File: AB07MD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (259 lines) | stat: -rw-r--r-- 8,104 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
<HTML>
<HEAD><TITLE>AB07MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="AB07MD">AB07MD</A></H2>
<H3>
Dual of a given state-space representation
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To find the dual of a given state-space representation.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE AB07MD( JOBD, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   INFO )
C     .. Scalar Arguments ..
      CHARACTER         JOBD
      INTEGER           INFO, LDA, LDB, LDC, LDD, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOBD    CHARACTER*1
          Specifies whether or not a non-zero matrix D appears in
          the given state space model:
          = 'D':  D is present;
          = 'Z':  D is assumed a zero matrix.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the state-space representation.  N &gt;= 0.

  M       (input) INTEGER
          The number of system inputs.  M &gt;= 0.

  P       (input) INTEGER
          The number of system outputs.  P &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the original state dynamics matrix A.
          On exit, the leading N-by-N part of this array contains
          the dual state dynamics matrix A'.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension
          (LDB,MAX(M,P))
          On entry, the leading N-by-M part of this array must
          contain the original input/state matrix B.
          On exit, the leading N-by-P part of this array contains
          the dual input/state matrix C'.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the original state/output matrix C.
          On exit, the leading M-by-N part of this array contains
          the dual state/output matrix B'.

  LDC     INTEGER
          The leading dimension of array C.
          LDC &gt;= MAX(1,M,P) if N &gt; 0.
          LDC &gt;= 1 if N = 0.

  D       (input/output) DOUBLE PRECISION array, dimension
          (LDD,MAX(M,P))
          On entry, if JOBD = 'D', the leading P-by-M part of this
          array must contain the original direct transmission
          matrix D.
          On exit, if JOBD = 'D', the leading M-by-P part of this
          array contains the dual direct transmission matrix D'.
          The array D is not referenced if JOBD = 'Z'.

  LDD     INTEGER
          The leading dimension of array D.
          LDD &gt;= MAX(1,M,P) if JOBD = 'D'.
          LDD &gt;= 1 if JOBD = 'Z'.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  If the given state-space representation is the M-input/P-output
  (A,B,C,D), its dual is simply the P-input/M-output (A',C',B',D').

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  None

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  None

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     AB07MD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          MAXMP
      PARAMETER        ( MAXMP = MAX( MMAX, PMAX ) )
      INTEGER          LDA, LDB, LDC, LDD
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = MAXMP,
     $                   LDD = MAXMP )
*     .. Local Scalars ..
      CHARACTER*1      JOBD
      INTEGER          I, INFO, J, M, N, P
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MAXMP), C(LDC,NMAX),
     $                 D(LDD,MAXMP)
*     .. External functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         AB07MD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read in the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, JOBD
      IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99992 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99991 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
            IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99990 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
               READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
*              Find the dual of the ssr (A,B,C,D).
               CALL AB07MD( JOBD, N, M, P, A, LDA, B, LDB, C, LDC, D,
     $                      LDD, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 )
                  DO 20 I = 1, N
                     WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99995 )
                  DO 40 I = 1, N
                     WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,P )
   40             CONTINUE
                  WRITE ( NOUT, FMT = 99994 )
                  DO 60 I = 1, M
                     WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,N )
   60             CONTINUE
                  IF ( LSAME( JOBD, 'D' ) ) THEN
                     WRITE ( NOUT, FMT = 99993 )
                     DO 80 I = 1, M
                        WRITE ( NOUT, FMT = 99996 ) ( D(I,J), J = 1,P )
   80                CONTINUE
                  END IF
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB07MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB07MD = ',I2)
99997 FORMAT (' The dual state dynamics matrix is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The dual input/state matrix is ')
99994 FORMAT (/' The dual state/output matrix is ')
99993 FORMAT (/' The dual direct transmission matrix is ')
99992 FORMAT (/' N is out of range.',/' N = ',I5)
99991 FORMAT (/' M is out of range.',/' M = ',I5)
99990 FORMAT (/' P is out of range.',/' P = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 AB07MD EXAMPLE PROGRAM DATA
   3     1     2     D
   1.0   2.0   0.0
   4.0  -1.0   0.0
   0.0   0.0   1.0
   1.0   0.0   1.0
   0.0   1.0  -1.0
   0.0   0.0   1.0
   0.0   1.0
</PRE>
<B>Program Results</B>
<PRE>
 AB07MD EXAMPLE PROGRAM RESULTS

 The dual state dynamics matrix is 
   1.0000   4.0000   0.0000
   2.0000  -1.0000   0.0000
   0.0000   0.0000   1.0000

 The dual input/state matrix is 
   0.0000   0.0000
   1.0000   0.0000
  -1.0000   1.0000

 The dual state/output matrix is 
   1.0000   0.0000   1.0000

 The dual direct transmission matrix is 
   0.0000   1.0000
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>