1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
<HTML>
<HEAD><TITLE>AB09AX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB09AX">AB09AX</A></H2>
<H3>
Balance & Truncate model reduction for stable systems with state matrix in real Schur canonical form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute a reduced order model (Ar,Br,Cr) for a stable original
state-space representation (A,B,C) by using either the square-root
or the balancing-free square-root Balance & Truncate model
reduction method. The state dynamics matrix A of the original
system is an upper quasi-triangular matrix in real Schur canonical
form. The matrices of the reduced order system are computed using
the truncation formulas:
Ar = TI * A * T , Br = TI * B , Cr = C * T .
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB09AX( DICO, JOB, ORDSEL, N, M, P, NR, A, LDA, B, LDB,
$ C, LDC, HSV, T, LDT, TI, LDTI, TOL, IWORK,
$ DWORK, LDWORK, IWARN, INFO )
C .. Scalar Arguments ..
CHARACTER DICO, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDT, LDTI, LDWORK,
$ M, N, NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*),
$ T(LDT,*), TI(LDTI,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DICO CHARACTER*1
Specifies the type of the original system as follows:
= 'C': continuous-time system;
= 'D': discrete-time system.
JOB CHARACTER*1
Specifies the model reduction approach to be used
as follows:
= 'B': use the square-root Balance & Truncate method;
= 'N': use the balancing-free square-root
Balance & Truncate method.
ORDSEL CHARACTER*1
Specifies the order selection method as follows:
= 'F': the resulting order NR is fixed;
= 'A': the resulting order NR is automatically determined
on basis of the given tolerance TOL.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the original state-space representation, i.e.
the order of the matrix A. N >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
NR (input/output) INTEGER
On entry with ORDSEL = 'F', NR is the desired order of the
resulting reduced order system. 0 <= NR <= N.
On exit, if INFO = 0, NR is the order of the resulting
reduced order model. NR is set as follows:
if ORDSEL = 'F', NR is equal to MIN(NR,NMIN), where NR
is the desired order on entry and NMIN is the order of a
minimal realization of the given system; NMIN is
determined as the number of Hankel singular values greater
than N*EPS*HNORM(A,B,C), where EPS is the machine
precision (see LAPACK Library Routine DLAMCH) and
HNORM(A,B,C) is the Hankel norm of the system (computed
in HSV(1));
if ORDSEL = 'A', NR is equal to the number of Hankel
singular values greater than MAX(TOL,N*EPS*HNORM(A,B,C)).
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix A in a real Schur
canonical form.
On exit, if INFO = 0, the leading NR-by-NR part of this
array contains the state dynamics matrix Ar of the
reduced order system.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the original input/state matrix B.
On exit, if INFO = 0, the leading NR-by-M part of this
array contains the input/state matrix Br of the reduced
order system.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the original state/output matrix C.
On exit, if INFO = 0, the leading P-by-NR part of this
array contains the state/output matrix Cr of the reduced
order system.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
HSV (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, it contains the Hankel singular values of
the original system ordered decreasingly. HSV(1) is the
Hankel norm of the system.
T (output) DOUBLE PRECISION array, dimension (LDT,N)
If INFO = 0 and NR > 0, the leading N-by-NR part of this
array contains the right truncation matrix T.
LDT INTEGER
The leading dimension of array T. LDT >= MAX(1,N).
TI (output) DOUBLE PRECISION array, dimension (LDTI,N)
If INFO = 0 and NR > 0, the leading NR-by-N part of this
array contains the left truncation matrix TI.
LDTI INTEGER
The leading dimension of array TI. LDTI >= MAX(1,N).
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
If ORDSEL = 'A', TOL contains the tolerance for
determining the order of reduced system.
For model reduction, the recommended value is
TOL = c*HNORM(A,B,C), where c is a constant in the
interval [0.00001,0.001], and HNORM(A,B,C) is the
Hankel-norm of the given system (computed in HSV(1)).
For computing a minimal realization, the recommended
value is TOL = N*EPS*HNORM(A,B,C), where EPS is the
machine precision (see LAPACK Library Routine DLAMCH).
This value is used by default if TOL <= 0 on entry.
If ORDSEL = 'F', the value of TOL is ignored.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
LIWORK = 0, if JOB = 'B', or
LIWORK = N, if JOB = 'N'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX(1,N*(MAX(N,M,P)+5) + N*(N+1)/2).
For optimum performance LDWORK should be larger.
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= 1: with ORDSEL = 'F', the selected order NR is greater
than the order of a minimal realization of the
given system. In this case, the resulting NR is
set automatically to a value corresponding to the
order of a minimal realization of the system.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the state matrix A is not stable (if DICO = 'C')
or not convergent (if DICO = 'D');
= 2: the computation of Hankel singular values failed.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Let be the stable linear system
d[x(t)] = Ax(t) + Bu(t)
y(t) = Cx(t) (1)
where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
for a discrete-time system. The subroutine AB09AX determines for
the given system (1), the matrices of a reduced NR order system
d[z(t)] = Ar*z(t) + Br*u(t)
yr(t) = Cr*z(t) (2)
such that
HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)],
where G and Gr are transfer-function matrices of the systems
(A,B,C) and (Ar,Br,Cr), respectively, and INFNORM(G) is the
infinity-norm of G.
If JOB = 'B', the square-root Balance & Truncate method of [1]
is used and, for DICO = 'C', the resulting model is balanced.
By setting TOL <= 0, the routine can be used to compute balanced
minimal state-space realizations of stable systems.
If JOB = 'N', the balancing-free square-root version of the
Balance & Truncate method [2] is used.
By setting TOL <= 0, the routine can be used to compute minimal
state-space realizations of stable systems.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems.
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
[2] Varga A.
Efficient minimal realization procedure based on balancing.
Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
A. El Moudui, P. Borne, S. G. Tzafestas (Eds.),
Vol. 2, pp. 42-46.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The implemented methods rely on accuracy enhancing square-root or
balancing-free square-root techniques.
3
The algorithms require less than 30N floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|