
    //    svg.draw(shape, "green"); // output

    //    Points pts;
    //    pts.reserve(intersections.size());
    //    for (const Vec2d &intersection : intersections)
    //        pts.push_back(intersection.cast<int>());
    //    svg.draw(pts, "red", 10);
    //    svg.draw(duplicits, "orenge", 10);
    //}

    CHECK(intersections.empty());
    CHECK(duplicits.empty());
    return shape;
}

void scale(Polygons &polygons, double multiplicator) {
    for (Polygon &polygon : polygons)
        for (Point &p : polygon) p *= multiplicator;
}

Polygons load_polygons(const std::string &svg_file) {
    std::string file_path = TEST_DATA_DIR PATH_SEPARATOR + svg_file;
    NSVGimage *image = nsvgParseFromFile(file_path.c_str(), "px", 96.0f);
    NSVGLineParams param{1000};
    param.scale = 10.;
    Polygons polygons = to_polygons(*image, param);
    nsvgDelete(image);
    return polygons;
}

TEST_CASE("Heal of 'i' in ALIENATO.TTF", "[Emboss]")
{
    // Shape loaded from svg is letter 'i' from font 'ALIENATE.TTF'
    std::string file_name = "contour_ALIENATO.TTF_glyph_i.svg";
    Polygons polygons = load_polygons(file_name);

    auto a = heal_and_check(polygons);

    Polygons scaled_shape = polygons; // copy

    double text_shape_scale = 0.001; // Emboss.cpp --> SHAPE_SCALE
    scale(scaled_shape, 1 / text_shape_scale);
    auto b = heal_and_check(scaled_shape);

    // different scale
    scale(scaled_shape, 10.);
    auto c = heal_and_check(scaled_shape);

    // check reverse order of points
    Polygons reverse_shape = polygons;
    for (Polygon &p : reverse_shape)
        std::reverse(p.points.begin(), p.points.end());
    auto d = heal_and_check(scaled_shape);

#ifdef VISUALIZE
    CHECK(false);
#endif // VISUALIZE
}

TEST_CASE("Heal of 'm' in Allura_Script.ttf", "[Emboss]")
{
    Polygons polygons = load_polygons("contour_Allura_Script.ttf_glyph_m.svg");
    auto a = heal_and_check(polygons);
}

#include "libslic3r/NSVGUtils.hpp"
TEST_CASE("Heal of svg contour overlap", "[Emboss]") {

    std::string svg_file = "contour_neighbor.svg";
    auto image = nsvgParseFromFile(TEST_DATA_DIR PATH_SEPARATOR + svg_file, "mm");
    NSVGLineParams param(1e10);
    ExPolygonsWithIds shapes = create_shape_with_ids(*image, param);
    Polygons polygons;
    for (ExPolygonsWithId &shape : shapes)
        polygons.push_back(shape.expoly.front().contour);
    auto a = heal_and_check(polygons);
}

// Input contour is extracted from case above "contour_neighbor.svg" with trouble shooted scale
TEST_CASE("Heal of overlaping contour", "[Emboss]"){
    // Extracted from svg:
    Points contour{{2228926, 1543620}, {745002, 2065101},   {745002, 2065094},   {744990, 2065094},   {684487, 1466338},
                   {510999, 908378},   {236555, 403250},    {-126813, -37014},   {-567074, -400382},  {-1072201, -674822},
                   {-567074, -400378}, {-126813, -37010},   {236555, 403250},    {510999, 908382},    {684487, 1466346},
                   {744990, 2065105},  {-2219648, 2073234}, {-2228926, -908814}, {-1646879, -2073235}};
    ExPolygons shapes = {ExPolygon{contour}};
    CHECK(Emboss::heal_expolygons(shapes));
}

TEST_CASE("Heal of points close to line", "[Emboss]")
{
    std::string file_name = "points_close_to_line.svg";
    std::string file_path = TEST_DATA_DIR PATH_SEPARATOR + file_name;
    NSVGimage *image = nsvgParseFromFile(file_path.c_str(), "px", 96.0f);
    NSVGLineParams param{1000};
    param.scale = 1.;
    Polygons polygons = to_polygons(*image, param);
    nsvgDelete(image);
    REQUIRE(polygons.size() == 1);
    Polygon polygon = polygons.front();
    polygon.points.pop_back();// NSVG put first point as last one when polygon is closed
    ExPolygons expoly({ExPolygon(polygon)});
    CHECK(Emboss::divide_segments_for_close_point(expoly, .6));
    //{ SVG svg("C:/data/temp/healed.svg"); svg.draw(expoly);}
    CHECK(to_points(expoly).size() >= (to_points(polygon).size() + 2));
}

TEST_CASE("Convert text with glyph cache to model", "[Emboss]")
{
    std::string font_path = get_font_filepath();
    std::string text = 
"Because Ford never learned to say his original name, \n\
his father eventually died of shame, which is still \r\n\
a terminal disease in some parts of the Galaxy.\n\r\
The other kids at school nicknamed him Ix,\n\
which in the language of Betelgeuse Five translates as\t\n\
\"boy who is not able satisfactorily to explain what a Hrung is,\n\
nor why it should choose to collapse on Betelgeuse Seven\".";
    float line_height = 10.f;

    auto font = Emboss::create_font_file(font_path.c_str());
    REQUIRE(font != nullptr);

    Emboss::FontFileWithCache ffwc(std::move(font));
    FontProp fp{line_height};

    auto was_canceled = []() { return false; };
    ExPolygons shapes = Emboss::text2shapes(ffwc, text.c_str(), fp, was_canceled);
    REQUIRE(!shapes.empty());

    float depth = 2.f;  
    Emboss::ProjectZ projection(depth);
    indexed_triangle_set its = Emboss::polygons2model(shapes, projection);
    CHECK(!its.indices.empty());
    //its_write_obj(its, "C:/data/temp/text.obj");
}

TEST_CASE("Test hit point", "[AABBTreeIndirect]")
{
    indexed_triangle_set its;
    its.vertices = {
        Vec3f(1, 1, 1),
        Vec3f(2, 10, 2),
        Vec3f(10, 0, 2),
    };
    its.indices = {Vec3i(0, 2, 1)};
    auto tree   = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
        its.vertices, its.indices);

    Vec3d    ray_point(8, 1, 0);
    Vec3d    ray_dir(0, 0, 1);
    igl::Hit hit;
    AABBTreeIndirect::intersect_ray_first_hit(its.vertices, its.indices, tree,
                                              ray_point, ray_dir, hit);
    Vec3d hp = Private::calc_hit_point(hit, its);
    CHECK(abs(hp.x() - ray_point.x()) < .1);
    CHECK(abs(hp.y() - ray_point.y()) < .1);
}

TEST_CASE("ray segment intersection", "[MeshBoolean]")
{
    Vec2d r_point(1, 1);
    Vec2d r_dir(1, 0);

    // colinear
    CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 0), Vec2d(2, 0)).has_value());
    CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(0, 0)).has_value());

    // before ray
    CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 0), Vec2d(0, 2)).has_value());
    CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 2), Vec2d(0, 0)).has_value());

    // above ray
    CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 2), Vec2d(2, 3)).has_value());
    CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 3), Vec2d(2, 2)).has_value());

    // belove ray
    CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(2, -1)).has_value());
    CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, -1), Vec2d(2, 0)).has_value());

    // intersection at [2,1] distance 1
    auto t1 = Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(2, 2));
    REQUIRE(t1.has_value());
    auto t2 = Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 2), Vec2d(2, 0));
    REQUIRE(t2.has_value());

    CHECK(abs(*t1 - *t2) < std::numeric_limits<double>::epsilon());
}

TEST_CASE("triangle intersection", "[its]")
{
    Vec2d                point(1, 1);
    Vec2d                dir(-1, 0);
    std::array<Vec2d, 3> triangle = {Vec2d(0, 0), Vec2d(5, 0), Vec2d(0, 5)};
    Vec2d                i = Private::get_intersection(point, dir, triangle);
    CHECK(abs(i.x()) < std::numeric_limits<double>::epsilon());
    CHECK(abs(i.y() - 1.) < std::numeric_limits<double>::epsilon());
}



#if defined _WIN32
#define FONT_DIR_PATH "C:/Windows/Fonts";
#endif
//#elif defined __linux__
//#define FONT_DIR_PATH "/usr/share/fonts";
//#elif defined __APPLE__
//#define FONT_DIR_PATH "//System/Library/Fonts";
//#endif

#ifdef FONT_DIR_PATH
#include <string>
#include <iostream>
#include <boost/filesystem.hpp>
namespace fs = boost::filesystem;
//#include <filesystem>
//namespace fs = std::filesystem;
// Check function Emboss::is_italic that exist some italic and some non-italic font.
TEST_CASE("Italic check", "[Emboss]") 
{  
    std::string dir_path = FONT_DIR_PATH;
    std::queue<std::string> dir_paths;
    dir_paths.push(dir_path);
    bool exist_italic = false;
    bool exist_non_italic = false;
    while (!dir_paths.empty()) {
        std::string dir_path = dir_paths.front();
        dir_paths.pop();
        for (const auto &entry : fs::directory_iterator(dir_path)) {
            const fs::path &act_path = entry.path();
            if (fs::is_directory(entry)) {
                dir_paths.push(act_path.string());
                continue;
            }
            std::string ext = act_path.extension().string();
            std::transform(ext.begin(), ext.end(), ext.begin(),
                           [](unsigned char c) { return std::tolower(c); });
            if (ext != ".ttf") continue;
            std::string path_str = act_path.string();
            auto        font_opt = Emboss::create_font_file(path_str.c_str());
            if (font_opt == nullptr) continue;

            unsigned int collection_number = 0;
            if (Emboss::is_italic(*font_opt, collection_number))
                exist_italic = true;
            else
                exist_non_italic = true;

            if (exist_italic && exist_non_italic) break;
            //std::cout << ((Emboss::is_italic(*font_opt)) ? "[yes] " : "[no ] ") << entry.path() << std::endl;
        }
    }
    CHECK(exist_italic);
    CHECK(exist_non_italic);
}
#endif // FONT_DIR_PATH

#include "libslic3r/CutSurface.hpp"
TEST_CASE("Cut surface", "[its]")
{
    std::string  font_path  = get_font_filepath();
    char         letter     = '%';
    float        flatness   = 2.;
    unsigned int font_index = 0;   // collection
    double       z_depth    = 50.; // projection size

    auto font = Emboss::create_font_file(font_path.c_str());
    REQUIRE(font != nullptr);

    std::optional<Emboss::Glyph> glyph = Emboss::letter2glyph(*font,
                                                              font_index,
                                                              letter,
                                                              flatness);
    REQUIRE(glyph.has_value());

    ExPolygons shape = glyph->shape;
    REQUIRE(!shape.empty());

    Transform3d tr = Transform3d::Identity();
    tr.translate(Vec3d(0., 0., -z_depth));
    double text_shape_scale = 0.001; // Emboss.cpp --> SHAPE_SCALE
    tr.scale(text_shape_scale);
    Emboss::OrthoProject cut_projection(tr, Vec3d(0., 0., z_depth));

    auto object = its_make_cube(782 - 49 + 50, 724 + 10 + 50, 5);
    its_translate(object, Vec3f(49 - 25, -10 - 25, -40));
    auto cube2 = object; // copy
    its_translate(cube2, Vec3f(100, -40, 7.5));
    its_merge(object, std::move(cube2));

    auto surfaces = cut_surface(shape, {object}, cut_projection, 0);
    CHECK(!surfaces.empty());

    Emboss::OrthoProject projection(Transform3d::Identity(), Vec3d(0., 0., 10.));
    its_translate(surfaces, Vec3f(0., 0., 10.));

    indexed_triangle_set its = cut2model(surfaces, projection);
    CHECK(!its.empty());
    //its_write_obj(its, "C:/data/temp/projected.obj");
}

#include <sstream>
#include <cereal/cereal.hpp>
#include <cereal/archives/binary.hpp>
TEST_CASE("UndoRedo TextConfiguration serialization", "[Emboss]")
{
    TextConfiguration tc;
    tc.text = "Dovede-li se člověk zasmát sám sobě, nevyjde ze smíchu po celý život.";
    EmbossStyle& es = tc.style;
    es.name      = "Seneca";
    es.path      = "Simply the best";
    es.type      = EmbossStyle::Type::file_path;
    FontProp &fp = es.prop;
    fp.char_gap  = 3;
    fp.line_gap  = 7;
    fp.boldness  = 2.3f;
    fp.skew      = 4.5f;
    fp.collection_number = 13;
    fp.size_in_mm= 6.7f;

    std::stringstream ss; // any stream can be used
    {
        cereal::BinaryOutputArchive oarchive(ss); // Create an output archive
        oarchive(tc);
    } // archive goes out of scope, ensuring all contents are flushed

    TextConfiguration tc_loaded;
    {
        cereal::BinaryInputArchive iarchive(ss); // Create an input archive
        iarchive(tc_loaded);
    }
    CHECK(tc.style == tc_loaded.style);
    CHECK(tc.text == tc_loaded.text);
}

#include "libslic3r/EmbossShape.hpp"
TEST_CASE("UndoRedo EmbossShape serialization", "[Emboss]")
{
    EmbossShape emboss;
    emboss.shapes_with_ids = {{0, {{{0, 0}, {10, 0}, {10, 10}, {0, 10}}, {{5, 5}, {6, 5}, {6, 6}, {5, 6}}}}};
    emboss.scale = 2.;
    emboss.projection.depth       = 5.;
    emboss.projection.use_surface = true;
    emboss.fix_3mf_tr  = Transform3d::Identity();
    emboss.svg_file = EmbossShape::SvgFile{};
    emboss.svg_file->path = "Everything starts somewhere, though many physicists disagree.\
 But people have always been dimly aware of the problem with the start of things.\
 They wonder how the snowplough driver gets to work,\
 or how the makers of dictionaries look up the spelling of words.";
    emboss.svg_file->path_in_3mf = "Všechno někde začíná, i když mnoho fyziků nesouhlasí.\
 Ale lidé si vždy jen matně uvědomovali problém se začátkem věcí.\
 Zajímalo je, jak se řidič sněžného pluhu dostane do práce\
 nebo jak tvůrci slovníků vyhledávají pravopis slov.";
    emboss.svg_file->file_data = std::make_unique<std::string>("cite: Terry Pratchett");

    std::stringstream ss; // any stream can be used
    {
        cereal::BinaryOutputArchive oarchive(ss); // Create an output archive
        oarchive(emboss);
    } // archive goes out of scope, ensuring all contents are flushed

    EmbossShape emboss_loaded;
    {
        cereal::BinaryInputArchive iarchive(ss); // Create an input archive
        iarchive(emboss_loaded);
    }
    CHECK(emboss.shapes_with_ids.front().expoly == emboss_loaded.shapes_with_ids.front().expoly);
    CHECK(emboss.scale == emboss_loaded.scale);
    CHECK(emboss.projection.depth == emboss_loaded.projection.depth);
    CHECK(emboss.projection.use_surface == emboss_loaded.projection.use_surface);
    CHECK(emboss.svg_file->path == emboss_loaded.svg_file->path);
    CHECK(emboss.svg_file->path_in_3mf == emboss_loaded.svg_file->path_in_3mf);
}


#include <CGAL/Polygon_mesh_processing/corefinement.h>
#include <CGAL/Exact_integer.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Cartesian_converter.h>

/// <summary>
/// Distiguish point made by shape(Expolygon)
/// Referencing an ExPolygon contour plus a vertex base of the contour.
/// Used for adressing Vertex of mesh created by extrude ExPolygons
/// </summary>
struct ShapesVertexId {
    // Index of an ExPolygon in ExPolygons.
    int32_t expoly{ -1 };

    // Index of a contour in ExPolygon.
    // 0 - outer contour, >0 - hole
    int32_t contour{ -1 };

    // Base of the zero'th point of a contour in text mesh.
    // There are two vertices (front and rear) created for each contour,
    // thus there are 2x more vertices in text mesh than the number of contour points.
    int32_t vertex_base{ -1 };
};

/// <summary>
/// IntersectingElemnt
/// 
/// Adress polygon inside of ExPolygon
/// Keep information about source of vertex:
///     - from face (one of 2 possible)
///     - from edge (one of 2 possible)
/// 
/// V1~~~~V2
/// : f1 /|
/// :   / |
/// :  /e1| 
/// : /   |e2
/// :/ f2 |
/// V1'~~~V2'
/// 
/// | .. edge
/// / .. edge
/// : .. foreign edge - neighbor 
/// ~ .. no care edge - idealy should not cross model
/// V1,V1' .. projected 2d point to 3d
/// V2,V2' .. projected 2d point to 3d
/// 
/// f1 .. text_face_1 (triangle face made by side of shape contour)
/// f2 .. text_face_2
/// e1 .. text_edge_1 (edge on side of face made by side of shape contour)
/// e2 .. text_edge_2
/// 
/// </summary>
struct IntersectingElemnt
{
    // Index into vector of ShapeVertexId
    // describe point on shape contour
    int32_t vertex_index{-1};

    // index of point in Polygon contour
    int32_t point_index{-1};

    // vertex or edge ID, where edge ID is the index of the source point.
    // There are 4 consecutive indices generated for a single glyph edge:
    // 0th - 1st text edge (straight)
    // 1th - 1st text face
    // 2nd - 2nd text edge (diagonal)
    // 3th - 2nd text face
    // Type of intersecting element from extruded shape( 3d )
    enum class Type {
        edge_1 = 0,
        face_1 = 1,
        edge_2 = 2,
        face_2 = 3,

        undefined = 4
    } type = Type::undefined;
};

namespace Slic3r::MeshBoolean::cgal2 {

    namespace CGALProc = CGAL::Polygon_mesh_processing;
    namespace CGALParams = CGAL::Polygon_mesh_processing::parameters;

    using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
    using _EpicMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
//    using EpecKernel = CGAL::Exact_predicates_exact_constructions_kernel;
//    using _EpecMesh = CGAL::Surface_mesh<EpecKernel::Point_3>;

    using CGALMesh = _EpicMesh;
            
    /// <summary>
    /// Convert triangle mesh model to CGAL Surface_mesh
    /// Add property map for source face index
    /// </summary>
    /// <param name="its">Model</param>
    /// <param name="face_map_name">Property map name for store conversion from CGAL face to index to its</param>
    /// <returns>CGAL mesh - half edge mesh</returns>
    CGALMesh to_cgal(const indexed_triangle_set &its,
                     const std::string          &face_map_name)
    {
        CGALMesh result;
        if (its.empty()) return result;

        const std::vector<stl_vertex>                  &V = its.vertices;
        const std::vector<stl_triangle_vertex_indices> &F = its.indices;

        // convert from CGAL face to its face
        auto face_map = result.add_property_map<CGALMesh::Face_index, int32_t>(face_map_name).first;

        size_t vertices_count = V.size();
        size_t edges_count    = (F.size() * 3) / 2;
        size_t faces_count    = F.size();
        result.reserve(vertices_count, edges_count, faces_count);

        for (auto &v : V)
            result.add_vertex(typename CGALMesh::Point{v.x(), v.y(), v.z()});

        using VI = typename CGALMesh::Vertex_index;
        for (auto &f : F)
        {
            auto fid = result.add_face(VI(f(0)), VI(f(1)), VI(f(2)));
            // index of face in source triangle mesh
            int32_t index = static_cast<int32_t>(&f - &F.front());
            face_map[fid] = index;
        }

        return result;
    }

    /// <summary>
    /// Covert 2d shape (e.g. Glyph) to CGAL model
    /// </summary>
    /// <param name="shape">2d shape to project</param>
    /// <param name="projection">Define transformation 2d point into 3d</param>
    /// <param name="shape_id">Identify shape</param>
    /// <param name="edge_shape_map_name">Name of property map to store conversion from edge to contour</param>
    /// <param name="face_shape_map_name">Name of property map to store conversion from face to contour</param>
    /// <param name="contour_indices">Identify point on shape contour</param>
    /// <returns>CGAL model of extruded shape</returns>
    CGALMesh to_cgal(const ExPolygons                  &shape,
                     const Slic3r::Emboss::IProjection &projection,
                     int32_t                            shape_id,
                     const std::string                 &edge_shape_map_name,
                     const std::string                 &face_shape_map_name,
                     std::vector<ShapesVertexId>       &contour_indices)
    {
        CGALMesh result;
        if (shape.empty()) return result;
        
        auto edge_shape_map = result.add_property_map<CGALMesh::Edge_index, IntersectingElemnt>(edge_shape_map_name).first;
        auto face_shape_map = result.add_property_map<CGALMesh::Face_index, IntersectingElemnt>(face_shape_map_name).first;

        std::vector<CGALMesh::Vertex_index> indices;
        auto insert_contour = [&projection, &indices , &result, &contour_indices, &edge_shape_map, &face_shape_map](const Polygon& polygon, int32_t iexpoly, int32_t id) {
            indices.clear();
            indices.reserve(polygon.points.size() * 2);
            size_t num_vertices_old = result.number_of_vertices();
            int32_t vertex_index = static_cast<int32_t>(contour_indices.size());
            contour_indices.push_back({iexpoly, id, int32_t(num_vertices_old) });
            for (const Point& p2 : polygon.points) {
                auto p = projection.create_front_back(p2);
                auto vi = result.add_vertex(typename CGALMesh::Point{ p.first.x(), p.first.y(), p.first.z() });
                assert((size_t)vi == indices.size() + num_vertices_old);
                indices.emplace_back(vi);
                vi = result.add_vertex(typename CGALMesh::Point{ p.second.x(), p.second.y(), p.second.z() });
                assert((size_t)vi == indices.size() + num_vertices_old);
                indices.emplace_back(vi);
            }
            int32_t contour_index = 0;
            for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
                int32_t j = (i + 2) % int32_t(indices.size());
                auto find_edge = [&result](CGALMesh::Face_index fi, CGALMesh::Vertex_index from, CGALMesh::Vertex_index to) {
                    CGALMesh::Halfedge_index hi = result.halfedge(fi);
                    for (; result.target(hi) != to; hi = result.next(hi));
                    assert(result.source(hi) == from);
                    assert(result.target(hi) == to);
                    return hi;
                };
                auto fi = result.add_face(indices[i], indices[i + 1], indices[j]);
                edge_shape_map[result.edge(find_edge(fi, indices[i], indices[i + 1]))] = 
                    IntersectingElemnt{vertex_index, contour_index, IntersectingElemnt::Type::edge_1};
                face_shape_map[fi] =                     
                    IntersectingElemnt{vertex_index, contour_index, IntersectingElemnt::Type::face_1};
                edge_shape_map[result.edge(find_edge(fi, indices[i + 1], indices[j]))] =
                    IntersectingElemnt{vertex_index, contour_index, IntersectingElemnt::Type::edge_2};
                face_shape_map[result.add_face(indices[j], indices[i + 1], indices[j + 1])] =                     
                    IntersectingElemnt{vertex_index, contour_index, IntersectingElemnt::Type::face_2};
                ++contour_index;
            }
        };

        size_t count_point = count_points(shape);
        result.reserve(result.number_of_vertices() + 2 * count_point, result.number_of_edges() + 4 * count_point, result.number_of_faces() + 2 * count_point);

        // Identify polygon
        // (contour_id > 0) are holes
        for (const auto &s : shape) {
            size_t contour_id = 0;
            insert_contour(s.contour, shape_id, contour_id++);
            for (const Polygon &hole : s.holes)
                insert_contour(hole, shape_id, contour_id++);
            ++shape_id;
        }
        return result;
    }
}
#include "libslic3r/TriangleMesh.hpp"

//// 1 ////

// Question store(1) Or calculate on demand(2) ??
// (1) type: vector <vector<vertex indices>>
// (1) Needs recalculation when merge and propagation togewther with its
// (2) Could appear surface mistakes(need calc - all half edges) 
// (2) NO need of trace cut outline and connect it with letter conture points 

/// <summary>
/// Cut surface shape from source model
/// </summary>
/// <param name="source">Input source mesh</param>
/// <param name="shape">Input 2d shape to cut from surface</param>
/// <param name="projection">Define transformation from 2d to 3d</param>
/// <returns>Cutted surface, Its do not represent Volume</returns>
indexed_triangle_set cut_shape(const indexed_triangle_set &source,
                               const ExPolygon            &shape,
                               const Emboss::IProjection  &projection)
{
    // NOT implemented yet
    return {};
}

/// <summary>
/// Cut surface shape from source model
/// </summary>
/// <param name="source">Input source mesh</param>
/// <param name="shapes">Input 2d shape to cut from surface</param>
/// <param name="projection">Define transformation from 2d to 3d</param>
/// <returns>Cutted surface, Its do not represent Volume</returns>
indexed_triangle_set cut_shape(const indexed_triangle_set &source,
                               const ExPolygons           &shapes,
                               const Emboss::IProjection  &projection)
{
    indexed_triangle_set result;
    for (const ExPolygon &shape : shapes)
        its_merge(result, cut_shape(source, shape, projection));
    return result;
}

using MyMesh = Slic3r::MeshBoolean::cgal2::CGALMesh;

// First Idea //// 1 ////
// Use source model to modify ONLY surface of text ModelVolume

// Second Idea
// Store original its inside of text configuration[optional]
// Cause problem with next editation of object -> cut, simplify, repair by WinSDK, Hollow, ...(transform original vertices)
TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
{
    std::string font_path = get_font_filepath();
    unsigned int font_index = 0; // collection
    char  letter   = '%';
    float flatness = 2.;

    auto font = Emboss::create_font_file(font_path.c_str());
    REQUIRE(font != nullptr);

    std::optional<Emboss::Glyph> glyph = 
        Emboss::letter2glyph(*font, font_index, letter, flatness);
    REQUIRE(glyph.has_value());

    ExPolygons shape = glyph->shape;
    REQUIRE(!shape.empty());

    float            z_depth = 50.f;
    Emboss::ProjectZ projection(z_depth);

#if 0
    indexed_triangle_set text = Emboss::polygons2model(shape, projection);
    BoundingBoxf3 bbox = bounding_box(text);

    CHECK(!text.indices.empty());
#endif
    
    auto cube = its_make_cube(782 - 49 + 50, 724 + 10 + 50, 5);
    its_translate(cube, Vec3f(49 - 25, -10 - 25, 2.5));
    auto cube2 = cube;
//    its_translate(cube2, Vec3f(0, 0, 40));
    its_translate(cube2, Vec3f(100, -40, 40));
    its_merge(cube, std::move(cube2));

    //cube = its_make_sphere(350., 1.);
    //for (auto &face : cube2.indices)
    //    for (int i = 0; i < 3; ++ i)
    //        face(i) += int(cube.vertices.size());
    //append(cube.vertices, cube2.vertices);
    //append(cube.indices, cube2.indices);

    using MyMesh = Slic3r::MeshBoolean::cgal2::CGALMesh;
    
    // name of CGAL property map for store source object face id - index into its.indices
    std::string face_map_name = "f:face_map";
    std::string face_type_map_name = "f:type";
    // identify glyph for intersected vertex
    std::string vert_shape_map_name = "v:glyph_id";
    MyMesh cgal_object = MeshBoolean::cgal2::to_cgal(cube, face_map_name);
    auto face_map = access_pmap(cgal_object.property_map<MyMesh::Face_index, int32_t>(face_map_name));
    auto vert_shape_map = access_pmap(cgal_object.add_property_map<MyMesh::Vertex_index, IntersectingElemnt>(vert_shape_map_name));

    std::string edge_shape_map_name = "e:glyph_id";
    std::string face_shape_map_name = "f:glyph_id";
    std::vector<ShapesVertexId> glyph_contours;

    MyMesh cgal_shape = MeshBoolean::cgal2::to_cgal(shape, projection, 0, edge_shape_map_name, face_shape_map_name, glyph_contours);    

    auto edge_shape_map = access_pmap(cgal_shape.property_map<MyMesh::Edge_index, IntersectingElemnt>(edge_shape_map_name));
    auto face_shape_map = access_pmap(cgal_shape.property_map<MyMesh::Face_index, IntersectingElemnt>(face_shape_map_name));

    // bool map for affected edge
    using d_prop_bool = CGAL::dynamic_edge_property_t<bool>;
    using ecm_it = boost::property_map<MyMesh, d_prop_bool>::SMPM;
    using EcmType = CGAL::internal::Dynamic<MyMesh, ecm_it>;
    EcmType ecm = get(d_prop_bool(), cgal_object);
    
    struct Visitor : public CGAL::Polygon_mesh_processing::Corefinement::Default_visitor<MyMesh> {
        Visitor(const MyMesh &object, const MyMesh &shape,
                MyMesh::Property_map<CGAL::SM_Edge_index, IntersectingElemnt> edge_shape_map,
                MyMesh::Property_map<CGAL::SM_Face_index, IntersectingElemnt> face_shape_map,
                MyMesh::Property_map<CGAL::SM_Face_index, int32_t> face_map,
                MyMesh::Property_map<CGAL::SM_Vertex_index, IntersectingElemnt> vert_shape_map) :
            object(object), shape(shape), edge_shape_map(edge_shape_map), face_shape_map(face_shape_map),
            face_map(face_map), vert_shape_map(vert_shape_map)
        {}

        const MyMesh &object;
        const MyMesh &shape;
        // Properties of the shape mesh:
        MyMesh::Property_map<CGAL::SM_Edge_index, IntersectingElemnt> edge_shape_map;
        MyMesh::Property_map<CGAL::SM_Face_index, IntersectingElemnt> face_shape_map;
        // Properties of the object mesh.
        MyMesh::Property_map<CGAL::SM_Face_index, int32_t> face_map;
        MyMesh::Property_map<CGAL::SM_Vertex_index, IntersectingElemnt> vert_shape_map;

        typedef boost::graph_traits<MyMesh> GT;
        typedef typename GT::face_descriptor face_descriptor;
        typedef typename GT::halfedge_descriptor halfedge_descriptor;
        typedef typename GT::vertex_descriptor vertex_descriptor;

        int32_t source_face_id = -1;
        void before_subface_creations(face_descriptor f_old, MyMesh& mesh)
        {
            assert(&mesh == &object);
            source_face_id = face_map[f_old];
        }
        // it is called multiple times for one source_face_id
        void after_subface_created(face_descriptor f_new, MyMesh &mesh)
        {
            assert(&mesh == &object);
            assert(source_face_id != -1);
            face_map[f_new] = source_face_id;
        }

        std::vector<const IntersectingElemnt*> intersection_point_glyph;

        // Intersecting an edge hh_edge from tm_edge with a face hh_face of tm_face.
        void intersection_point_detected(
            // ID of the intersection point, starting at 0. Ids are consecutive.
            std::size_t         i_id,
            // Dimension of a simplex part of face(hh_face) that is intersected by hh_edge:
            // 0 for vertex: target(hh_face)
            // 1 for edge: hh_face
            // 2 for the interior of face: face(hh_face)
            int                 simplex_dimension,
            // Edge of tm_edge, see edge_source_coplanar_with_face & edge_target_coplanar_with_face whether any vertex of hh_edge is coplanar with face(hh_face).
            halfedge_descriptor hh_edge,
            // Vertex, halfedge or face of tm_face intersected by hh_edge, see comment at simplex_dimension.
            halfedge_descriptor hh_face,
            // Mesh containing hh_edge
            const MyMesh& tm_edge,
            // Mesh containing hh_face
            const MyMesh& tm_face,
            // source(hh_edge) is coplanar with face(hh_face).
            bool                edge_source_coplanar_with_face,
            // target(hh_edge) is coplanar with face(hh_face).
            bool                edge_target_coplanar_with_face)
        {
            if (i_id <= intersection_point_glyph.size()) {
                intersection_point_glyph.reserve(Slic3r::next_highest_power_of_2(i_id + 1));
                intersection_point_glyph.resize(i_id + 1);
            }

            const IntersectingElemnt* glyph = nullptr;
            if (&tm_face == &shape) {
                assert(&tm_edge == &object);
                switch (simplex_dimension) {
                case 1:
                    // edge x edge intersection
                    glyph = &edge_shape_map[shape.edge(hh_face)];
                    break;
                case 2:
                    // edge x face intersection
                    glyph = &face_shape_map[shape.face(hh_face)];
                    break;
                default:
                    assert(false);
                }
                if (edge_source_coplanar_with_face)
                    vert_shape_map[object.source(hh_edge)] = *glyph;
                if (edge_target_coplanar_with_face)
                    vert_shape_map[object.target(hh_edge)] = *glyph;
            } else {
                assert(&tm_edge == &shape && &tm_face == &object);
                assert(!edge_source_coplanar_with_face);
                assert(!edge_target_coplanar_with_face);
                glyph = &edge_shape_map[shape.edge(hh_edge)];
                if (simplex_dimension == 0)
                    vert_shape_map[object.target(hh_face)] = *glyph;
            }
            intersection_point_glyph[i_id] = glyph;
        }

        void new_vertex_added(std::size_t node_id, vertex_descriptor vh, const MyMesh &tm)
        {
            assert(&tm == &object);
            assert(node_id < intersection_point_glyph.size());
            const IntersectingElemnt * glyph = intersection_point_glyph[node_id];
            assert(glyph != nullptr);
            assert(glyph->vertex_index != -1);
            assert(glyph->point_index != -1);
            vert_shape_map[vh] = glyph ? *glyph : IntersectingElemnt{};
        }
    } visitor{cgal_object, cgal_shape, edge_shape_map, face_shape_map,
              face_map, vert_shape_map};

    const auto& p = CGAL::Polygon_mesh_processing::parameters::throw_on_self_intersection(false).visitor(visitor).edge_is_constrained_map(ecm);
    const auto& q = CGAL::Polygon_mesh_processing::parameters::do_not_modify(true);
    //    CGAL::Polygon_mesh_processing::corefine(cgal_object, cgalcube2, p, p);

    CGAL::Polygon_mesh_processing::corefine(cgal_object, cgal_shape, p, q);

    enum class SideType {
        // face inside of the cutted shape
        inside,
        // face outside of the cutted shape
        outside,
        // face without constrained edge (In or Out)
        not_constrained
    };
    auto side_type_map = cgal_object.add_property_map<MyMesh::Face_index, SideType>("f:side").first;
    for (auto fi : cgal_object.faces()) {
        SideType side_type = SideType::not_constrained;
        auto hi_end = cgal_object.halfedge(fi);
        auto hi = hi_end;
        do {
            CGAL::SM_Edge_index edge_index = cgal_object.edge(hi);
            // is edge new created - constrained?
            if (get(ecm, edge_index)) {
                // This face has a constrained edge.
                IntersectingElemnt shape_from = vert_shape_map[cgal_object.source(hi)];
                IntersectingElemnt shape_to = vert_shape_map[cgal_object.target(hi)];
                assert(shape_from.vertex_index != -1);
                assert(shape_from.vertex_index == shape_to.vertex_index);
                assert(shape_from.point_index != -1);
                assert(shape_to.point_index != -1);
                
                const ShapesVertexId &vertex_index = glyph_contours[shape_from.vertex_index];
                const ExPolygon &expoly  = shape[vertex_index.expoly];
                const Polygon &contour = vertex_index.contour == 0 ? expoly.contour : expoly.holes[vertex_index.contour - 1];
                bool is_inside = false;
                
                // 4 type 
                // index into contour
                int32_t i_from = shape_from.point_index;
                int32_t i_to = shape_to.point_index;
                if (i_from == i_to && shape_from.type == shape_to.type) {

                    const auto &p = cgal_object.point(cgal_object.target(cgal_object.next(hi)));

                    int i = i_from * 2;
                    int j = (i_from + 1 == int(contour.size())) ? 0 : i + 2;

                    i += vertex_index.vertex_base;
                    j += vertex_index.vertex_base;

                    auto abcp =
                        shape_from.type == IntersectingElemnt::Type::face_1 ?
                            CGAL::orientation(
                                cgal_shape.point(CGAL::SM_Vertex_index(i)),
                                cgal_shape.point(CGAL::SM_Vertex_index(i + 1)),
                                cgal_shape.point(CGAL::SM_Vertex_index(j)), p) :
                            // shape_from.type == IntersectingElemnt::Type::face_2
                            CGAL::orientation(
                                cgal_shape.point(CGAL::SM_Vertex_index(j)),
                                cgal_shape.point(CGAL::SM_Vertex_index(i + 1)),
                                cgal_shape.point(CGAL::SM_Vertex_index(j + 1)),
                                p);
                    is_inside = abcp == CGAL::POSITIVE;
                } else if (i_from < i_to || (i_from == i_to && shape_from.type < shape_to.type)) {
                    bool is_last = i_from == 0 && static_cast<size_t>(i_to + 1) == contour.size();
                    if (!is_last) is_inside = true;
                } else { // i_from > i_to || (i_from == i_to && shape_from.type > shape_to.type)
                    bool is_last = i_to == 0 && static_cast<size_t>(i_from + 1) == contour.size();
                    if (is_last) is_inside = true;
                }

                if (is_inside) {
                    // Is this face oriented towards p or away from p?
                    const auto &a = cgal_object.point(cgal_object.source(hi));
                    const auto &b = cgal_object.point(cgal_object.target(hi));
                    const auto &c = cgal_object.point(cgal_object.target(cgal_object.next(hi)));
                    //FIXME prosim nahrad skutecnou projekci.
                    //projection.project()
                    const auto  p = a + MeshBoolean::cgal2::EpicKernel::Vector_3(0, 0, 10);
                    auto abcp = CGAL::orientation(a, b, c, p);
                    if (abcp == CGAL::POSITIVE)
                        side_type = SideType::inside;
                    else
                        is_inside = false;
                } 
                if (!is_inside) side_type = SideType::outside;                
                break;
            }
            // next half edge index inside of face
            hi = cgal_object.next(hi);
        } while (hi != hi_end);
        side_type_map[fi] = side_type;
    }
    
    // debug output
    auto face_colors = cgal_object.add_property_map<MyMesh::Face_index, CGAL::Color>("f:color").first;    
    for (auto fi : cgal_object.faces()) { 
        auto &color = face_colors[fi];
        switch (side_type_map[fi]) {
        case SideType::inside: color = CGAL::Color{255, 0, 0}; break;
        case SideType::outside: color = CGAL::Color{255, 0, 255}; break;
        case SideType::not_constrained: color = CGAL::Color{0, 255, 0}; break;
        }
    }
    CGAL::IO::write_OFF("c:\\data\\temp\\constrained.off", cgal_object);
    
    // Seed fill the other faces inside the region.
    for (Visitor::face_descriptor fi : cgal_object.faces()) {
        if (side_type_map[fi] != SideType::not_constrained) continue;

        // check if neighbor face is inside
        Visitor::halfedge_descriptor hi     = cgal_object.halfedge(fi);
        Visitor::halfedge_descriptor hi_end = hi; 

        bool has_inside_neighbor = false;
        std::vector<MyMesh::Face_index> queue;
        do {
            Visitor::face_descriptor fi_opposite = cgal_object.face(cgal_object.opposite(hi));
            SideType side = side_type_map[fi_opposite];
            if (side == SideType::inside) {
                has_inside_neighbor = true;
            } else if (side == SideType::not_constrained) {
                queue.emplace_back(fi_opposite);
            }
            hi = cgal_object.next(hi);
        } while (hi != hi_end);
        if (!has_inside_neighbor) continue;
        side_type_map[fi] = SideType::inside;
        while (!queue.empty()) {
            Visitor::face_descriptor fi = queue.back();
            queue.pop_back();
            // Do not fill twice
            if (side_type_map[fi] == SideType::inside) continue;
            side_type_map[fi] = SideType::inside;

            // check neighbor triangle
            Visitor::halfedge_descriptor hi     = cgal_object.halfedge(fi);
            Visitor::halfedge_descriptor hi_end = hi; 
            do {
                Visitor::face_descriptor fi_opposite = cgal_object.face(cgal_object.opposite(hi));
                SideType side = side_type_map[fi_opposite];
                if (side == SideType::not_constrained) 
                    queue.emplace_back(fi_opposite);                
                hi = cgal_object.next(hi);
            } while (hi != hi_end);
        }            
    }

    // debug output
    for (auto fi : cgal_object.faces()) { 
        auto &color = face_colors[fi];
        switch (side_type_map[fi]) {
        case SideType::inside: color = CGAL::Color{255, 0, 0}; break;
        case SideType::outside: color = CGAL::Color{255, 0, 255}; break;
        case SideType::not_constrained: color = CGAL::Color{0, 255, 0}; break;
        }
    }
    CGAL::IO::write_OFF("c:\\data\\temp\\filled.off", cgal_object);

    // Mapping of its_extruded faces to source faces.
    enum class FaceState : int8_t {
        Unknown         = -1,
        Unmarked        = -2,
        UnmarkedSplit   = -3,
        Marked          = -4,
        MarkedSplit     = -5,
        UnmarkedEmitted = -6,
    };
    std::vector<FaceState> face_states(cube.indices.size(), FaceState::Unknown);
    for (auto fi_seed : cgal_object.faces()) {
        FaceState &state = face_states[face_map[fi_seed]];
        bool is_face_inside = side_type_map[fi_seed] == SideType::inside;
        switch (state) {
        case FaceState::Unknown:
            state = is_face_inside ? FaceState::Marked : FaceState::Unmarked;
            break;
        case FaceState::Unmarked:
        case FaceState::UnmarkedSplit:
            state = is_face_inside ? FaceState::MarkedSplit : FaceState::UnmarkedSplit;
            break;
        case FaceState::Marked:
        case FaceState::MarkedSplit:
            state = FaceState::MarkedSplit;
            break;
        default:
            assert(false);
        }
    }

    indexed_triangle_set its_extruded;
    its_extruded.indices.reserve(cgal_object.number_of_faces());
    its_extruded.vertices.reserve(cgal_object.number_of_vertices());
    // Mapping of its_extruded vertices (original and offsetted) to cgalcuble's vertices.
    std::vector<std::pair<int32_t, int32_t>> map_vertices(cgal_object.number_of_vertices(), std::pair<int32_t, int32_t>{-1, -1});

    Vec3f extrude_dir { 0, 0, 5.f };
    for (auto fi : cgal_object.faces()) {
        const int32_t   source_face_id = face_map[fi];
        const FaceState state          = face_states[source_face_id];
        assert(state == FaceState::Unmarked || state == FaceState::UnmarkedSplit || state == FaceState::UnmarkedEmitted ||
               state == FaceState::Marked || state == FaceState::MarkedSplit);
        if (state == FaceState::UnmarkedEmitted) continue; // Already emitted.

        if (state == FaceState::Unmarked || 
            state == FaceState::UnmarkedSplit) {
            // Just copy the unsplit source face.
            const Vec3i source_vertices = cube.indices[source_face_id];
            Vec3i       target_vertices;
            for (int i = 0; i < 3; ++i) {
                target_vertices(i) = map_vertices[source_vertices(i)].first;
                if (target_vertices(i) == -1) {
                    map_vertices[source_vertices(i)].first = target_vertices(i) = int(its_extruded.vertices.size());
                    its_extruded.vertices.emplace_back(cube.vertices[source_vertices(i)]);
                }
            }
            its_extruded.indices.emplace_back(target_vertices);
            face_states[source_face_id] = FaceState::UnmarkedEmitted;
            continue; // revert modification
        } 

        auto hi = cgal_object.halfedge(fi);
        auto hi_prev = cgal_object.prev(hi);
        auto hi_next = cgal_object.next(hi);
        const Vec3i source_vertices{ 
            int((std::size_t)cgal_object.target(hi)), 
            int((std::size_t)cgal_object.target(hi_next)), 
            int((std::size_t)cgal_object.target(hi_prev)) };
        Vec3i target_vertices;
        if (side_type_map[fi] != SideType::inside) {
            // Copy the face.
            Vec3i target_vertices;
            for (int i = 0; i < 3; ++ i) {
                target_vertices(i) = map_vertices[source_vertices(i)].first;
                if (target_vertices(i) == -1) {
                    map_vertices[source_vertices(i)].first = target_vertices(i) = int(its_extruded.vertices.size());
                    const auto &p = cgal_object.point(cgal_object.target(hi));
                    its_extruded.vertices.emplace_back(p.x(), p.y(), p.z());
                }
                hi = cgal_object.next(hi);
            }
            its_extruded.indices.emplace_back(target_vertices);
            continue; // copy splitted triangle
        }
        
        // Extrude the face. Neighbor edges separating extruded face from
        // non-extruded face will be extruded.
        bool  boundary_vertex[3] = {false, false, false};
        Vec3i target_vertices_extruded{-1, -1, -1};
        for (int i = 0; i < 3; ++i) {
            if (side_type_map[cgal_object.face(cgal_object.opposite(hi))] != SideType::inside)
                // Edge separating extruded / non-extruded region.
                boundary_vertex[i] = true;
            hi = cgal_object.next(hi);
        }

        for (int i = 0; i < 3; ++i) {
            target_vertices_extruded(i) = map_vertices[source_vertices(i)].second;
            if (target_vertices_extruded(i) == -1) {
                map_vertices[source_vertices(i)].second =
                    target_vertices_extruded(i) = int(
                        its_extruded.vertices.size());
                const auto &p = cgal_object.point(cgal_object.target(hi));
                its_extruded.vertices.emplace_back(
                    Vec3f{float(p.x()), float(p.y()), float(p.z())} +
                    extrude_dir);
            }
            if (boundary_vertex[i]) {
                target_vertices(i) = map_vertices[source_vertices(i)].first;
                if (target_vertices(i) == -1) {
                    map_vertices[source_vertices(i)].first = target_vertices(
                        i)        = int(its_extruded.vertices.size());
                    const auto &p = cgal_object.point(cgal_object.target(hi));
                    its_extruded.vertices.emplace_back(p.x(), p.y(), p.z());
                }
            }
            hi = cgal_object.next(hi);
        }
        its_extruded.indices.emplace_back(target_vertices_extruded);
        // Add the sides.
        for (int i = 0; i < 3; ++i) {
            int j = (i + 1) % 3;
            assert(target_vertices_extruded[i] != -1 &&
                   target_vertices_extruded[j] != -1);
            if (boundary_vertex[i] && boundary_vertex[j]) {
                assert(target_vertices[i] != -1 && target_vertices[j] != -1);
                its_extruded.indices.emplace_back(
                    Vec3i{target_vertices[i], target_vertices[j],
                          target_vertices_extruded[i]});
                its_extruded.indices.emplace_back(
                    Vec3i{target_vertices_extruded[i], target_vertices[j],
                          target_vertices_extruded[j]});
            }
        }
    }

    its_write_obj(its_extruded, "c:\\data\\temp\\text-extruded.obj");

    indexed_triangle_set edges_its;
    std::vector<Vec3f>   edges_its_colors;
    for (auto ei : cgal_object.edges())
        if (cgal_object.is_valid(ei)) {
            const auto &p1 = cgal_object.point(cgal_object.vertex(ei, 0));
            const auto &p2 = cgal_object.point(cgal_object.vertex(ei, 1));
            bool constrained = get(ecm, ei);
            Vec3f color = constrained ? Vec3f{ 1.f, 0, 0 } : Vec3f{ 0, 1., 0 };
            edges_its.indices.emplace_back(Vec3i(edges_its.vertices.size(), edges_its.vertices.size() + 1, edges_its.vertices.size() + 2));
            edges_its.vertices.emplace_back(Vec3f(p1.x(), p1.y(), p1.z()));
            edges_its.vertices.emplace_back(Vec3f(p2.x(), p2.y(), p2.z()));
            edges_its.vertices.emplace_back(Vec3f(p2.x(), p2.y(), p2.z() + 0.001));
            edges_its_colors.emplace_back(color);
            edges_its_colors.emplace_back(color);
            edges_its_colors.emplace_back(color);
        }
    its_write_obj(edges_its, edges_its_colors, "c:\\data\\temp\\corefined-edges.obj");

//    MeshBoolean::cgal::minus(cube, cube2);

//    REQUIRE(!MeshBoolean::cgal::does_self_intersect(cube));
}