1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
<HTML>
<HEAD><TITLE>AB07MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB07MD">AB07MD</A></H2>
<H3>
Dual of a given state-space representation
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To find the dual of a given state-space representation.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB07MD( JOBD, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
$ INFO )
C .. Scalar Arguments ..
CHARACTER JOBD
INTEGER INFO, LDA, LDB, LDC, LDD, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOBD CHARACTER*1
Specifies whether or not a non-zero matrix D appears in
the given state space model:
= 'D': D is present;
= 'Z': D is assumed a zero matrix.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the state-space representation. N >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the original state dynamics matrix A.
On exit, the leading N-by-N part of this array contains
the dual state dynamics matrix A'.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension
(LDB,MAX(M,P))
On entry, the leading N-by-M part of this array must
contain the original input/state matrix B.
On exit, the leading N-by-P part of this array contains
the dual input/state matrix C'.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the original state/output matrix C.
On exit, the leading M-by-N part of this array contains
the dual state/output matrix B'.
LDC INTEGER
The leading dimension of array C.
LDC >= MAX(1,M,P) if N > 0.
LDC >= 1 if N = 0.
D (input/output) DOUBLE PRECISION array, dimension
(LDD,MAX(M,P))
On entry, if JOBD = 'D', the leading P-by-M part of this
array must contain the original direct transmission
matrix D.
On exit, if JOBD = 'D', the leading M-by-P part of this
array contains the dual direct transmission matrix D'.
The array D is not referenced if JOBD = 'Z'.
LDD INTEGER
The leading dimension of array D.
LDD >= MAX(1,M,P) if JOBD = 'D'.
LDD >= 1 if JOBD = 'Z'.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
If the given state-space representation is the M-input/P-output
(A,B,C,D), its dual is simply the P-input/M-output (A',C',B',D').
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
None
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
None
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB07MD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 )
INTEGER MAXMP
PARAMETER ( MAXMP = MAX( MMAX, PMAX ) )
INTEGER LDA, LDB, LDC, LDD
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = MAXMP,
$ LDD = MAXMP )
* .. Local Scalars ..
CHARACTER*1 JOBD
INTEGER I, INFO, J, M, N, P
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MAXMP), C(LDC,NMAX),
$ D(LDD,MAXMP)
* .. External functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL AB07MD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read in the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, JOBD
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
* Find the dual of the ssr (A,B,C,D).
CALL AB07MD( JOBD, N, M, P, A, LDA, B, LDB, C, LDC, D,
$ LDD, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,P )
40 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 60 I = 1, M
WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,N )
60 CONTINUE
IF ( LSAME( JOBD, 'D' ) ) THEN
WRITE ( NOUT, FMT = 99993 )
DO 80 I = 1, M
WRITE ( NOUT, FMT = 99996 ) ( D(I,J), J = 1,P )
80 CONTINUE
END IF
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' AB07MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB07MD = ',I2)
99997 FORMAT (' The dual state dynamics matrix is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The dual input/state matrix is ')
99994 FORMAT (/' The dual state/output matrix is ')
99993 FORMAT (/' The dual direct transmission matrix is ')
99992 FORMAT (/' N is out of range.',/' N = ',I5)
99991 FORMAT (/' M is out of range.',/' M = ',I5)
99990 FORMAT (/' P is out of range.',/' P = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
AB07MD EXAMPLE PROGRAM DATA
3 1 2 D
1.0 2.0 0.0
4.0 -1.0 0.0
0.0 0.0 1.0
1.0 0.0 1.0
0.0 1.0 -1.0
0.0 0.0 1.0
0.0 1.0
</PRE>
<B>Program Results</B>
<PRE>
AB07MD EXAMPLE PROGRAM RESULTS
The dual state dynamics matrix is
1.0000 4.0000 0.0000
2.0000 -1.0000 0.0000
0.0000 0.0000 1.0000
The dual input/state matrix is
0.0000 0.0000
1.0000 0.0000
-1.0000 1.0000
The dual state/output matrix is
1.0000 0.0000 1.0000
The dual direct transmission matrix is
0.0000 1.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|