1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
<HTML>
<HEAD><TITLE>AB04MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB04MD">AB04MD</A></H2>
<H3>
Discrete-time <--> continuous-time systems conversion by a bilinear transformation
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To perform a transformation on the parameters (A,B,C,D) of a
system, which is equivalent to a bilinear transformation of the
corresponding transfer function matrix.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB04MD( TYPE, N, M, P, ALPHA, BETA, A, LDA, B, LDB, C,
$ LDC, D, LDD, IWORK, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER TYPE
INTEGER INFO, LDA, LDB, LDC, LDD, LDWORK, M, N, P
DOUBLE PRECISION ALPHA, BETA
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
TYPE CHARACTER*1
Indicates the type of the original system and the
transformation to be performed as follows:
= 'D': discrete-time -> continuous-time;
= 'C': continuous-time -> discrete-time.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the state matrix A. N >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
ALPHA, (input) DOUBLE PRECISION
BETA Parameters specifying the bilinear transformation.
Recommended values for stable systems: ALPHA = 1,
BETA = 1. ALPHA <> 0, BETA <> 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state matrix A of the original system.
On exit, the leading N-by-N part of this array contains
_
the state matrix A of the transformed system.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the input matrix B of the original system.
On exit, the leading N-by-M part of this array contains
_
the input matrix B of the transformed system.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the output matrix C of the original system.
On exit, the leading P-by-N part of this array contains
_
the output matrix C of the transformed system.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
On entry, the leading P-by-M part of this array must
contain the input/output matrix D for the original system.
On exit, the leading P-by-M part of this array contains
_
the input/output matrix D of the transformed system.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,P).
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK. LDWORK >= MAX(1,N).
For optimum performance LDWORK >= MAX(1,N*NB), where NB
is the optimal blocksize.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the matrix (ALPHA*I + A) is exactly singular;
= 2: if the matrix (BETA*I - A) is exactly singular.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The parameters of the discrete-time system are transformed into
the parameters of the continuous-time system (TYPE = 'D'), or
vice-versa (TYPE = 'C') by the transformation:
1. Discrete -> continuous
_ -1
A = beta*(alpha*I + A) * (A - alpha*I)
_ -1
B = sqrt(2*alpha*beta) * (alpha*I + A) * B
_ -1
C = sqrt(2*alpha*beta) * C * (alpha*I + A)
_ -1
D = D - C * (alpha*I + A) * B
which is equivalent to the bilinear transformation
z - alpha
z -> s = beta --------- .
z + alpha
of one transfer matrix onto the other.
2. Continuous -> discrete
_ -1
A = alpha*(beta*I - A) * (beta*I + A)
_ -1
B = sqrt(2*alpha*beta) * (beta*I - A) * B
_ -1
C = sqrt(2*alpha*beta) * C * (beta*I - A)
_ -1
D = D + C * (beta*I - A) * B
which is equivalent to the bilinear transformation
beta + s
s -> z = alpha -------- .
beta - s
of one transfer matrix onto the other.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Al-Saggaf, U.M. and Franklin, G.F.
Model reduction via balanced realizations: a extension and
frequency weighting techniques.
IEEE Trans. Autom. Contr., AC-33, pp. 687-692, 1988.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The time taken is approximately proportional to N .
The accuracy depends mainly on the condition number of the matrix
to be inverted.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB04MD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 )
INTEGER LDA, LDB, LDC, LDD
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
$ LDD = PMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = NMAX )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, BETA
INTEGER I, INFO, J, M, N, P
CHARACTER*1 TYPE
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ D(LDD,MMAX), DWORK(LDWORK)
INTEGER IWORK(NMAX)
* .. External Subroutines ..
EXTERNAL AB04MD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, TYPE, ALPHA, BETA
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), I = 1,N ), J = 1,N )
IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), I = 1,N ), J = 1,M )
IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), I = 1,P ), J = 1,N )
READ ( NIN, FMT = * ) ( ( D(I,J), I = 1,P ), J = 1,M )
* Transform the parameters (A,B,C,D).
CALL AB04MD( TYPE, N, M, P, ALPHA, BETA, A, LDA, B, LDB,
$ C, LDC, D, LDD, IWORK, DWORK, LDWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,M )
40 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 60 I = 1, P
WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,N )
60 CONTINUE
WRITE ( NOUT, FMT = 99990 )
DO 80 I = 1, P
WRITE ( NOUT, FMT = 99996 ) ( D(I,J), J = 1,M )
80 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' AB04MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB04MD = ',I2)
99997 FORMAT (' The transformed state matrix is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The transformed input matrix is ')
99994 FORMAT (/' The transformed output matrix is ')
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' P is out of range.',/' P = ',I5)
99990 FORMAT (/' The transformed input/output matrix is ')
END
</PRE>
<B>Program Data</B>
<PRE>
AB04MD EXAMPLE PROGRAM DATA
2 2 2 C 1.0D0 1.0D0
1.0 0.5
0.5 1.0
0.0 -1.0
1.0 0.0
-1.0 0.0
0.0 1.0
1.0 0.0
0.0 -1.0
</PRE>
<B>Program Results</B>
<PRE>
AB04MD EXAMPLE PROGRAM RESULTS
The transformed state matrix is
-1.0000 -4.0000
-4.0000 -1.0000
The transformed input matrix is
2.8284 0.0000
0.0000 -2.8284
The transformed output matrix is
0.0000 2.8284
-2.8284 0.0000
The transformed input/output matrix is
-1.0000 0.0000
0.0000 -3.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|