1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
<HTML>
<HEAD><TITLE>AB09IX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB09IX">AB09IX</A></H2>
<H3>
Accuracy enhanced balancing related model reduction
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute a reduced order model (Ar,Br,Cr,Dr) for an original
state-space representation (A,B,C,D) by using the square-root or
balancing-free square-root Balance & Truncate (B&T) or
Singular Perturbation Approximation (SPA) model reduction methods.
The computation of truncation matrices TI and T is based on
the Cholesky factor S of a controllability Grammian P = S*S'
and the Cholesky factor R of an observability Grammian Q = R'*R,
where S and R are given upper triangular matrices.
For the B&T approach, the matrices of the reduced order system
are computed using the truncation formulas:
Ar = TI * A * T , Br = TI * B , Cr = C * T . (1)
For the SPA approach, the matrices of a minimal realization
(Am,Bm,Cm) are computed using the truncation formulas:
Am = TI * A * T , Bm = TI * B , Cm = C * T . (2)
Am, Bm, Cm and D serve further for computing the SPA of the given
system.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB09IX( DICO, JOB, FACT, ORDSEL, N, M, P, NR,
$ SCALEC, SCALEO, A, LDA, B, LDB, C, LDC, D, LDD,
$ TI, LDTI, T, LDT, NMINR, HSV, TOL1, TOL2,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDT, LDTI,
$ LDWORK, M, N, NMINR, NR, P
DOUBLE PRECISION SCALEC, SCALEO, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), HSV(*), T(LDT,*), TI(LDTI,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DICO CHARACTER*1
Specifies the type of the original system as follows:
= 'C': continuous-time system;
= 'D': discrete-time system.
JOB CHARACTER*1
Specifies the model reduction approach to be used
as follows:
= 'B': use the square-root B&T method;
= 'F': use the balancing-free square-root B&T method;
= 'S': use the square-root SPA method;
= 'P': use the balancing-free square-root SPA method.
FACT CHARACTER*1
Specifies whether or not, on entry, the matrix A is in a
real Schur form, as follows:
= 'S': A is in a real Schur form;
= 'N': A is a general dense square matrix.
ORDSEL CHARACTER*1
Specifies the order selection method as follows:
= 'F': the resulting order NR is fixed;
= 'A': the resulting order NR is automatically determined
on basis of the given tolerance TOL1.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the original state-space representation,
i.e., the order of the matrix A. N >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
NR (input/output) INTEGER
On entry with ORDSEL = 'F', NR is the desired order of
the resulting reduced order system. 0 <= NR <= N.
On exit, if INFO = 0, NR is the order of the resulting
reduced order model. NR is set as follows:
if ORDSEL = 'F', NR is equal to MIN(NR,NMINR), where NR
is the desired order on entry and NMINR is the number of
the Hankel singular values greater than N*EPS*S1, where
EPS is the machine precision (see LAPACK Library Routine
DLAMCH) and S1 is the largest Hankel singular value
(computed in HSV(1));
NR can be further reduced to ensure HSV(NR) > HSV(NR+1);
if ORDSEL = 'A', NR is equal to the number of Hankel
singular values greater than MAX(TOL1,N*EPS*S1).
SCALEC (input) DOUBLE PRECISION
Scaling factor for the Cholesky factor S of the
controllability Grammian, i.e., S/SCALEC is used to
compute the Hankel singular values. SCALEC > 0.
SCALEO (input) DOUBLE PRECISION
Scaling factor for the Cholesky factor R of the
observability Grammian, i.e., R/SCALEO is used to
compute the Hankel singular values. SCALEO > 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix A. If FACT = 'S',
A is in a real Schur form.
On exit, if INFO = 0, the leading NR-by-NR part of this
array contains the state dynamics matrix Ar of the
reduced order system.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the original input/state matrix B.
On exit, if INFO = 0, the leading NR-by-M part of this
array contains the input/state matrix Br of the reduced
order system.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the original state/output matrix C.
On exit, if INFO = 0, the leading P-by-NR part of this
array contains the state/output matrix Cr of the reduced
order system.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
On entry, if JOB = 'S' or JOB = 'P', the leading P-by-M
part of this array must contain the original input/output
matrix D.
On exit, if INFO = 0 and JOB = 'S' or JOB = 'P', the
leading P-by-M part of this array contains the
input/output matrix Dr of the reduced order system.
If JOB = 'B' or JOB = 'F', this array is not referenced.
LDD INTEGER
The leading dimension of array D.
LDD >= 1, if JOB = 'B' or JOB = 'F';
LDD >= MAX(1,P), if JOB = 'S' or JOB = 'P'.
TI (input/output) DOUBLE PRECISION array, dimension (LDTI,N)
On entry, the leading N-by-N upper triangular part of
this array must contain the Cholesky factor S of a
controllability Grammian P = S*S'.
On exit, if INFO = 0, and NR > 0, the leading NMINR-by-N
part of this array contains the left truncation matrix
TI in (1), for the B&T approach, or in (2), for the
SPA approach.
LDTI INTEGER
The leading dimension of array TI. LDTI >= MAX(1,N).
T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
On entry, the leading N-by-N upper triangular part of
this array must contain the Cholesky factor R of an
observability Grammian Q = R'*R.
On exit, if INFO = 0, and NR > 0, the leading N-by-NMINR
part of this array contains the right truncation matrix
T in (1), for the B&T approach, or in (2), for the
SPA approach.
LDT INTEGER
The leading dimension of array T. LDT >= MAX(1,N).
NMINR (output) INTEGER
The number of Hankel singular values greater than
MAX(TOL2,N*EPS*S1).
Note: If S and R are the Cholesky factors of the
controllability and observability Grammians of the
original system (A,B,C,D), respectively, then NMINR is
the order of a minimal realization of the original system.
HSV (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, it contains the Hankel singular values,
ordered decreasingly. The Hankel singular values are
singular values of the product R*S.
</PRE>
<B>Tolerances</B>
<PRE>
TOL1 DOUBLE PRECISION
If ORDSEL = 'A', TOL1 contains the tolerance for
determining the order of the reduced system.
For model reduction, the recommended value lies in the
interval [0.00001,0.001].
If TOL1 <= 0 on entry, the used default value is
TOL1 = N*EPS*S1, where EPS is the machine precision
(see LAPACK Library Routine DLAMCH) and S1 is the largest
Hankel singular value (computed in HSV(1)).
If ORDSEL = 'F', the value of TOL1 is ignored.
TOL2 DOUBLE PRECISION
The tolerance for determining the order of a minimal
realization of the system.
The recommended value is TOL2 = N*EPS*S1.
This value is used by default if TOL2 <= 0 on entry.
If TOL2 > 0, and ORDSEL = 'A', then TOL2 <= TOL1.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK), where
LIWORK = 0, if JOB = 'B';
LIWORK = N, if JOB = 'F';
LIWORK = 2*N, if JOB = 'S' or 'P'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX( 1, 2*N*N + 5*N, N*MAX(M,P) ).
For optimum performance LDWORK should be larger.
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= 1: with ORDSEL = 'F', the selected order NR is greater
than NMINR, the order of a minimal realization of
the given system; in this case, the resulting NR is
set automatically to NMINR;
= 2: with ORDSEL = 'F', the selected order NR corresponds
to repeated singular values, which are neither all
included nor all excluded from the reduced model;
in this case, the resulting NR is set automatically
to the largest value such that HSV(NR) > HSV(NR+1).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the computation of Hankel singular values failed.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Let be the stable linear system
d[x(t)] = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (3)
where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
for a discrete-time system. The subroutine AB09IX determines for
the given system (3), the matrices of a reduced NR order system
d[z(t)] = Ar*z(t) + Br*u(t)
yr(t) = Cr*z(t) + Dr*u(t), (4)
by using the square-root or balancing-free square-root
Balance & Truncate (B&T) or Singular Perturbation Approximation
(SPA) model reduction methods.
The projection matrices TI and T are determined using the
Cholesky factors S and R of a controllability Grammian P and an
observability Grammian Q.
The Hankel singular values HSV(1), ...., HSV(N) are computed as
singular values of the product R*S.
If JOB = 'B', the square-root Balance & Truncate technique
of [1] is used.
If JOB = 'F', the balancing-free square-root version of the
Balance & Truncate technique [2] is used.
If JOB = 'S', the square-root version of the Singular Perturbation
Approximation method [3,4] is used.
If JOB = 'P', the balancing-free square-root version of the
Singular Perturbation Approximation method [3,4] is used.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems.
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
[2] Varga A.
Efficient minimal realization procedure based on balancing.
Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
A. El Moudni, P. Borne, S. G. Tzafestas (Eds.),
Vol. 2, pp. 42-46.
[3] Liu Y. and Anderson B.D.O.
Singular Perturbation Approximation of balanced systems.
Int. J. Control, Vol. 50, pp. 1379-1405, 1989.
[4] Varga A.
Balancing-free square-root algorithm for computing singular
perturbation approximations.
Proc. 30-th CDC, Brighton, Dec. 11-13, 1991,
Vol. 2, pp. 1062-1065.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The implemented method relies on accuracy enhancing square-root
or balancing-free square-root methods.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|