1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
<HTML>
<HEAD><TITLE>AB01OD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB01OD">AB01OD</A></H2>
<H3>
Staircase form for multi-input systems using orthogonal state and input transformations
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To reduce the matrices A and B using (and optionally accumulating)
state-space and input-space transformations U and V respectively,
such that the pair of matrices
Ac = U' * A * U, Bc = U' * B * V
are in upper "staircase" form. Specifically,
[ Acont * ] [ Bcont ]
Ac = [ ], Bc = [ ],
[ 0 Auncont ] [ 0 ]
and
[ A11 A12 . . . A1,p-1 A1p ] [ B1 ]
[ A21 A22 . . . A2,p-1 A2p ] [ 0 ]
[ 0 A32 . . . A3,p-1 A3p ] [ 0 ]
Acont = [ . . . . . . . ], Bc = [ . ],
[ . . . . . . ] [ . ]
[ . . . . . ] [ . ]
[ 0 0 . . . Ap,p-1 App ] [ 0 ]
where the blocks B1, A21, ..., Ap,p-1 have full row ranks and
p is the controllability index of the pair. The size of the
block Auncont is equal to the dimension of the uncontrollable
subspace of the pair (A, B). The first stage of the reduction,
the "forward" stage, accomplishes the reduction to the orthogonal
canonical form (see SLICOT library routine AB01ND). The blocks
B1, A21, ..., Ap,p-1 are further reduced in a second, "backward"
stage to upper triangular form using RQ factorization. Each of
these stages is optional.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB01OD( STAGES, JOBU, JOBV, N, M, A, LDA, B, LDB, U,
$ LDU, V, LDV, NCONT, INDCON, KSTAIR, TOL, IWORK,
$ DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER JOBU, JOBV, STAGES
INTEGER INDCON, INFO, LDA, LDB, LDU, LDV, LDWORK, M, N,
$ NCONT
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*), KSTAIR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), U(LDU,*), V(LDV,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
STAGES CHARACTER*1
Specifies the reduction stages to be performed as follows:
= 'F': Perform the forward stage only;
= 'B': Perform the backward stage only;
= 'A': Perform both (all) stages.
JOBU CHARACTER*1
Indicates whether the user wishes to accumulate in a
matrix U the state-space transformations as follows:
= 'N': Do not form U;
= 'I': U is internally initialized to the unit matrix (if
STAGES <> 'B'), or updated (if STAGES = 'B'), and
the orthogonal transformation matrix U is
returned.
JOBV CHARACTER*1
Indicates whether the user wishes to accumulate in a
matrix V the input-space transformations as follows:
= 'N': Do not form V;
= 'I': V is initialized to the unit matrix and the
orthogonal transformation matrix V is returned.
JOBV is not referenced if STAGES = 'F'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The actual state dimension, i.e. the order of the
matrix A. N >= 0.
M (input) INTEGER
The actual input dimension. M >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state transition matrix A to be transformed.
If STAGES = 'B', A should be in the orthogonal canonical
form, as returned by SLICOT library routine AB01ND.
On exit, the leading N-by-N part of this array contains
the transformed state transition matrix U' * A * U.
The leading NCONT-by-NCONT part contains the upper block
Hessenberg state matrix Acont in Ac, given by U' * A * U,
of a controllable realization for the original system.
The elements below the first block-subdiagonal are set to
zero. If STAGES <> 'F', the subdiagonal blocks of A are
triangularized by RQ factorization, and the annihilated
elements are explicitly zeroed.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the input matrix B to be transformed.
If STAGES = 'B', B should be in the orthogonal canonical
form, as returned by SLICOT library routine AB01ND.
On exit with STAGES = 'F', the leading N-by-M part of
this array contains the transformed input matrix U' * B,
with all elements but the first block set to zero.
On exit with STAGES <> 'F', the leading N-by-M part of
this array contains the transformed input matrix
U' * B * V, with all elements but the first block set to
zero and the first block in upper triangular form.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
U (input/output) DOUBLE PRECISION array, dimension (LDU,N)
If STAGES <> 'B' or JOBU = 'N', then U need not be set
on entry.
If STAGES = 'B' and JOBU = 'I', then, on entry, the
leading N-by-N part of this array must contain the
transformation matrix U that reduced the pair to the
orthogonal canonical form.
On exit, if JOBU = 'I', the leading N-by-N part of this
array contains the transformation matrix U that performed
the specified reduction.
If JOBU = 'N', the array U is not referenced and can be
supplied as a dummy array (i.e. set parameter LDU = 1 and
declare this array to be U(1,1) in the calling program).
LDU INTEGER
The leading dimension of array U.
If JOBU = 'I', LDU >= MAX(1,N); if JOBU = 'N', LDU >= 1.
V (output) DOUBLE PRECISION array, dimension (LDV,M)
If JOBV = 'I', then the leading M-by-M part of this array
contains the transformation matrix V.
If STAGES = 'F', or JOBV = 'N', the array V is not
referenced and can be supplied as a dummy array (i.e. set
parameter LDV = 1 and declare this array to be V(1,1) in
the calling program).
LDV INTEGER
The leading dimension of array V.
If STAGES <> 'F' and JOBV = 'I', LDV >= MAX(1,M);
if STAGES = 'F' or JOBV = 'N', LDV >= 1.
NCONT (input/output) INTEGER
The order of the controllable state-space representation.
NCONT is input only if STAGES = 'B'.
INDCON (input/output) INTEGER
The number of stairs in the staircase form (also, the
controllability index of the controllable part of the
system representation).
INDCON is input only if STAGES = 'B'.
KSTAIR (input/output) INTEGER array, dimension (N)
The leading INDCON elements of this array contain the
dimensions of the stairs, or, also, the orders of the
diagonal blocks of Acont.
KSTAIR is input if STAGES = 'B', and output otherwise.
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
The tolerance to be used in rank determination when
transforming (A, B). If the user sets TOL > 0, then
the given value of TOL is used as a lower bound for the
reciprocal condition number (see the description of the
argument RCOND in the SLICOT routine MB03OD); a
(sub)matrix whose estimated condition number is less than
1/TOL is considered to be of full rank. If the user sets
TOL <= 0, then an implicitly computed, default tolerance,
defined by TOLDEF = N*N*EPS, is used instead, where EPS
is the machine precision (see LAPACK Library routine
DLAMCH).
TOL is not referenced if STAGES = 'B'.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (M)
IWORK is not referenced if STAGES = 'B'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
If STAGES <> 'B', LDWORK >= MAX(1, N + MAX(N,3*M));
If STAGES = 'B', LDWORK >= MAX(1, M + MAX(N,M)).
For optimum performance LDWORK should be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Staircase reduction of the pencil [B|sI - A] is used. Orthogonal
transformations U and V are constructed such that
|B |sI-A * . . . * * |
| 1| 11 . . . |
| | A sI-A . . . |
| | 21 22 . . . |
| | . . * * |
[U'BV|sI - U'AU] = |0 | 0 . . |
| | A sI-A * |
| | p,p-1 pp |
| | |
|0 | 0 0 sI-A |
| | p+1,p+1|
where the i-th diagonal block of U'AU has dimension KSTAIR(i),
for i = 1,...,p. The value of p is returned in INDCON. The last
block contains the uncontrollable modes of the (A,B)-pair which
are also the generalized eigenvalues of the above pencil.
The complete reduction is performed in two stages. The first,
forward stage accomplishes the reduction to the orthogonal
canonical form. The second, backward stage consists in further
reduction to triangular form by applying left and right orthogonal
transformations.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Van Dooren, P.
The generalized eigenvalue problem in linear system theory.
IEEE Trans. Auto. Contr., AC-26, pp. 111-129, 1981.
[2] Miminis, G. and Paige, C.
An algorithm for pole assignment of time-invariant multi-input
linear systems.
Proc. 21st IEEE CDC, Orlando, Florida, 1, pp. 62-67, 1982.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires O((N + M) x N**2) operations and is
backward stable (see [1]).
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
If the system matrices A and B are badly scaled, it would be
useful to scale them with SLICOT routine TB01ID, before calling
the routine.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB01OD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX
PARAMETER ( NMAX = 20, MMAX = 20 )
INTEGER LDA, LDB, LDU, LDV
PARAMETER ( LDA = NMAX, LDB = NMAX, LDU = NMAX,
$ LDV = MMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = MMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = NMAX + MAX( NMAX, 3*MMAX ) )
* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER I, INDCON, INFO, J, M, N, NCONT
CHARACTER*1 JOBU, JOBV, STAGES
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), DWORK(LDWORK),
$ U(LDU,NMAX), V(LDV,MMAX)
INTEGER IWORK(LIWORK), KSTAIR(NMAX)
* .. External Subroutines ..
EXTERNAL AB01OD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, TOL, STAGES, JOBU, JOBV
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), I = 1,N ), J = 1,N )
IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
* Reduce the matrices A and B to upper "staircase" form.
CALL AB01OD( STAGES, JOBU, JOBV, N, M, A, LDA, B, LDB, U,
$ LDU, V, LDV, NCONT, INDCON, KSTAIR, TOL, IWORK,
$ DWORK, LDWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
40 CONTINUE
WRITE ( NOUT, FMT = 99994 ) INDCON
WRITE ( NOUT, FMT = 99993 ) ( KSTAIR(I), I = 1,INDCON )
END IF
END IF
END IF
STOP
*
99999 FORMAT (' AB01OD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB01OD = ',I2)
99997 FORMAT (' The transformed state transition matrix is ')
99996 FORMAT (/' The transformed input matrix is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' The number of stairs in the staircase form = ',I3,/)
99993 FORMAT (' The dimensions of the stairs are ',/(20(I3,2X)))
99992 FORMAT (/' N is out of range.',/' N = ',I5)
99991 FORMAT (/' M is out of range.',/' M = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
AB01OD EXAMPLE PROGRAM DATA
5 2 0.0 F N N
17.0 24.0 1.0 8.0 15.0
23.0 5.0 7.0 14.0 16.0
4.0 6.0 13.0 20.0 22.0
10.0 12.0 19.0 21.0 3.0
11.0 18.0 25.0 2.0 9.0
-1.0 -4.0
4.0 9.0
-9.0 -16.0
16.0 25.0
-25.0 -36.0
</PRE>
<B>Program Results</B>
<PRE>
AB01OD EXAMPLE PROGRAM RESULTS
The transformed state transition matrix is
12.8848 3.2345 11.8211 3.3758 -0.8982
4.4741 -12.5544 5.3509 5.9403 1.4360
14.4576 7.6855 23.1452 26.3872 -29.9557
0.0000 1.4805 27.4668 22.6564 -0.0072
0.0000 0.0000 -30.4822 0.6745 18.8680
The transformed input matrix is
31.1199 47.6865
3.2480 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
The number of stairs in the staircase form = 3
The dimensions of the stairs are
2 2 1
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|