1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
<HTML>
<HEAD><TITLE>AB05PD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB05PD">AB05PD</A></H2>
<H3>
Parallel inter-connection of two systems in state-space form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the state-space model G = (A,B,C,D) corresponding to
the sum G = G1 + alpha*G2, where G1 = (A1,B1,C1,D1) and
G2 = (A2,B2,C2,D2). G, G1, and G2 are the transfer-function
matrices of the corresponding state-space models.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB05PD( OVER, N1, M, P, N2, ALPHA, A1, LDA1, B1, LDB1,
$ C1, LDC1, D1, LDD1, A2, LDA2, B2, LDB2, C2,
$ LDC2, D2, LDD2, N, A, LDA, B, LDB, C, LDC, D,
$ LDD, INFO)
C .. Scalar Arguments ..
CHARACTER OVER
INTEGER INFO, LDA, LDA1, LDA2, LDB, LDB1, LDB2, LDC,
$ LDC1, LDC2, LDD, LDD1, LDD2, M, N, N1, N2, P
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), A1(LDA1,*), A2(LDA2,*), B(LDB,*),
$ B1(LDB1,*), B2(LDB2,*), C(LDC,*), C1(LDC1,*),
$ C2(LDC2,*), D(LDD,*), D1(LDD1,*), D2(LDD2,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
OVER CHARACTER*1
Indicates whether the user wishes to overlap pairs of
arrays, as follows:
= 'N': Do not overlap;
= 'O': Overlap pairs of arrays: A1 and A, B1 and B,
C1 and C, and D1 and D, i.e. the same name is
effectively used for each pair (for all pairs)
in the routine call. In this case, setting
LDA1 = LDA, LDB1 = LDB, LDC1 = LDC, and LDD1 = LDD
will give maximum efficiency.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N1 (input) INTEGER
The number of state variables in the first system, i.e.
the order of the matrix A1, the number of rows of B1 and
the number of columns of C1. N1 >= 0.
M (input) INTEGER
The number of input variables of the two systems, i.e. the
number of columns of matrices B1, D1, B2 and D2. M >= 0.
P (input) INTEGER
The number of output variables of the two systems, i.e.
the number of rows of matrices C1, D1, C2 and D2. P >= 0.
N2 (input) INTEGER
The number of state variables in the second system, i.e.
the order of the matrix A2, the number of rows of B2 and
the number of columns of C2. N2 >= 0.
ALPHA (input) DOUBLE PRECISION
The coefficient multiplying G2.
A1 (input) DOUBLE PRECISION array, dimension (LDA1,N1)
The leading N1-by-N1 part of this array must contain the
state transition matrix A1 for the first system.
LDA1 INTEGER
The leading dimension of array A1. LDA1 >= MAX(1,N1).
B1 (input) DOUBLE PRECISION array, dimension (LDB1,M)
The leading N1-by-M part of this array must contain the
input/state matrix B1 for the first system.
LDB1 INTEGER
The leading dimension of array B1. LDB1 >= MAX(1,N1).
C1 (input) DOUBLE PRECISION array, dimension (LDC1,N1)
The leading P-by-N1 part of this array must contain the
state/output matrix C1 for the first system.
LDC1 INTEGER
The leading dimension of array C1.
LDC1 >= MAX(1,P) if N1 > 0.
LDC1 >= 1 if N1 = 0.
D1 (input) DOUBLE PRECISION array, dimension (LDD1,M)
The leading P-by-M part of this array must contain the
input/output matrix D1 for the first system.
LDD1 INTEGER
The leading dimension of array D1. LDD1 >= MAX(1,P).
A2 (input) DOUBLE PRECISION array, dimension (LDA2,N2)
The leading N2-by-N2 part of this array must contain the
state transition matrix A2 for the second system.
LDA2 INTEGER
The leading dimension of array A2. LDA2 >= MAX(1,N2).
B2 (input) DOUBLE PRECISION array, dimension (LDB2,M)
The leading N2-by-M part of this array must contain the
input/state matrix B2 for the second system.
LDB2 INTEGER
The leading dimension of array B2. LDB2 >= MAX(1,N2).
C2 (input) DOUBLE PRECISION array, dimension (LDC2,N2)
The leading P-by-N2 part of this array must contain the
state/output matrix C2 for the second system.
LDC2 INTEGER
The leading dimension of array C2.
LDC2 >= MAX(1,P) if N2 > 0.
LDC2 >= 1 if N2 = 0.
D2 (input) DOUBLE PRECISION array, dimension (LDD2,M)
The leading P-by-M part of this array must contain the
input/output matrix D2 for the second system.
LDD2 INTEGER
The leading dimension of array D2. LDD2 >= MAX(1,P).
N (output) INTEGER
The number of state variables (N1 + N2) in the resulting
system, i.e. the order of the matrix A, the number of rows
of B and the number of columns of C.
A (output) DOUBLE PRECISION array, dimension (LDA,N1+N2)
The leading N-by-N part of this array contains the state
transition matrix A for the resulting system.
The array A can overlap A1 if OVER = 'O'.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N1+N2).
B (output) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array contains the
input/state matrix B for the resulting system.
The array B can overlap B1 if OVER = 'O'.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N1+N2).
C (output) DOUBLE PRECISION array, dimension (LDC,N1+N2)
The leading P-by-N part of this array contains the
state/output matrix C for the resulting system.
The array C can overlap C1 if OVER = 'O'.
LDC INTEGER
The leading dimension of array C.
LDC >= MAX(1,P) if N1+N2 > 0.
LDC >= 1 if N1+N2 = 0.
D (output) DOUBLE PRECISION array, dimension (LDD,M)
The leading P-by-M part of this array contains the
input/output matrix D for the resulting system.
The array D can overlap D1 if OVER = 'O'.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,P).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The matrices of the resulting systems are determined as:
( A1 0 ) ( B1 )
A = ( ) , B = ( ) ,
( 0 A2 ) ( B2 )
C = ( C1 alpha*C2 ) , D = D1 + alpha*D2 .
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
None
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
None
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB05PD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER N1MAX, N2MAX, NMAX, MMAX, PMAX
PARAMETER ( N1MAX = 20, N2MAX = 20, NMAX = N1MAX+N2MAX,
$ MMAX = 20, PMAX = 20 )
INTEGER LDA, LDA1, LDA2, LDB, LDB1, LDB2, LDC, LDC1,
$ LDC2, LDD, LDD1, LDD2
PARAMETER ( LDA = NMAX, LDA1 = N1MAX, LDA2 = N2MAX,
$ LDB = NMAX, LDB1 = N1MAX, LDB2 = N2MAX,
$ LDC = PMAX, LDC1 = PMAX, LDC2 = PMAX,
$ LDD = PMAX, LDD1 = PMAX, LDD2 = PMAX )
* .. Local Scalars ..
CHARACTER*1 OVER
INTEGER I, INFO, J, M, N, N1, N2, P
DOUBLE PRECISION ALPHA
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), A1(LDA1,N1MAX), A2(LDA2,N2MAX),
$ B(LDB,MMAX), B1(LDB1,MMAX), B2(LDB2,MMAX),
$ C(LDC,NMAX), C1(LDC1,N1MAX), C2(LDC2,N2MAX),
$ D(LDD,MMAX), D1(LDD1,MMAX), D2(LDD2,MMAX)
* .. External Subroutines ..
EXTERNAL AB05PD
* .. Executable Statements ..
*
OVER = 'N'
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N1, M, P, N2, ALPHA
IF ( N1.LE.0 .OR. N1.GT.N1MAX ) THEN
WRITE ( NOUT, FMT = 99992 ) N1
ELSE
READ ( NIN, FMT = * ) ( ( A1(I,J), J = 1,N1 ), I = 1,N1 )
IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B1(I,J), I = 1,N1 ), J = 1,M )
IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C1(I,J), J = 1,N1 ), I = 1,P )
READ ( NIN, FMT = * ) ( ( D1(I,J), J = 1,M ), I = 1,P )
IF ( N2.LE.0 .OR. N2.GT.N2MAX ) THEN
WRITE ( NOUT, FMT = 99989 ) N2
ELSE
READ ( NIN, FMT = * )
$ ( ( A2(I,J), J = 1,N2 ), I = 1,N2 )
READ ( NIN, FMT = * )
$ ( ( B2(I,J), I = 1,N2 ), J = 1,M )
READ ( NIN, FMT = * )
$ ( ( C2(I,J), J = 1,N2 ), I = 1,P )
READ ( NIN, FMT = * )
$ ( ( D2(I,J), J = 1,M ), I = 1,P )
* Find the state-space model (A,B,C,D).
CALL AB05PD( OVER, N1, M, P, N2, ALPHA, A1, LDA1, B1,
$ LDB1, C1, LDC1, D1, LDD1, A2, LDA2, B2,
$ LDB2, C2, LDC2, D2, LDD2, N, A, LDA, B,
$ LDB, C, LDC, D, LDD, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 )
$ ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99996 )
$ ( B(I,J), J = 1,M )
40 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 60 I = 1, P
WRITE ( NOUT, FMT = 99996 )
$ ( C(I,J), J = 1,N )
60 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 80 I = 1, P
WRITE ( NOUT, FMT = 99996 )
$ ( D(I,J), J = 1,M )
80 CONTINUE
END IF
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' AB05PD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB05PD = ',I2)
99997 FORMAT (' The state transition matrix of the connected system is')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The input/state matrix of the connected system is ')
99994 FORMAT (/' The state/output matrix of the connected system is ')
99993 FORMAT (/' The input/output matrix of the connected system is ')
99992 FORMAT (/' N1 is out of range.',/' N1 = ',I5)
99991 FORMAT (/' M is out of range.',/' M = ',I5)
99990 FORMAT (/' P is out of range.',/' P = ',I5)
99989 FORMAT (/' N2 is out of range.',/' N2 = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
AB05PD EXAMPLE PROGRAM DATA
3 2 2 3 1.0D0
1.0 0.0 -1.0
0.0 -1.0 1.0
1.0 1.0 2.0
1.0 1.0 0.0
2.0 0.0 1.0
3.0 -2.0 1.0
0.0 1.0 0.0
1.0 0.0
0.0 1.0
-3.0 0.0 0.0
1.0 0.0 1.0
0.0 -1.0 2.0
0.0 -1.0 0.0
1.0 0.0 2.0
1.0 1.0 0.0
1.0 1.0 -1.0
1.0 1.0
0.0 1.0
</PRE>
<B>Program Results</B>
<PRE>
AB05PD EXAMPLE PROGRAM RESULTS
The state transition matrix of the connected system is
1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000
0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000
1.0000 1.0000 2.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -3.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000 -1.0000 2.0000
The input/state matrix of the connected system is
1.0000 2.0000
1.0000 0.0000
0.0000 1.0000
0.0000 1.0000
-1.0000 0.0000
0.0000 2.0000
The state/output matrix of the connected system is
3.0000 -2.0000 1.0000 1.0000 1.0000 0.0000
0.0000 1.0000 0.0000 1.0000 1.0000 -1.0000
The input/output matrix of the connected system is
2.0000 1.0000
0.0000 2.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|