File: test_geometry.cpp

package info (click to toggle)
slic3r-prusa 2.9.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 196,524 kB
  • sloc: cpp: 534,736; ansic: 71,269; yacc: 1,311; makefile: 256; lex: 241; sh: 113
file content (873 lines) | stat: -rw-r--r-- 34,470 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
#include <catch2/catch_test_macros.hpp>

#include "libslic3r/Point.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/Polyline.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Geometry/Circle.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/ShortestPath.hpp"

//#include <random>
#include "libslic3r/SVG.hpp"

#include "../data/prusaparts.hpp"

#include <unordered_set>

using namespace Slic3r;

TEST_CASE("Line::parallel_to", "[Geometry]"){
    Line l{ { 100000, 0 }, { 0, 0 } };
    Line l2{ { 200000, 0 }, { 0, 0 } };
    REQUIRE(l.parallel_to(l));
    REQUIRE(l.parallel_to(l2));

    Line l3(l2);
    l3.rotate(0.9 * EPSILON, { 0, 0 });
    REQUIRE(l.parallel_to(l3));

    Line l4(l2);
    l4.rotate(1.1 * EPSILON, { 0, 0 });
    REQUIRE(! l.parallel_to(l4));

    // The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
    Line l5{ { 20000, 0 }, { 0, 0 } };
    l5.rotate(1.1 * EPSILON, { 0, 0 });
    REQUIRE(l.parallel_to(l5));

    l.rotate(1., { 0, 0 });
    Point offset{ 342876, 97636249 };
    l.translate(offset);
    l3.rotate(1., { 0, 0 });
    l3.translate(offset);
    l4.rotate(1., { 0, 0 });
    l4.translate(offset);
    REQUIRE(l.parallel_to(l3));
    REQUIRE(!l.parallel_to(l4));
}

TEST_CASE("Line::perpendicular_to", "[Geometry]") {
    Line l{ { 100000, 0 }, { 0, 0 } };
    Line l2{ { 0, 200000 }, { 0, 0 } };
    REQUIRE(! l.perpendicular_to(l));
    REQUIRE(l.perpendicular_to(l2));

    Line l3(l2);
    l3.rotate(0.9 * EPSILON, { 0, 0 });
    REQUIRE(l.perpendicular_to(l3));

    Line l4(l2);
    l4.rotate(1.1 * EPSILON, { 0, 0 });
    REQUIRE(! l.perpendicular_to(l4));

    // The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
    Line l5{ { 0, 20000 }, { 0, 0 } };
    l5.rotate(1.1 * EPSILON, { 0, 0 });
    REQUIRE(l.perpendicular_to(l5));

    l.rotate(1., { 0, 0 });
    Point offset{ 342876, 97636249 };
    l.translate(offset);
    l3.rotate(1., { 0, 0 });
    l3.translate(offset);
    l4.rotate(1., { 0, 0 });
    l4.translate(offset);
    REQUIRE(l.perpendicular_to(l3));
    REQUIRE(! l.perpendicular_to(l4));
}

TEST_CASE("Polygon::contains works properly", "[Geometry]"){
   // this test was failing on Windows (GH #1950)
    Slic3r::Polygon polygon(Points({
        {207802834,-57084522},
        {196528149,-37556190},
        {173626821,-25420928},
        {171285751,-21366123},
        {118673592,-21366123},
        {116332562,-25420928},
        {93431208,-37556191},
        {82156517,-57084523},
        {129714478,-84542120},
        {160244873,-84542120}
    }));
    Point point(95706562, -57294774);
    REQUIRE(polygon.contains(point));
}

SCENARIO("Intersections of line segments", "[Geometry]"){
    GIVEN("Integer coordinates"){
        Line line1(Point(5,15),Point(30,15));
        Line line2(Point(10,20), Point(10,10));
        THEN("The intersection is valid"){
            Point point;
            line1.intersection(line2,&point);
            REQUIRE(Point(10,15) == point);
        }
    }

    GIVEN("Scaled coordinates"){
        Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
        Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
        THEN("There is still an intersection"){
            Point point;
            REQUIRE(line1.intersection(line2,&point));
        }
    }
}

SCENARIO("polygon_is_convex works") {
    GIVEN("A square of dimension 10") {
        WHEN("Polygon is convex clockwise") {
            Polygon cw_square  { { {0, 0}, {0,10}, {10,10}, {10,0} } };
            THEN("it is not convex") {
                REQUIRE(! polygon_is_convex(cw_square));
            }
        }
        WHEN("Polygon is convex counter-clockwise") {
            Polygon ccw_square { { {0, 0}, {10,0}, {10,10}, {0,10} } };
            THEN("it is convex") {
                REQUIRE(polygon_is_convex(ccw_square));
            }
        } 
    }
    GIVEN("A concave polygon") {
        Polygon concave = { {0,0}, {10,0}, {10,10}, {0,10}, {0,6}, {4,6}, {4,4}, {0,4} };
        THEN("It is not convex") {
            REQUIRE(! polygon_is_convex(concave));
        }
    }
}

TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
    Slic3r::Polyline polyline;
    polyline.points = Points({Point(0, 0), Point(10, 0), Point(20, 0)});
    REQUIRE(polyline.lines().at(0).a == Point(0,0));
    REQUIRE(polyline.lines().at(0).b == Point(10,0));
    REQUIRE(polyline.lines().at(1).a == Point(10,0));
    REQUIRE(polyline.lines().at(1).b == Point(20,0));
}

TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
    Slic3r::Polygon polygon(Points({Point(0, 0), Point(10, 0), Point(5, 5)}));
    Slic3r::Polyline split = polygon.split_at_index(1);
    REQUIRE(split.points[0]==Point(10,0));
    REQUIRE(split.points[1]==Point(5,5));
    REQUIRE(split.points[2]==Point(0,0));
    REQUIRE(split.points[3]==Point(10,0));
}


SCENARIO("BoundingBox", "[Geometry]") {
    WHEN("Bounding boxes are scaled") {
        BoundingBox bb(Points({Point(0, 1), Point(10, 2), Point(20, 2)}));
        bb.scale(2);
        REQUIRE(bb.min == Point(0,2));
        REQUIRE(bb.max == Point(40,4));
    }
    WHEN("BoundingBox constructed from points") {
        BoundingBox bb(Points{ {100,200}, {100, 200}, {500, -600} });
        THEN("minimum is correct") {
            REQUIRE(bb.min == Point{100,-600});
        }
        THEN("maximum is correct") {
            REQUIRE(bb.max == Point{500,200});
        }
    }
    WHEN("BoundingBox constructed from a single point") {
        BoundingBox bb;
        bb.merge({10, 10});
        THEN("minimum equals to the only defined point") {
            REQUIRE(bb.min == Point{10,10});
        }
        THEN("maximum equals to the only defined point") {
            REQUIRE(bb.max == Point{10,10});
        }
    }
}

TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
	Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
    Slic3r::Polygon area = offset(tmp,5).at(0);
    REQUIRE(area.area() == Slic3r::Polygon(Points({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
}

SCENARIO("Circle Fit, 3 points", "[Geometry]") {
    WHEN("Three points make a circle") {
        double s1 = scaled<double>(1.);
        THEN("circle_center(): A center point { 0, 0 } is returned") {
            Vec2d center = Geometry::circle_center(Vec2d{ s1, 0. }, Vec2d{ 0, s1 }, Vec2d{ -s1, 0. }, SCALED_EPSILON);
            REQUIRE(is_approx(center, Vec2d(0, 0)));
        }
        THEN("circle_center(): A center point { 0, 0 } is returned for points in reverse") {
            Vec2d center = Geometry::circle_center(Vec2d{ -s1, 0. }, Vec2d{ 0, s1 }, Vec2d{ s1, 0. }, SCALED_EPSILON);
            REQUIRE(is_approx(center, Vec2d(0, 0)));
        }
        THEN("try_circle_center(): A center point { 0, 0 } is returned") {
            std::optional<Vec2d> center = Geometry::try_circle_center(Vec2d{ s1, 0. }, Vec2d{ 0, s1 }, Vec2d{ -s1, 0. }, SCALED_EPSILON);
            REQUIRE(center);
            REQUIRE(is_approx(*center, Vec2d(0, 0)));
        }
        THEN("try_circle_center(): A center point { 0, 0 } is returned for points in reverse") {
            std::optional<Vec2d> center = Geometry::try_circle_center(Vec2d{ -s1, 0. }, Vec2d{ 0, s1 }, Vec2d{ s1, 0. }, SCALED_EPSILON);
            REQUIRE(center);
            REQUIRE(is_approx(*center, Vec2d(0, 0)));
        }
    }
    WHEN("Three points are collinear") {
        double s1 = scaled<double>(1.);
        THEN("circle_center(): A center point { 2, 0 } is returned") {
            Vec2d center = Geometry::circle_center(Vec2d{ s1, 0. }, Vec2d{ 2. * s1, 0. }, Vec2d{ 3. * s1, 0. }, SCALED_EPSILON);
            REQUIRE(is_approx(center, Vec2d(2. * s1, 0)));
        }
        THEN("try_circle_center(): Fails for collinear points") {
            std::optional<Vec2d> center = Geometry::try_circle_center(Vec2d{ s1, 0. }, Vec2d{ 2. * s1, 0. }, Vec2d{ 3. * s1, 0. }, SCALED_EPSILON);
            REQUIRE(! center);
        }
    }
}

SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
    GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
        Vec2d expected_center(-6, 0);
        Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
        std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});

        WHEN("Circle fit is called on the entire array") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample);
            THEN("A center point of -6,0 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the first four points") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
            THEN("A center point of -6,0 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the middle four points") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
            THEN("A center point of -6,0 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
    }
    GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
        Vec2d expected_center(-3, 9);
        Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), 
                        Vec2d(0, 6.0), 
                        Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};

        std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});


        WHEN("Circle fit is called on the entire array") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample);
            THEN("A center point of 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the first four points") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
            THEN("A center point of 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the middle four points") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
            THEN("A center point of 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
    }
    GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
        Point expected_center { Point::new_scale(-3, 9)};
        Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524), 
                        Point::new_scale(0, 6.0), 
                        Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};

        std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});


        WHEN("Circle fit is called on the entire array") {
            Point result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample);
            THEN("A center point of scaled 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the first four points") {
            Point result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
            THEN("A center point of scaled 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the middle four points") {
            Point result_center(0,0);
            result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
            THEN("A center point of scaled 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
    }
}

SCENARIO("Circle Fit, least squares by decomposition or by solving normal equation", "[Geometry]") {
    auto test_circle_fit = [](const Geometry::Circled &circle, const Vec2d &center, const double radius) {
        THEN("A center point matches.") {
            REQUIRE(is_approx(circle.center, center));
        }
        THEN("Radius matches") {
            REQUIRE(is_approx(circle.radius, radius));
        }
    };

    GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
        const Vec2d  expected_center(-6., 0.);
        const double expected_radius = 6.;
        Vec2ds sample{Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
        std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d &a) { return a + expected_center; });

        WHEN("Circle fit is called on the entire array, least squares SVD") {
            test_circle_fit(Geometry::circle_linear_least_squares_svd(sample), expected_center, expected_radius);
        }
        WHEN("Circle fit is called on the first four points, least squares SVD") {
            test_circle_fit(Geometry::circle_linear_least_squares_svd(Vec2ds(sample.cbegin(), sample.cbegin() + 4)), expected_center, expected_radius);
        }
        WHEN("Circle fit is called on the middle four points, least squares SVD") {
            test_circle_fit(Geometry::circle_linear_least_squares_svd(Vec2ds(sample.cbegin() + 2, sample.cbegin() + 6)), expected_center, expected_radius);
        }

        WHEN("Circle fit is called on the entire array, least squares QR decomposition") {
            test_circle_fit(Geometry::circle_linear_least_squares_qr(sample), expected_center, expected_radius);
        }
        WHEN("Circle fit is called on the first four points, least squares QR decomposition") {
            test_circle_fit(Geometry::circle_linear_least_squares_qr(Vec2ds(sample.cbegin(), sample.cbegin() + 4)), expected_center, expected_radius);
        }
        WHEN("Circle fit is called on the middle four points, least squares QR decomposition") {
            test_circle_fit(Geometry::circle_linear_least_squares_qr(Vec2ds(sample.cbegin() + 2, sample.cbegin() + 6)), expected_center, expected_radius);
        }

        WHEN("Circle fit is called on the entire array, least squares by normal equations") {
            test_circle_fit(Geometry::circle_linear_least_squares_normal(sample), expected_center, expected_radius);
        }
        WHEN("Circle fit is called on the first four points, least squares by normal equations") {
            test_circle_fit(Geometry::circle_linear_least_squares_normal(Vec2ds(sample.cbegin(), sample.cbegin() + 4)), expected_center, expected_radius);
        }
        WHEN("Circle fit is called on the middle four points, least squares by normal equations") {
            test_circle_fit(Geometry::circle_linear_least_squares_normal(Vec2ds(sample.cbegin() + 2, sample.cbegin() + 6)), expected_center, expected_radius);
        }
    }
}

TEST_CASE("smallest_enclosing_circle_welzl", "[Geometry]") {
    // Some random points in plane.
    Points pts { 
        { 89243, 4359 }, { 763465, 59687 }, { 3245, 734987 }, { 2459867, 987634 }, { 759866, 67843982 }, { 9754687, 9834658 }, { 87235089, 743984373 }, 
        { 65874456, 2987546 }, { 98234524, 657654873 }, { 786243598, 287934765 }, { 824356, 734265 }, { 82576449, 7864534 }, { 7826345, 3984765 }
    };

    const auto c = Slic3r::Geometry::smallest_enclosing_circle_welzl(pts);
    // The radius returned is inflated by SCALED_EPSILON, thus all points should be inside.
    bool all_inside = std::all_of(pts.begin(), pts.end(), [c](const Point &pt){ return c.contains(pt.cast<double>()); });
    auto c2(c);
    c2.radius -= SCALED_EPSILON * 2.1;
    auto num_on_boundary = std::count_if(pts.begin(), pts.end(), [c2](const Point& pt) { return ! c2.contains(pt.cast<double>(), SCALED_EPSILON); });

    REQUIRE(all_inside);
    REQUIRE(num_on_boundary == 3);
}

SCENARIO("Path chaining", "[Geometry]") {
	GIVEN("A path") {
		Points points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
		THEN("Chained with no diagonals (thus 26 units long)") {
            // if chain_points() works correctly, these points should be joined with no diagonal paths
			std::vector<Points::size_type> indices = chain_points(points);
			for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
				double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
				REQUIRE(std::abs(dist-26) <= EPSILON);
			}
		}
	}
	GIVEN("Gyroid infill end points") {
		Polylines polylines = {
			{ {28122608, 3221037}, {27919139, 56036027} },
			{ {33642863, 3400772}, {30875220, 56450360} },
			{ {34579315, 3599827}, {35049758, 55971572} },
			{ {26483070, 3374004}, {23971830, 55763598} },
			{ {38931405, 4678879}, {38740053, 55077714} },
			{ {20311895, 5015778}, {20079051, 54551952} },
			{ {16463068, 6773342}, {18823514, 53992958} },
			{ {44433771, 7424951}, {42629462, 53346059} },
			{ {15697614, 7329492}, {15350896, 52089991} },
			{ {48085792, 10147132}, {46435427, 50792118} },
			{ {48828819, 10972330}, {49126582, 48368374} },
			{ {9654526, 12656711}, {10264020, 47691584} },
			{ {5726905, 18648632}, {8070762, 45082416} },
			{ {54818187, 39579970}, {52974912, 43271272} }, 
			{ {4464342, 37371742}, {5027890, 39106220} },
			{ {54139746, 18417661}, {55177987, 38472580} }, 
			{ {56527590, 32058461}, {56316456, 34067185} },
			{ {3303988, 29215290}, {3569863, 32985633} },
			{ {56255666, 25025857}, {56478310, 27144087} }, 
			{ {4300034, 22805361}, {3667946, 25752601} },
			{ {8266122, 14250611}, {6244813, 17751595} },
			{ {12177955, 9886741}, {10703348, 11491900} } 
		};
		Polylines chained = chain_polylines(polylines);
		THEN("Chained taking the shortest path") {
			double connection_length = 0.;
			for (size_t i = 1; i < chained.size(); ++i) {
				const Polyline &pl1 = chained[i - 1];
				const Polyline &pl2 = chained[i];
				connection_length += (pl2.first_point() - pl1.last_point()).cast<double>().norm();
			}
			REQUIRE(connection_length < 85206000.);
		}
	}
	GIVEN("Loop pieces") {
		Point a { 2185796, 19058485 };
		Point b { 3957902, 18149382 };
		Point c { 2912841, 18790564 };
		Point d { 2831848, 18832390 };
		Point e { 3179601, 18627769 };
		Point f { 3137952, 18653370 };
		Polylines polylines = { { a, b },
								{ c, d },
								{ e, f },
								{ d, a },
								{ f, c },
								{ b, e } };
		Polylines chained = chain_polylines(polylines, &a);
		THEN("Connected without a gap") {
			for (size_t i = 0; i < chained.size(); ++i) {
				const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
				const Polyline &pl2 = chained[i];
				REQUIRE(pl1.points.back() == pl2.points.front());
			}
		}
	}
}

SCENARIO("Line distances", "[Geometry]"){
    GIVEN("A line"){
        Line line(Point(0, 0), Point(20, 0));
        THEN("Points on the line segment have 0 distance"){
            REQUIRE(line.distance_to(Point(0, 0))  == 0);
            REQUIRE(line.distance_to(Point(20, 0)) == 0);
            REQUIRE(line.distance_to(Point(10, 0)) == 0);
        
        }
        THEN("Points off the line have the appropriate distance"){
            REQUIRE(line.distance_to(Point(10, 10)) == 10);
            REQUIRE(line.distance_to(Point(50, 0)) == 30);
        }
    }
}

SCENARIO("Calculating angles", "[Geometry]")
{
    GIVEN(("Vectors 30 degrees apart"))
    {
        std::vector<std::pair<Point, Point>> pts {
            { {1000, 0}, { 866, 500 } },
            { { 866, 500 }, { 500, 866 } },
            { { 500, 866 }, { 0, 1000 } },
            { { -500, 866 }, { -866, 500 } }
        };

        THEN("Angle detected is 30 degrees")
        {
            for (auto &p : pts)
                REQUIRE(is_approx(angle(p.first, p.second), M_PI / 6.));
        }
    }

    GIVEN(("Vectors 30 degrees apart"))
    {
        std::vector<std::pair<Point, Point>> pts {
            { { 866, 500 }, {1000, 0} },
            { { 500, 866 }, { 866, 500 } },
            { { 0, 1000 }, { 500, 866 } },
            { { -866, 500 }, { -500, 866 } }
        };

        THEN("Angle detected is -30 degrees")
        {
            for (auto &p : pts)
                REQUIRE(is_approx(angle(p.first, p.second), - M_PI / 6.));
        }
    }
}

SCENARIO("Polygon convex/concave detection", "[Geometry]"){
    static constexpr const double angle_threshold = M_PI / 3.;
    GIVEN(("A Square with dimension 100")){
        auto square = Slic3r::Polygon /*new_scale*/(Points({
            Point(100,100),
            Point(200,100),
            Point(200,200),
            Point(100,200)}));
        THEN("It has 4 convex points counterclockwise"){
            REQUIRE(square.concave_points(angle_threshold).size() == 0);
            REQUIRE(square.convex_points(angle_threshold).size() == 4);
        }
        THEN("It has 4 concave points clockwise"){
            square.make_clockwise();
            REQUIRE(square.concave_points(angle_threshold).size() == 4);
            REQUIRE(square.convex_points(angle_threshold).size() == 0);
        }
    }
    GIVEN("A Square with an extra colinearvertex"){
        auto square = Slic3r::Polygon /*new_scale*/(Points({
            Point(150,100),
            Point(200,100),
            Point(200,200),
            Point(100,200),
            Point(100,100)}));
        THEN("It has 4 convex points counterclockwise"){
            REQUIRE(square.concave_points(angle_threshold).size() == 0);
            REQUIRE(square.convex_points(angle_threshold).size() == 4);
        }
    }
    GIVEN("A Square with an extra collinear vertex in different order"){
        auto square = Slic3r::Polygon /*new_scale*/(Points({
            Point(200,200),
            Point(100,200),
            Point(100,100),
            Point(150,100),
            Point(200,100)}));
        THEN("It has 4 convex points counterclockwise"){
            REQUIRE(square.concave_points(angle_threshold).size() == 0);
            REQUIRE(square.convex_points(angle_threshold).size() == 4);
        }
    }

    GIVEN("A triangle"){
        auto triangle = Slic3r::Polygon(Points({
            Point(16000170,26257364),
            Point(714223,461012),
            Point(31286371,461008)
        }));
        THEN("it has three convex vertices"){
            REQUIRE(triangle.concave_points(angle_threshold).size() == 0);
            REQUIRE(triangle.convex_points(angle_threshold).size() == 3);
        }
    }

    GIVEN("A triangle with an extra collinear point"){
        auto triangle = Slic3r::Polygon(Points({
            Point(16000170,26257364),
            Point(714223,461012),
            Point(20000000,461012),
            Point(31286371,461012)
        }));
        THEN("it has three convex vertices"){
            REQUIRE(triangle.concave_points(angle_threshold).size() == 0);
            REQUIRE(triangle.convex_points(angle_threshold).size() == 3);
        }
    }
    GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
        // Two concave vertices of this polygon have angle = PI*4/3, so this test fails
        // if epsilon is not used.
        auto polygon = Slic3r::Polygon(Points({
            Point(60246458,14802768),Point(64477191,12360001),
            Point(63727343,11060995),Point(64086449,10853608),
            Point(66393722,14850069),Point(66034704,15057334),
            Point(65284646,13758387),Point(61053864,16200839),
            Point(69200258,30310849),Point(62172547,42483120),
            Point(61137680,41850279),Point(67799985,30310848),
            Point(51399866,1905506),Point(38092663,1905506),
            Point(38092663,692699),Point(52100125,692699)
        }));
        THEN("the correct number of points are detected"){
            REQUIRE(polygon.concave_points(angle_threshold).size() == 6);
            REQUIRE(polygon.convex_points(angle_threshold).size() == 10);
        }
    }
}

TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
    auto triangle = Slic3r::Polygon(Points({
        Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
    }));
    REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
}

SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
    GIVEN(("square")){
    	Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
		Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
		SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
    }
	SECTION("arrange returns expected number of positions") {
		Pointfs positions;
		Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
    	REQUIRE(positions.size() == 4);
    }
	SECTION("directions_parallel") {
    	REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0)); 
    	REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0)); 
    	REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
    	REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
    	REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
    	REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
    }
}

TEST_CASE("Convex polygon intersection on two disjoint squares", "[Geometry][Rotcalip]") {
    Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
    A.scale(1. / SCALING_FACTOR);

    Polygon B = A;
    B.translate(20 / SCALING_FACTOR, 0);

    bool is_inters = Geometry::convex_polygons_intersect(A, B);

    REQUIRE(is_inters == false);
}

TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") {
    Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
    A.scale(1. / SCALING_FACTOR);

    Polygon B = A;
    B.translate(5 / SCALING_FACTOR, 5 / SCALING_FACTOR);

    bool is_inters = Geometry::convex_polygons_intersect(A, B);

    REQUIRE(is_inters == true);
}

TEST_CASE("Convex polygon intersection on two squares touching one edge", "[Geometry][Rotcalip]") {
    Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
    A.scale(1. / SCALING_FACTOR);

    Polygon B = A;
    B.translate(10 / SCALING_FACTOR, 0);

    bool is_inters = Geometry::convex_polygons_intersect(A, B);

    REQUIRE(is_inters == false);
}

TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") {
    Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
    A.scale(1. / SCALING_FACTOR);

    Polygon B = A;
    B.translate(10 / SCALING_FACTOR, 10 / SCALING_FACTOR);

    SVG svg{std::string("one_vertex_touch") + ".svg"};
    svg.draw(A, "blue");
    svg.draw(B, "green");
    svg.Close();

    bool is_inters = Geometry::convex_polygons_intersect(A, B);

    REQUIRE(is_inters == false);
}

TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") {
    Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
    A.scale(1. / SCALING_FACTOR);

    Polygon B = A;

    bool is_inters = Geometry::convex_polygons_intersect(A, B);

    REQUIRE(is_inters == true);
}

//// Only for benchmarking
//static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt)
//{
//    std::uniform_int_distribution<coord_t> dist(0, 100);

//    Polygon out;
//    out.points.reserve(point_cnt);

//    coord_t tr = dist(rg) * 2 / SCALING_FACTOR;

//    for (size_t i = 0; i < point_cnt; ++i)
//        out.points.emplace_back(tr + dist(rg) / SCALING_FACTOR,
//                                tr + dist(rg) / SCALING_FACTOR);

//    return Geometry::convex_hull(out.points);
//}
//TEST_CASE("Convex polygon intersection test on random polygons", "[Geometry]") {
//    constexpr size_t TEST_CNT = 1000;
//    constexpr size_t POINT_CNT = 1000;

//    auto seed = std::random_device{}();
////    unsigned long seed = 2525634386;
//    std::mt19937_64 rg{seed};
//    Benchmark bench;

//    auto tests = reserve_vector<std::pair<Polygon, Polygon>>(TEST_CNT);
//    auto results = reserve_vector<bool>(TEST_CNT);
//    auto expects = reserve_vector<bool>(TEST_CNT);

//    for (size_t i = 0; i < TEST_CNT; ++i) {
//        tests.emplace_back(gen_convex_poly(rg, POINT_CNT), gen_convex_poly(rg, POINT_CNT));
//    }

//    bench.start();
//    for (const auto &test : tests)
//        results.emplace_back(Geometry::convex_polygons_intersect(test.first, test.second));
//    bench.stop();

//    std::cout << "Test time: " << bench.getElapsedSec() << std::endl;

//    bench.start();
//    for (const auto &test : tests)
//        expects.emplace_back(!intersection(test.first, test.second).empty());
//    bench.stop();

//    std::cout << "Clipper time: " << bench.getElapsedSec() << std::endl;

//    REQUIRE(results.size() == expects.size());

//    auto seedstr = std::to_string(seed);
//    for (size_t i = 0; i < results.size(); ++i) {
//        // std::cout << expects[i] << " ";

//        if (results[i] != expects[i]) {
//            SVG svg{std::string("fail_seed") + seedstr + "_" + std::to_string(i) + ".svg"};
//            svg.draw(tests[i].first, "blue");
//            svg.draw(tests[i].second, "green");
//            svg.Close();

//            // std::cout << std::endl;
//        }
//        REQUIRE(results[i] == expects[i]);
//    }
//    std::cout << std::endl;

//}

struct Pair
{
    size_t first, second;
    bool operator==(const Pair &b) const { return first == b.first && second == b.second; }
};

template<> struct std::hash<Pair> {
    size_t operator()(const Pair &c) const
    {
        return c.first * PRUSA_PART_POLYGONS.size() + c.second;
    }
};

TEST_CASE("Convex polygon intersection test prusa polygons", "[Geometry][Rotcalip]") {

    // Overlap of the same polygon should always be an intersection
    for (size_t i = 0; i < PRUSA_PART_POLYGONS.size(); ++i) {
        Polygon P = PRUSA_PART_POLYGONS[i];
        P = Geometry::convex_hull(P.points);
        bool res = Geometry::convex_polygons_intersect(P, P);
        if (!res) {
            SVG svg{std::string("fail_self") + std::to_string(i) + ".svg"};
            svg.draw(P, "green");
            svg.Close();
        }
        REQUIRE(res == true);
    }

    std::unordered_set<Pair> combos;
    for (size_t i = 0; i < PRUSA_PART_POLYGONS.size(); ++i) {
        for (size_t j = 0; j < PRUSA_PART_POLYGONS.size(); ++j) {
            if (i != j) {
                size_t a = std::min(i, j), b = std::max(i, j);
                combos.insert(Pair{a, b});
            }
        }
    }

    // All disjoint
    for (const auto &combo : combos) {
        Polygon A = PRUSA_PART_POLYGONS[combo.first], B = PRUSA_PART_POLYGONS[combo.second];
        A = Geometry::convex_hull(A.points);
        B = Geometry::convex_hull(B.points);

        auto bba = A.bounding_box();
        auto bbb = B.bounding_box();

        A.translate(-bba.center());
        B.translate(-bbb.center());

        B.translate(bba.size() + bbb.size());

        bool res = Geometry::convex_polygons_intersect(A, B);
        bool ref = !intersection(A, B).empty();

        if (res != ref) {
            SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
            svg.draw(A, "blue");
            svg.draw(B, "green");
            svg.Close();
        }

        REQUIRE(res == ref);
    }

    // All intersecting
    for (const auto &combo : combos) {
        Polygon A = PRUSA_PART_POLYGONS[combo.first], B = PRUSA_PART_POLYGONS[combo.second];
        A = Geometry::convex_hull(A.points);
        B = Geometry::convex_hull(B.points);

        auto bba = A.bounding_box();
        auto bbb = B.bounding_box();

        A.translate(-bba.center());
        B.translate(-bbb.center());

        bool res = Geometry::convex_polygons_intersect(A, B);
        bool ref = !intersection(A, B).empty();

        if (res != ref) {
            SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
            svg.draw(A, "blue");
            svg.draw(B, "green");
            svg.Close();
        }

        REQUIRE(res == ref);
    }
}


TEST_CASE("Euler angles roundtrip", "[Geometry]") {
    std::vector<Vec3d> euler_angles_vec = {{M_PI/2.,  -M_PI,    0.},
                                           {M_PI,     -M_PI,    0.},
                                           {M_PI,     -M_PI,    2*M_PI},
                                           {0.,       0.,       M_PI},
                                           {M_PI,     M_PI/2.,  0.},
                                           {0.2,      0.3,      -0.5}};

    // Also include all combinations of zero and +-pi/2:
    for (double x : {0., M_PI/2., -M_PI/2.})
       for (double y : {0., M_PI/2., -M_PI/2.})
          for (double z : {0., M_PI/2., -M_PI/2.})
              euler_angles_vec.emplace_back(x, y, z);

    for (Vec3d& euler_angles : euler_angles_vec) {
        Transform3d trafo1 = Geometry::rotation_transform(euler_angles);
        euler_angles = Geometry::extract_rotation(trafo1);
        Transform3d trafo2 = Geometry::rotation_transform(euler_angles);

        REQUIRE(trafo1.isApprox(trafo2));
    }
}