File: test_polygon.cpp

package info (click to toggle)
slic3r-prusa 2.9.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 196,524 kB
  • sloc: cpp: 534,736; ansic: 71,269; yacc: 1,311; makefile: 256; lex: 241; sh: 113
file content (230 lines) | stat: -rw-r--r-- 10,924 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#include <catch2/catch_test_macros.hpp>

#include "libslic3r/Point.hpp"
#include "libslic3r/Polygon.hpp"

using namespace Slic3r;

SCENARIO("Converted Perl tests", "[Polygon]") {
    GIVEN("ccw_square") {
        Polygon ccw_square{ { 100, 100 }, { 200, 100 }, { 200, 200 }, { 100, 200 } };
        Polygon cw_square(ccw_square);
        cw_square.reverse();

        THEN("ccw_square is valid") {
            REQUIRE(ccw_square.is_valid());
        }
        THEN("cw_square is valid") {
            REQUIRE(cw_square.is_valid());
        }
        THEN("ccw_square.area") {
            REQUIRE(ccw_square.area() == 100 * 100);
        }
        THEN("cw_square.area") {
            REQUIRE(cw_square.area() == - 100 * 100);
        }
        THEN("ccw_square.centroid") {
            REQUIRE(ccw_square.centroid() == Point { 150, 150 });
        }
        THEN("cw_square.centroid") {
            REQUIRE(cw_square.centroid() == Point { 150, 150 });
        }
        THEN("ccw_square.contains_point(150, 150)") {
            REQUIRE(ccw_square.contains({ 150, 150 }));
        }
        THEN("cw_square.contains_point(150, 150)") {
            REQUIRE(cw_square.contains({ 150, 150 }));
        }
        THEN("conversion to lines") {
            REQUIRE(ccw_square.lines() == Lines{
                { { 100, 100 }, { 200, 100 } },
                { { 200, 100 }, { 200, 200 } },
                { { 200, 200 }, { 100, 200 } },
                { { 100, 200 }, { 100, 100 } } });
        }
        THEN("split_at_first_point") {
            REQUIRE(ccw_square.split_at_first_point() == Polyline { ccw_square[0], ccw_square[1], ccw_square[2], ccw_square[3], ccw_square[0] });
        }
        THEN("split_at_index(2)") {
            REQUIRE(ccw_square.split_at_index(2) == Polyline { ccw_square[2], ccw_square[3], ccw_square[0], ccw_square[1], ccw_square[2] });
        }
        THEN("split_at_vertex(ccw_square[2])") {
            REQUIRE(ccw_square.split_at_vertex(ccw_square[2]) == Polyline { ccw_square[2], ccw_square[3], ccw_square[0], ccw_square[1], ccw_square[2] });
        }
        THEN("is_counter_clockwise") {
            REQUIRE(ccw_square.is_counter_clockwise());
        }
        THEN("! is_counter_clockwise") {
            REQUIRE(! cw_square.is_counter_clockwise());
        }
        THEN("make_counter_clockwise") {
            cw_square.make_counter_clockwise();
            REQUIRE(cw_square.is_counter_clockwise());
        }
        THEN("make_counter_clockwise^2") {
            cw_square.make_counter_clockwise();
            cw_square.make_counter_clockwise();
            REQUIRE(cw_square.is_counter_clockwise());
        }
        THEN("first_point") {
            REQUIRE(&ccw_square.first_point() == &ccw_square.points.front());
        }
    }
    GIVEN("Triangulating hexagon") {
        Polygon hexagon{ { 100, 0 } };
        for (size_t i = 1; i < 6; ++ i) {
            Point p = hexagon.points.front();
            p.rotate(PI / 3 * i);
            hexagon.points.emplace_back(p);
        }
        Polygons triangles;
        hexagon.triangulate_convex(&triangles);
        THEN("right number of triangles") {
            REQUIRE(triangles.size() == 4);
        }
        THEN("all triangles are ccw") {
            auto it = std::find_if(triangles.begin(), triangles.end(), [](const Polygon &tri) { return tri.is_clockwise(); });
            REQUIRE(it == triangles.end());
        }
    }
    GIVEN("General triangle") {
        Polygon polygon { { 50000000, 100000000 }, { 300000000, 102000000 }, { 50000000, 104000000 } };
        Line    line { { 175992032, 102000000 }, { 47983964, 102000000 } };
        Point   intersection;
        bool    has_intersection = polygon.intersection(line, &intersection);
        THEN("Intersection with line") {
            REQUIRE(has_intersection);
            REQUIRE(intersection == Point { 50000000, 102000000 });
        }
    }
}

TEST_CASE("Centroid of Trapezoid must be inside", "[Polygon][Utils]")
{
    Slic3r::Polygon trapezoid {
        { 4702134, 1124765853 },
        { -4702134, 1124765853 },
        { -9404268, 1049531706 },
        { 9404268, 1049531706 },
    };
    Point centroid = trapezoid.centroid();
    CHECK(trapezoid.contains(centroid));
}

// This test currently only covers remove_collinear_points.
// All remaining tests are to be ported from xs/t/06_polygon.t

Slic3r::Points collinear_circle({
    Slic3r::Point::new_scale(0, 0), // 3 collinear points at beginning
    Slic3r::Point::new_scale(10, 0),
    Slic3r::Point::new_scale(20, 0),
    Slic3r::Point::new_scale(30, 10),
    Slic3r::Point::new_scale(40, 20), // 2 collinear points
    Slic3r::Point::new_scale(40, 30),
    Slic3r::Point::new_scale(30, 40), // 3 collinear points
    Slic3r::Point::new_scale(20, 40),
    Slic3r::Point::new_scale(10, 40),
    Slic3r::Point::new_scale(-10, 20),
    Slic3r::Point::new_scale(-20, 10),
    Slic3r::Point::new_scale(-20, 0), // 3 collinear points at end
    Slic3r::Point::new_scale(-10, 0),
    Slic3r::Point::new_scale(-5, 0)
});

SCENARIO("Remove collinear points from Polygon", "[Polygon]") {
    GIVEN("Polygon with collinear points"){
        Slic3r::Polygon p(collinear_circle);
        WHEN("collinear points are removed") {
            remove_collinear(p);
            THEN("Leading collinear points are removed") {
                REQUIRE(p.points.front() == Slic3r::Point::new_scale(20, 0));
            }
            THEN("Trailing collinear points are removed") {
                REQUIRE(p.points.back() == Slic3r::Point::new_scale(-20, 0));
            }
            THEN("Number of remaining points is correct") {
                REQUIRE(p.points.size() == 7);
            }
        }
    }
}

SCENARIO("Simplify polygon", "[Polygon]")
{
    GIVEN("gear") {
        auto gear = Polygon::new_scale({
            {144.9694,317.1543}, {145.4181,301.5633}, {146.3466,296.921}, {131.8436,294.1643}, {131.7467,294.1464},
            {121.7238,291.5082}, {117.1631,290.2776}, {107.9198,308.2068}, {100.1735,304.5101}, {104.9896,290.3672},
            {106.6511,286.2133}, {93.453,279.2327}, {81.0065,271.4171}, {67.7886,286.5055}, {60.7927,280.1127},
            {69.3928,268.2566}, {72.7271,264.9224}, {61.8152,253.9959}, {52.2273,242.8494}, {47.5799,245.7224},
            {34.6577,252.6559}, {30.3369,245.2236}, {42.1712,236.3251}, {46.1122,233.9605}, {43.2099,228.4876},
            {35.0862,211.5672}, {33.1441,207.0856}, {13.3923,212.1895}, {10.6572,203.3273}, {6.0707,204.8561},
            {7.2775,204.4259}, {29.6713,196.3631}, {25.9815,172.1277}, {25.4589,167.2745}, {19.8337,167.0129},
            {5.0625,166.3346}, {5.0625,156.9425}, {5.3701,156.9282}, {21.8636,156.1628}, {25.3713,156.4613},
            {25.4243,155.9976}, {29.3432,155.8157}, {30.3838,149.3549}, {26.3596,147.8137}, {27.1085,141.2604},
            {29.8466,126.8337}, {24.5841,124.9201}, {10.6664,119.8989}, {13.4454,110.9264}, {33.1886,116.0691},
            {38.817,103.1819}, {45.8311,89.8133}, {30.4286,76.81}, {35.7686,70.0812}, {48.0879,77.6873},
            {51.564,81.1635}, {61.9006,69.1791}, {72.3019,58.7916}, {60.5509,42.5416}, {68.3369,37.1532},
            {77.9524,48.1338}, {80.405,52.2215}, {92.5632,44.5992}, {93.0123,44.3223}, {106.3561,37.2056},
            {100.8631,17.4679}, {108.759,14.3778}, {107.3148,11.1283}, {117.0002,32.8627}, {140.9109,27.3974},
            {145.7004,26.4994}, {145.1346,6.1011}, {154.502,5.4063}, {156.9398,25.6501}, {171.0557,26.2017},
            {181.3139,27.323}, {186.2377,27.8532}, {191.6031,8.5474}, {200.6724,11.2756}, {197.2362,30.2334},
            {220.0789,39.1906}, {224.3261,41.031}, {236.3506,24.4291}, {243.6897,28.6723}, {234.2956,46.7747},
            {245.6562,55.1643}, {257.2523,65.0901}, {261.4374,61.5679}, {273.1709,52.8031}, {278.555,59.5164},
            {268.4334,69.8001}, {264.1615,72.3633}, {268.2763,77.9442}, {278.8488,93.5305}, {281.4596,97.6332},
            {286.4487,95.5191}, {300.2821,90.5903}, {303.4456,98.5849}, {286.4523,107.7253}, {293.7063,131.1779},
            {294.9748,135.8787}, {314.918,133.8172}, {315.6941,143.2589}, {300.9234,146.1746}, {296.6419,147.0309},
            {297.1839,161.7052}, {296.6136,176.3942}, {302.1147,177.4857}, {316.603,180.3608}, {317.1658,176.7341},
            {315.215,189.6589}, {315.1749,189.6548}, {294.9411,187.5222}, {291.13,201.7233}, {286.2615,215.5916},
            {291.1944,218.2545}, {303.9158,225.1271}, {299.2384,233.3694}, {285.7165,227.6001}, {281.7091,225.1956},
            {273.8981,237.6457}, {268.3486,245.2248}, {267.4538,246.4414}, {264.8496,250.0221}, {268.6392,253.896},
            {278.5017,265.2131}, {272.721,271.4403}, {257.2776,258.3579}, {234.4345,276.5687}, {242.6222,294.8315},
            {234.9061,298.5798}, {227.0321,286.2841}, {225.2505,281.8301}, {211.5387,287.8187}, {202.3025,291.0935},
            {197.307,292.831}, {199.808,313.1906}, {191.5298,315.0787}, {187.3082,299.8172}, {186.4201,295.3766},
            {180.595,296.0487}, {161.7854,297.4248}, {156.8058,297.6214}, {154.3395,317.8592}
        });
     
        WHEN("simplified") {
            size_t num_points = gear.size();
            Polygons simplified = gear.simplify(1000.);
            THEN("gear simplified to a single polygon") {
                REQUIRE(simplified.size() == 1);
            }
            THEN("gear was reduced using Douglas-Peucker") {
                //note printf "original points: %d\nnew points: %d", $num_points, scalar(@{$simplified->[0]});
                REQUIRE(simplified.front().size() < num_points);
            }
        }
    }
}

#include "libslic3r/ExPolygon.hpp"
#include "libslic3r/ExPolygonsIndex.hpp"
TEST_CASE("Indexing expolygons", "[ExPolygon]")
{
    ExPolygons expolys{
        ExPolygon{Polygon{{0, 0}, {10, 0}, {0, 5}}, Polygon{{4, 3}, {6, 3}, {5, 2}}},
        ExPolygon{Polygon{{100, 0}, {110, 0}, {100, 5}}, Polygon{{104, 3}, {106, 3}, {105, 2}}}    
    };
    Points points = to_points(expolys);
    Lines lines = to_lines(expolys);
    Linesf linesf = to_linesf(expolys);
    ExPolygonsIndices ids(expolys);
    REQUIRE(points.size() == lines.size());
    REQUIRE(points.size() == linesf.size());
    REQUIRE(points.size() == ids.get_count());
    for (size_t i = 0; i < ids.get_count(); i++) { 
        ExPolygonsIndex id = ids.cvt(i);
        const ExPolygon &expoly = expolys[id.expolygons_index];
        const Polygon &poly     = id.is_contour() ? expoly.contour : expoly.holes[id.hole_index()];
        const Points &pts       = poly.points;
        const Point &p          = pts[id.point_index];
        CHECK(points[i] == p);
        CHECK(lines[i].a == p);
        CHECK(linesf[i].a.cast<int>() == p);
        CHECK(ids.cvt(id) == i);
        const Point &p_b = ids.is_last_point(id) ? pts.front() : pts[id.point_index + 1];
        CHECK(lines[i].b == p_b);
        CHECK(linesf[i].b.cast<int>() == p_b);
    }
}