File: AB04MD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (318 lines) | stat: -rw-r--r-- 10,500 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
<HTML>
<HEAD><TITLE>AB04MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="AB04MD">AB04MD</A></H2>
<H3>
Discrete-time <--> continuous-time systems conversion by a bilinear transformation
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To perform a transformation on the parameters (A,B,C,D) of a
  system, which is equivalent to a bilinear transformation of the
  corresponding transfer function matrix.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE AB04MD( TYPE, N, M, P, ALPHA, BETA, A, LDA, B, LDB, C,
     $                   LDC, D, LDD, IWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         TYPE
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDWORK, M, N, P
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DWORK(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  TYPE    CHARACTER*1
          Indicates the type of the original system and the
          transformation to be performed as follows:
          = 'D':  discrete-time   -&gt; continuous-time;
          = 'C':  continuous-time -&gt; discrete-time.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the state matrix A.  N &gt;= 0.

  M       (input) INTEGER
          The number of system inputs.  M &gt;= 0.

  P       (input) INTEGER
          The number of system outputs.  P &gt;= 0.

  ALPHA,  (input) DOUBLE PRECISION
  BETA    Parameters specifying the bilinear transformation.
          Recommended values for stable systems: ALPHA = 1,
          BETA = 1.  ALPHA &lt;&gt; 0, BETA &lt;&gt; 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state matrix A of the original system.
          On exit, the leading N-by-N part of this array contains
                           _
          the state matrix A of the transformed system.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input matrix B of the original system.
          On exit, the leading N-by-M part of this array contains
                           _
          the input matrix B of the transformed system.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the output matrix C of the original system.
          On exit, the leading P-by-N part of this array contains
                            _
          the output matrix C of the transformed system.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,P).

  D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
          On entry, the leading P-by-M part of this array must
          contain the input/output matrix D for the original system.
          On exit, the leading P-by-M part of this array contains
                                  _
          the input/output matrix D of the transformed system.

  LDD     INTEGER
          The leading dimension of array D.  LDD &gt;= MAX(1,P).

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.  LDWORK &gt;= MAX(1,N).
          For optimum performance LDWORK &gt;= MAX(1,N*NB), where NB
          is the optimal blocksize.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  if the matrix (ALPHA*I + A) is exactly singular;
          = 2:  if the matrix  (BETA*I - A) is exactly singular.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The parameters of the discrete-time system are transformed into
  the parameters of the continuous-time system (TYPE = 'D'), or
  vice-versa (TYPE = 'C') by the transformation:

  1.  Discrete -&gt; continuous
      _                     -1
      A = beta*(alpha*I + A)  * (A - alpha*I)
      _                                     -1
      B = sqrt(2*alpha*beta) * (alpha*I + A)  * B
      _                                         -1
      C = sqrt(2*alpha*beta) * C * (alpha*I + A)
      _                        -1
      D = D - C * (alpha*I + A)  * B

  which is equivalent to the bilinear transformation

                    z - alpha
      z -&gt; s = beta ---------  .
                    z + alpha

  of one transfer matrix onto the other.

  2.  Continuous -&gt; discrete
      _                     -1
      A = alpha*(beta*I - A)  * (beta*I + A)
      _                                    -1
      B = sqrt(2*alpha*beta) * (beta*I - A)  * B
      _                                        -1
      C = sqrt(2*alpha*beta) * C * (beta*I - A)
      _                       -1
      D = D + C * (beta*I - A)  * B

  which is equivalent to the bilinear transformation

                   beta + s
    s -&gt; z = alpha -------- .
                   beta - s

  of one transfer matrix onto the other.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Al-Saggaf, U.M. and Franklin, G.F.
      Model reduction via balanced realizations: a extension and
      frequency weighting techniques.
      IEEE Trans. Autom. Contr., AC-33, pp. 687-692, 1988.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                                                   3
  The time taken is approximately proportional to N .
  The accuracy depends mainly on the condition number of the matrix
  to be inverted.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     AB04MD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDD
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDD = PMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = NMAX )
*     .. Local Scalars ..
      DOUBLE PRECISION ALPHA, BETA
      INTEGER          I, INFO, J, M, N, P
      CHARACTER*1      TYPE
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 D(LDD,MMAX), DWORK(LDWORK)
      INTEGER          IWORK(NMAX)
*     .. External Subroutines ..
      EXTERNAL         AB04MD
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, TYPE, ALPHA, BETA
      IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), I = 1,N ), J = 1,N )
         IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99992 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), I = 1,N ), J = 1,M )
            IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99991 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), I = 1,P ), J = 1,N )
               READ ( NIN, FMT = * ) ( ( D(I,J), I = 1,P ), J = 1,M )
*              Transform the parameters (A,B,C,D).
               CALL AB04MD( TYPE, N, M, P, ALPHA, BETA, A, LDA, B, LDB,
     $                      C, LDC, D, LDD, IWORK, DWORK, LDWORK, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 )
                  DO 20 I = 1, N
                     WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99995 )
                  DO 40 I = 1, N
                     WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,M )
   40             CONTINUE
                  WRITE ( NOUT, FMT = 99994 )
                  DO 60 I = 1, P
                     WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,N )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99990 )
                  DO 80 I = 1, P
                     WRITE ( NOUT, FMT = 99996 ) ( D(I,J), J = 1,M )
   80             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB04MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB04MD = ',I2)
99997 FORMAT (' The transformed state matrix is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The transformed input matrix is ')
99994 FORMAT (/' The transformed output matrix is ')
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' P is out of range.',/' P = ',I5)
99990 FORMAT (/' The transformed input/output matrix is ')
      END
</PRE>
<B>Program Data</B>
<PRE>
 AB04MD EXAMPLE PROGRAM DATA
   2     2     2     C     1.0D0     1.0D0
   1.0  0.5
   0.5  1.0
   0.0 -1.0
   1.0  0.0
  -1.0  0.0
   0.0  1.0
   1.0  0.0
   0.0 -1.0
</PRE>
<B>Program Results</B>
<PRE>
 AB04MD EXAMPLE PROGRAM RESULTS

 The transformed state matrix is 
  -1.0000  -4.0000
  -4.0000  -1.0000

 The transformed input matrix is 
   2.8284   0.0000
   0.0000  -2.8284

 The transformed output matrix is 
   0.0000   2.8284
  -2.8284   0.0000

 The transformed input/output matrix is 
  -1.0000   0.0000
   0.0000  -3.0000
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>