1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
<HTML>
<HEAD><TITLE>AB05SD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB05SD">AB05SD</A></H2>
<H3>
Closed-loop system for an output feedback control law
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To construct for a given state space system (A,B,C,D) the closed-
loop system (Ac,Bc,Cc,Dc) corresponding to the output feedback
control law
u = alpha*F*y + v.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB05SD( FBTYPE, JOBD, N, M, P, ALPHA, A, LDA, B, LDB,
$ C, LDC, D, LDD, F, LDF, RCOND, IWORK, DWORK,
$ LDWORK, INFO)
C .. Scalar Arguments ..
CHARACTER FBTYPE, JOBD
INTEGER INFO, LDA, LDB, LDC, LDD, LDF, LDWORK, M, N, P
DOUBLE PRECISION ALPHA, RCOND
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), F(LDF,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
FBTYPE CHARACTER*1
Specifies the type of the feedback law as follows:
= 'I': Unitary output feedback (F = I);
= 'O': General output feedback.
JOBD CHARACTER*1
Specifies whether or not a non-zero matrix D appears in
the given state space model:
= 'D': D is present;
= 'Z': D is assumed a zero matrix.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The number of state variables, i.e. the order of the
matrix A, the number of rows of B and the number of
columns of C. N >= 0.
M (input) INTEGER
The number of input variables, i.e. the number of columns
of matrices B and D, and the number of rows of F. M >= 0.
P (input) INTEGER
The number of output variables, i.e. the number of rows of
matrices C and D, and the number of columns of F. P >= 0
and P = M if FBTYPE = 'I'.
ALPHA (input) DOUBLE PRECISION
The coefficient alpha in the output feedback law.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the system state transition matrix A.
On exit, the leading N-by-N part of this array contains
the state matrix Ac of the closed-loop system.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the system input matrix B.
On exit, the leading N-by-M part of this array contains
the input matrix Bc of the closed-loop system.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the system output matrix C.
On exit, the leading P-by-N part of this array contains
the output matrix Cc of the closed-loop system.
LDC INTEGER
The leading dimension of array C.
LDC >= MAX(1,P) if N > 0.
LDC >= 1 if N = 0.
D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
On entry, the leading P-by-M part of this array must
contain the system direct input/output transmission
matrix D.
On exit, if JOBD = 'D', the leading P-by-M part of this
array contains the direct input/output transmission
matrix Dc of the closed-loop system.
The array D is not referenced if JOBD = 'Z'.
LDD INTEGER
The leading dimension of array D.
LDD >= MAX(1,P) if JOBD = 'D'.
LDD >= 1 if JOBD = 'Z'.
F (input) DOUBLE PRECISION array, dimension (LDF,P)
If FBTYPE = 'O', the leading M-by-P part of this array
must contain the output feedback matrix F.
If FBTYPE = 'I', then the feedback matrix is assumed to be
an M x M order identity matrix.
The array F is not referenced if FBTYPE = 'I' or
ALPHA = 0.
LDF INTEGER
The leading dimension of array F.
LDF >= MAX(1,M) if FBTYPE = 'O' and ALPHA <> 0.
LDF >= 1 if FBTYPE = 'I' or ALPHA = 0.
RCOND (output) DOUBLE PRECISION
The reciprocal condition number of the matrix
I - alpha*D*F.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
LIWORK >= MAX(1,2*P) if JOBD = 'D'.
LIWORK >= 1 if JOBD = 'Z'.
IWORK is not referenced if JOBD = 'Z'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= wspace, where
wspace = MAX( 1, M, P*P + 4*P ) if JOBD = 'D',
wspace = MAX( 1, M ) if JOBD = 'Z'.
For best performance, LDWORK >= MAX( wspace, N*M, N*P ).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the matrix I - alpha*D*F is numerically singular.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The matrices of the closed-loop system have the expressions:
Ac = A + alpha*B*F*E*C, Bc = B + alpha*B*F*E*D,
Cc = E*C, Dc = E*D,
where E = (I - alpha*D*F)**-1.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The accuracy of computations basically depends on the conditioning
of the matrix I - alpha*D*F. If RCOND is very small, it is likely
that the computed results are inaccurate.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|