1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
|
<HTML>
<HEAD><TITLE>AB09JD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB09JD">AB09JD</A></H2>
<H3>
Frequency-weighted Hankel norm approximation with invertible weights
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute a reduced order model (Ar,Br,Cr,Dr) for an original
state-space representation (A,B,C,D) by using the frequency
weighted optimal Hankel-norm approximation method.
The Hankel norm of the weighted error
op(V)*(G-Gr)*op(W)
is minimized, where G and Gr are the transfer-function matrices
of the original and reduced systems, respectively, V and W are
invertible transfer-function matrices representing the left and
right frequency weights, and op(X) denotes X, inv(X), conj(X) or
conj(inv(X)). V and W are specified by their state space
realizations (AV,BV,CV,DV) and (AW,BW,CW,DW), respectively.
When minimizing ||V*(G-Gr)*W||, V and W must be antistable.
When minimizing inv(V)*(G-Gr)*inv(W), V and W must have only
antistable zeros.
When minimizing conj(V)*(G-Gr)*conj(W), V and W must be stable.
When minimizing conj(inv(V))*(G-Gr)*conj(inv(W)), V and W must
be minimum-phase.
If the original system is unstable, then the frequency weighted
Hankel-norm approximation is computed only for the
ALPHA-stable part of the system.
For a transfer-function matrix G, conj(G) denotes the conjugate
of G given by G'(-s) for a continuous-time system or G'(1/z)
for a discrete-time system.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB09JD( JOBV, JOBW, JOBINV, DICO, EQUIL, ORDSEL,
$ N, NV, NW, M, P, NR, ALPHA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AV, LDAV, BV, LDBV,
$ CV, LDCV, DV, LDDV, AW, LDAW, BW, LDBW,
$ CW, LDCW, DW, LDDW, NS, HSV, TOL1, TOL2,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOBINV, JOBV, JOBW, ORDSEL
INTEGER INFO, IWARN, LDA, LDAV, LDAW, LDB, LDBV, LDBW,
$ LDC, LDCV, LDCW, LDD, LDDV, LDDW, LDWORK, M, N,
$ NR, NS, NV, NW, P
DOUBLE PRECISION ALPHA, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AV(LDAV,*), AW(LDAW,*),
$ B(LDB,*), BV(LDBV,*), BW(LDBW,*),
$ C(LDC,*), CV(LDCV,*), CW(LDCW,*),
$ D(LDD,*), DV(LDDV,*), DW(LDDW,*), DWORK(*),
$ HSV(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOBV CHARACTER*1
Specifies the left frequency-weighting as follows:
= 'N': V = I;
= 'V': op(V) = V;
= 'I': op(V) = inv(V);
= 'C': op(V) = conj(V);
= 'R': op(V) = conj(inv(V)).
JOBW CHARACTER*1
Specifies the right frequency-weighting as follows:
= 'N': W = I;
= 'W': op(W) = W;
= 'I': op(W) = inv(W);
= 'C': op(W) = conj(W);
= 'R': op(W) = conj(inv(W)).
JOBINV CHARACTER*1
Specifies the computational approach to be used as
follows:
= 'N': use the inverse free descriptor system approach;
= 'I': use the inversion based standard approach;
= 'A': switch automatically to the inverse free
descriptor approach in case of badly conditioned
feedthrough matrices in V or W (see METHOD).
DICO CHARACTER*1
Specifies the type of the original system as follows:
= 'C': continuous-time system;
= 'D': discrete-time system.
EQUIL CHARACTER*1
Specifies whether the user wishes to preliminarily
equilibrate the triplet (A,B,C) as follows:
= 'S': perform equilibration (scaling);
= 'N': do not perform equilibration.
ORDSEL CHARACTER*1
Specifies the order selection method as follows:
= 'F': the resulting order NR is fixed;
= 'A': the resulting order NR is automatically determined
on basis of the given tolerance TOL1.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the original state-space representation,
i.e., the order of the matrix A. N >= 0.
NV (input) INTEGER
The order of the realization of the left frequency
weighting V, i.e., the order of the matrix AV. NV >= 0.
NW (input) INTEGER
The order of the realization of the right frequency
weighting W, i.e., the order of the matrix AW. NW >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
NR (input/output) INTEGER
On entry with ORDSEL = 'F', NR is the desired order of
the resulting reduced order system. 0 <= NR <= N.
On exit, if INFO = 0, NR is the order of the resulting
reduced order model. For a system with NU ALPHA-unstable
eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
NR is set as follows: if ORDSEL = 'F', NR is equal to
NU+MIN(MAX(0,NR-NU-KR+1),NMIN), where KR is the
multiplicity of the Hankel singular value HSV(NR-NU+1),
NR is the desired order on entry, and NMIN is the order
of a minimal realization of the ALPHA-stable part of the
given system; NMIN is determined as the number of Hankel
singular values greater than NS*EPS*HNORM(As,Bs,Cs), where
EPS is the machine precision (see LAPACK Library Routine
DLAMCH) and HNORM(As,Bs,Cs) is the Hankel norm of the
ALPHA-stable part of the weighted system (computed in
HSV(1));
if ORDSEL = 'A', NR is the sum of NU and the number of
Hankel singular values greater than
MAX(TOL1,NS*EPS*HNORM(As,Bs,Cs)).
ALPHA (input) DOUBLE PRECISION
Specifies the ALPHA-stability boundary for the eigenvalues
of the state dynamics matrix A. For a continuous-time
system (DICO = 'C'), ALPHA <= 0 is the boundary value for
the real parts of eigenvalues, while for a discrete-time
system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
boundary value for the moduli of eigenvalues.
The ALPHA-stability domain does not include the boundary.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix A.
On exit, if INFO = 0, the leading NR-by-NR part of this
array contains the state dynamics matrix Ar of the
reduced order system in a real Schur form.
The resulting A has a block-diagonal form with two blocks.
For a system with NU ALPHA-unstable eigenvalues and
NS ALPHA-stable eigenvalues (NU+NS = N), the leading
NU-by-NU block contains the unreduced part of A
corresponding to ALPHA-unstable eigenvalues.
The trailing (NR+NS-N)-by-(NR+NS-N) block contains
the reduced part of A corresponding to ALPHA-stable
eigenvalues.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the original input/state matrix B.
On exit, if INFO = 0, the leading NR-by-M part of this
array contains the input/state matrix Br of the reduced
order system.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the original state/output matrix C.
On exit, if INFO = 0, the leading P-by-NR part of this
array contains the state/output matrix Cr of the reduced
order system.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
On entry, the leading P-by-M part of this array must
contain the original input/output matrix D.
On exit, if INFO = 0, the leading P-by-M part of this
array contains the input/output matrix Dr of the reduced
order system.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,P).
AV (input/output) DOUBLE PRECISION array, dimension (LDAV,NV)
On entry, if JOBV <> 'N', the leading NV-by-NV part of
this array must contain the state matrix AV of a state
space realization of the left frequency weighting V.
On exit, if JOBV <> 'N', and INFO = 0, the leading
NV-by-NV part of this array contains the real Schur form
of AV.
AV is not referenced if JOBV = 'N'.
LDAV INTEGER
The leading dimension of the array AV.
LDAV >= MAX(1,NV), if JOBV <> 'N';
LDAV >= 1, if JOBV = 'N'.
BV (input/output) DOUBLE PRECISION array, dimension (LDBV,P)
On entry, if JOBV <> 'N', the leading NV-by-P part of
this array must contain the input matrix BV of a state
space realization of the left frequency weighting V.
On exit, if JOBV <> 'N', and INFO = 0, the leading
NV-by-P part of this array contains the transformed
input matrix BV corresponding to the transformed AV.
BV is not referenced if JOBV = 'N'.
LDBV INTEGER
The leading dimension of the array BV.
LDBV >= MAX(1,NV), if JOBV <> 'N';
LDBV >= 1, if JOBV = 'N'.
CV (input/output) DOUBLE PRECISION array, dimension (LDCV,NV)
On entry, if JOBV <> 'N', the leading P-by-NV part of
this array must contain the output matrix CV of a state
space realization of the left frequency weighting V.
On exit, if JOBV <> 'N', and INFO = 0, the leading
P-by-NV part of this array contains the transformed output
matrix CV corresponding to the transformed AV.
CV is not referenced if JOBV = 'N'.
LDCV INTEGER
The leading dimension of the array CV.
LDCV >= MAX(1,P), if JOBV <> 'N';
LDCV >= 1, if JOBV = 'N'.
DV (input) DOUBLE PRECISION array, dimension (LDDV,P)
If JOBV <> 'N', the leading P-by-P part of this array
must contain the feedthrough matrix DV of a state space
realization of the left frequency weighting V.
DV is not referenced if JOBV = 'N'.
LDDV INTEGER
The leading dimension of the array DV.
LDDV >= MAX(1,P), if JOBV <> 'N';
LDDV >= 1, if JOBV = 'N'.
AW (input/output) DOUBLE PRECISION array, dimension (LDAW,NW)
On entry, if JOBW <> 'N', the leading NW-by-NW part of
this array must contain the state matrix AW of a state
space realization of the right frequency weighting W.
On exit, if JOBW <> 'N', and INFO = 0, the leading
NW-by-NW part of this array contains the real Schur form
of AW.
AW is not referenced if JOBW = 'N'.
LDAW INTEGER
The leading dimension of the array AW.
LDAW >= MAX(1,NW), if JOBW <> 'N';
LDAW >= 1, if JOBW = 'N'.
BW (input/output) DOUBLE PRECISION array, dimension (LDBW,M)
On entry, if JOBW <> 'N', the leading NW-by-M part of
this array must contain the input matrix BW of a state
space realization of the right frequency weighting W.
On exit, if JOBW <> 'N', and INFO = 0, the leading
NW-by-M part of this array contains the transformed
input matrix BW corresponding to the transformed AW.
BW is not referenced if JOBW = 'N'.
LDBW INTEGER
The leading dimension of the array BW.
LDBW >= MAX(1,NW), if JOBW <> 'N';
LDBW >= 1, if JOBW = 'N'.
CW (input/output) DOUBLE PRECISION array, dimension (LDCW,NW)
On entry, if JOBW <> 'N', the leading M-by-NW part of
this array must contain the output matrix CW of a state
space realization of the right frequency weighting W.
On exit, if JOBW <> 'N', and INFO = 0, the leading
M-by-NW part of this array contains the transformed output
matrix CW corresponding to the transformed AW.
CW is not referenced if JOBW = 'N'.
LDCW INTEGER
The leading dimension of the array CW.
LDCW >= MAX(1,M), if JOBW <> 'N';
LDCW >= 1, if JOBW = 'N'.
DW (input) DOUBLE PRECISION array, dimension (LDDW,M)
If JOBW <> 'N', the leading M-by-M part of this array
must contain the feedthrough matrix DW of a state space
realization of the right frequency weighting W.
DW is not referenced if JOBW = 'N'.
LDDW INTEGER
The leading dimension of the array DW.
LDDW >= MAX(1,M), if JOBW <> 'N';
LDDW >= 1, if JOBW = 'N'.
NS (output) INTEGER
The dimension of the ALPHA-stable subsystem.
HSV (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the leading NS elements of this array contain
the Hankel singular values, ordered decreasingly, of the
projection G1s of op(V)*G1*op(W) (see METHOD), where G1
is the ALPHA-stable part of the original system.
</PRE>
<B>Tolerances</B>
<PRE>
TOL1 DOUBLE PRECISION
If ORDSEL = 'A', TOL1 contains the tolerance for
determining the order of reduced system.
For model reduction, the recommended value is
TOL1 = c*HNORM(G1s), where c is a constant in the
interval [0.00001,0.001], and HNORM(G1s) is the
Hankel-norm of the projection G1s of op(V)*G1*op(W)
(see METHOD), computed in HSV(1).
If TOL1 <= 0 on entry, the used default value is
TOL1 = NS*EPS*HNORM(G1s), where NS is the number of
ALPHA-stable eigenvalues of A and EPS is the machine
precision (see LAPACK Library Routine DLAMCH).
If ORDSEL = 'F', the value of TOL1 is ignored.
TOL1 < 1.
TOL2 DOUBLE PRECISION
The tolerance for determining the order of a minimal
realization of the ALPHA-stable part of the given system.
The recommended value is TOL2 = NS*EPS*HNORM(G1s).
This value is used by default if TOL2 <= 0 on entry.
If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
TOL2 < 1.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
LIWORK = MAX(1,M,c,d), if DICO = 'C',
LIWORK = MAX(1,N,M,c,d), if DICO = 'D', where
c = 0, if JOBV = 'N',
c = MAX(2*P,NV+P+N+6,2*NV+P+2), if JOBV <> 'N',
d = 0, if JOBW = 'N',
d = MAX(2*M,NW+M+N+6,2*NW+M+2), if JOBW <> 'N'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX( LDW1, LDW2, LDW3, LDW4 ), where
for NVP = NV+P and NWM = NW+M we have
LDW1 = 0 if JOBV = 'N' and
LDW1 = 2*NVP*(NVP+P) + P*P +
MAX( 2*NVP*NVP + MAX( 11*NVP+16, P*NVP ),
NVP*N + MAX( NVP*N+N*N, P*N, P*M ) )
if JOBV <> 'N',
LDW2 = 0 if JOBW = 'N' and
LDW2 = 2*NWM*(NWM+M) + M*M +
MAX( 2*NWM*NWM + MAX( 11*NWM+16, M*NWM ),
NWM*N + MAX( NWM*N+N*N, M*N, P*M ) )
if JOBW <> 'N',
LDW3 = N*(2*N + MAX(N,M,P) + 5) + N*(N+1)/2,
LDW4 = N*(M+P+2) + 2*M*P + MIN(N,M) +
MAX( 3*M+1, MIN(N,M)+P ).
For optimum performance LDWORK should be larger.
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= 1: with ORDSEL = 'F', the selected order NR is greater
than NSMIN, the sum of the order of the
ALPHA-unstable part and the order of a minimal
realization of the ALPHA-stable part of the given
system. In this case, the resulting NR is set equal
to NSMIN.
= 2: with ORDSEL = 'F', the selected order NR is less
than the order of the ALPHA-unstable part of the
given system. In this case NR is set equal to the
order of the ALPHA-unstable part.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the computation of the ordered real Schur form of A
failed;
= 2: the separation of the ALPHA-stable/unstable
diagonal blocks failed because of very close
eigenvalues;
= 3: the reduction of AV to a real Schur form failed;
= 4: the reduction of AW to a real Schur form failed;
= 5: the reduction to generalized Schur form of the
descriptor pair corresponding to the inverse of V
failed;
= 6: the reduction to generalized Schur form of the
descriptor pair corresponding to the inverse of W
failed;
= 7: the computation of Hankel singular values failed;
= 8: the computation of stable projection in the
Hankel-norm approximation algorithm failed;
= 9: the order of computed stable projection in the
Hankel-norm approximation algorithm differs
from the order of Hankel-norm approximation;
= 10: the reduction of AV-BV*inv(DV)*CV to a
real Schur form failed;
= 11: the reduction of AW-BW*inv(DW)*CW to a
real Schur form failed;
= 12: the solution of the Sylvester equation failed
because the poles of V (if JOBV = 'V') or of
conj(V) (if JOBV = 'C') are not distinct from
the poles of G1 (see METHOD);
= 13: the solution of the Sylvester equation failed
because the poles of W (if JOBW = 'W') or of
conj(W) (if JOBW = 'C') are not distinct from
the poles of G1 (see METHOD);
= 14: the solution of the Sylvester equation failed
because the zeros of V (if JOBV = 'I') or of
conj(V) (if JOBV = 'R') are not distinct from
the poles of G1sr (see METHOD);
= 15: the solution of the Sylvester equation failed
because the zeros of W (if JOBW = 'I') or of
conj(W) (if JOBW = 'R') are not distinct from
the poles of G1sr (see METHOD);
= 16: the solution of the generalized Sylvester system
failed because the zeros of V (if JOBV = 'I') or
of conj(V) (if JOBV = 'R') are not distinct from
the poles of G1sr (see METHOD);
= 17: the solution of the generalized Sylvester system
failed because the zeros of W (if JOBW = 'I') or
of conj(W) (if JOBW = 'R') are not distinct from
the poles of G1sr (see METHOD);
= 18: op(V) is not antistable;
= 19: op(W) is not antistable;
= 20: V is not invertible;
= 21: W is not invertible.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Let G be the transfer-function matrix of the original
linear system
d[x(t)] = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (1)
where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
for a discrete-time system. The subroutine AB09JD determines
the matrices of a reduced order system
d[z(t)] = Ar*z(t) + Br*u(t)
yr(t) = Cr*z(t) + Dr*u(t), (2)
such that the corresponding transfer-function matrix Gr minimizes
the Hankel-norm of the frequency-weighted error
op(V)*(G-Gr)*op(W). (3)
For minimizing (3) with op(V) = V and op(W) = W, V and W are
assumed to have poles distinct from those of G, while with
op(V) = conj(V) and op(W) = conj(W), conj(V) and conj(W) are
assumed to have poles distinct from those of G. For minimizing (3)
with op(V) = inv(V) and op(W) = inv(W), V and W are assumed to
have zeros distinct from the poles of G, while with
op(V) = conj(inv(V)) and op(W) = conj(inv(W)), conj(V) and conj(W)
are assumed to have zeros distinct from the poles of G.
Note: conj(G) = G'(-s) for a continuous-time system and
conj(G) = G'(1/z) for a discrete-time system.
The following procedure is used to reduce G (see [1]):
1) Decompose additively G as
G = G1 + G2,
such that G1 = (A1,B1,C1,D) has only ALPHA-stable poles and
G2 = (A2,B2,C2,0) has only ALPHA-unstable poles.
2) Compute G1s, the projection of op(V)*G1*op(W) containing the
poles of G1, using explicit formulas [4] or the inverse-free
descriptor system formulas of [5].
3) Determine G1sr, the optimal Hankel-norm approximation of G1s,
of order r.
4) Compute G1r, the projection of inv(op(V))*G1sr*inv(op(W))
containing the poles of G1sr, using explicit formulas [4]
or the inverse-free descriptor system formulas of [5].
5) Assemble the reduced model Gr as
Gr = G1r + G2.
To reduce the weighted ALPHA-stable part G1s at step 3, the
optimal Hankel-norm approximation method of [2], based on the
square-root balancing projection formulas of [3], is employed.
The optimal weighted approximation error satisfies
HNORM[op(V)*(G-Gr)*op(W)] >= S(r+1),
where S(r+1) is the (r+1)-th Hankel singular value of G1s, the
transfer-function matrix computed at step 2 of the above
procedure, and HNORM(.) denotes the Hankel-norm.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Latham, G.A. and Anderson, B.D.O.
Frequency-weighted optimal Hankel-norm approximation of stable
transfer functions.
Systems & Control Letters, Vol. 5, pp. 229-236, 1985.
[2] Glover, K.
All optimal Hankel norm approximation of linear
multivariable systems and their L-infinity error bounds.
Int. J. Control, Vol. 36, pp. 1145-1193, 1984.
[3] Tombs, M.S. and Postlethwaite, I.
Truncated balanced realization of stable, non-minimal
state-space systems.
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
[4] Varga, A.
Explicit formulas for an efficient implementation
of the frequency-weighting model reduction approach.
Proc. 1993 European Control Conference, Groningen, NL,
pp. 693-696, 1993.
[5] Varga, A.
Efficient and numerically reliable implementation of the
frequency-weighted Hankel-norm approximation model reduction
approach.
Proc. 2001 ECC, Porto, Portugal, 2001.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The implemented methods rely on an accuracy enhancing square-root
technique.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB09JD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, NMAX, NVMAX, NVPMAX, NWMAX, NWMMAX, PMAX
PARAMETER ( MMAX = 20, NMAX = 20, NVMAX = 10, NWMAX = 10,
$ PMAX = 20, NVPMAX = NVMAX + PMAX,
$ NWMMAX = NWMAX + MMAX )
INTEGER LDA, LDAV, LDAW, LDB, LDBV, LDBW,
$ LDC, LDCV, LDCW, LDD, LDDV, LDDW
PARAMETER ( LDA = NMAX, LDAV = NVMAX, LDAW = NWMAX,
$ LDB = NMAX, LDBV = NVMAX, LDBW = NWMAX,
$ LDC = PMAX, LDCV = PMAX, LDCW = MMAX,
$ LDD = PMAX, LDDV = PMAX, LDDW = MMAX )
INTEGER LIW1, LIW2, LIW3, LIWORK
PARAMETER ( LIW1 = 2*MAX( MMAX, PMAX ),
$ LIW2 = MAX( NVPMAX, NWMMAX ) + NMAX + 6,
$ LIW3 = MAX( 2*NVMAX + PMAX + 2,
$ 2*NWMAX + MMAX + 2 ) )
PARAMETER ( LIWORK = MAX( LIW1, LIW2, LIW3 ) )
INTEGER LDW1, LDW2, LDW3, LDW4, LDWORK
PARAMETER ( LDW1 = 2*NVPMAX*( NVPMAX + PMAX ) + PMAX*PMAX +
$ MAX( 2*NVPMAX*NVPMAX +
$ MAX( 11*NVPMAX + 16, PMAX*NVPMAX ),
$ NVPMAX*NMAX +
$ MAX( NVPMAX*NMAX + NMAX*NMAX,
$ PMAX*NMAX, PMAX*MMAX ) ) )
PARAMETER ( LDW2 = 2*NWMMAX*( NWMMAX + MMAX ) + MMAX*MMAX +
$ MAX( 2*NWMMAX*NWMMAX +
$ MAX( 11*NWMMAX + 16, MMAX*NWMMAX ),
$ NWMMAX*NMAX +
$ MAX( NWMMAX*NMAX + NMAX*NMAX,
$ MMAX*NMAX, PMAX*MMAX ) ) )
PARAMETER ( LDW3 = NMAX*( 2*NMAX + MAX( NMAX, MMAX, PMAX )
$ + 5 ) + ( NMAX*( NMAX + 1 ) )/2 )
PARAMETER ( LDW4 = NMAX*( MMAX + PMAX + 2 ) + 2*MMAX*PMAX +
$ MIN( NMAX, MMAX ) +
$ MAX( 3*MMAX + 1,
$ MIN( NMAX, MMAX ) + PMAX ) )
PARAMETER ( LDWORK = MAX( LDW1, LDW2, LDW3, LDW4 ) )
* .. Local Scalars ..
LOGICAL LEFTW, RIGHTW
DOUBLE PRECISION ALPHA, TOL1, TOL2
INTEGER I, INFO, IWARN, J, M, N, NR, NS, NV, NW, P
CHARACTER*1 DICO, EQUIL, JOBINV, JOBV, JOBW, ORDSEL
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), AV(LDAV,NVMAX), AW(LDAW,NWMAX),
$ B(LDB,MMAX), BV(LDBV,PMAX), BW(LDBW,MMAX),
$ C(LDC,NMAX), CV(LDCV,NVMAX), CW(LDCW,NWMAX),
$ D(LDD,MMAX), DV(LDDV,PMAX), DW(LDDW,MMAX),
$ DWORK(LDWORK), HSV(NMAX)
INTEGER IWORK(LIWORK)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL AB09JD
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, NV, NW, NR, ALPHA, TOL1, TOL2,
$ JOBV, JOBW, JOBINV, DICO, EQUIL, ORDSEL
LEFTW = .NOT.LSAME( JOBV, 'N' )
RIGHTW = .NOT.LSAME( JOBW, 'N' )
IF( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
IF( P.LE.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
IF( LEFTW ) THEN
IF( NV.LT.0 .OR. NV.GT.NVMAX ) THEN
WRITE ( NOUT, FMT = 99986 ) NV
ELSE
IF( NV.GT.0 ) THEN
READ ( NIN, FMT = * )
$ ( ( AV(I,J), J = 1,NV ), I = 1,NV )
READ ( NIN, FMT = * )
$ ( ( BV(I,J), J = 1,P ), I = 1,NV )
READ ( NIN, FMT = * )
$ ( ( CV(I,J), J = 1,NV ), I = 1,P )
END IF
IF( LEFTW )
$ READ ( NIN, FMT = * )
$ ( ( DV(I,J), J = 1,P ), I = 1,P )
END IF
END IF
IF( RIGHTW ) THEN
IF( NW.LT.0 .OR. NW.GT.NWMAX ) THEN
WRITE ( NOUT, FMT = 99985 ) NW
ELSE
IF( NW.GT.0 ) THEN
READ ( NIN, FMT = * )
$ ( ( AW(I,J), J = 1,NW ), I = 1,NW )
READ ( NIN, FMT = * )
$ ( ( BW(I,J), J = 1,M ), I = 1,NW )
READ ( NIN, FMT = * )
$ ( ( CW(I,J), J = 1,NW ), I = 1,M )
END IF
READ ( NIN, FMT = * )
$ ( ( DW(I,J), J = 1,M ), I = 1,M )
END IF
END IF
* Find a reduced ssr for (A,B,C,D).
CALL AB09JD( JOBV, JOBW, JOBINV, DICO, EQUIL, ORDSEL, N,
$ NV, NW, M, P, NR, ALPHA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AV, LDAV, BV, LDBV,
$ CV, LDCV, DV, LDDV, AW, LDAW, BW, LDBW,
$ CW, LDCW, DW, LDDW, NS, HSV, TOL1, TOL2,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF( IWARN.NE.0 ) WRITE ( NOUT, FMT = 99994 ) IWARN
WRITE ( NOUT, FMT = 99997 ) NR
WRITE ( NOUT, FMT = 99987 )
WRITE ( NOUT, FMT = 99995 ) ( HSV(J), J = 1, NS )
IF( NR.GT.0 ) THEN
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, NR
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NR )
20 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 40 I = 1, NR
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
40 CONTINUE
WRITE ( NOUT, FMT = 99992 )
DO 60 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,NR )
60 CONTINUE
END IF
WRITE ( NOUT, FMT = 99991 )
DO 70 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1,M )
70 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' AB09JD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB09JD = ',I2)
99997 FORMAT (/' The order of reduced model = ',I2)
99996 FORMAT (/' The reduced state dynamics matrix Ar is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (' IWARN on exit from AB09JD = ',I2)
99993 FORMAT (/' The reduced input/state matrix Br is ')
99992 FORMAT (/' The reduced state/output matrix Cr is ')
99991 FORMAT (/' The reduced input/output matrix Dr is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (/' The Hankel singular values of weighted ALPHA-stable',
$ ' part are')
99986 FORMAT (/' NV is out of range.',/' NV = ',I5)
99985 FORMAT (/' NW is out of range.',/' NW = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
AB09JD EXAMPLE PROGRAM DATA (Continuous system)
6 1 1 2 0 0 0.0 1.E-1 1.E-14 V N I C S A
-3.8637 -7.4641 -9.1416 -7.4641 -3.8637 -1.0000
1.0000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
1
0
0
0
0
0
0 0 0 0 0 1
0
0.2000 -1.0000
1.0000 0
1
0
-1.8000 0
1
</PRE>
<B>Program Results</B>
<PRE>
AB09JD EXAMPLE PROGRAM RESULTS
The order of reduced model = 4
The Hankel singular values of weighted ALPHA-stable part are
2.6790 2.1589 0.8424 0.1929 0.0219 0.0011
The reduced state dynamics matrix Ar is
-0.2391 0.3072 1.1630 1.1967
-2.9709 -0.2391 2.6270 3.1027
0.0000 0.0000 -0.5137 -1.2842
0.0000 0.0000 0.1519 -0.5137
The reduced input/state matrix Br is
-1.0497
-3.7052
0.8223
0.7435
The reduced state/output matrix Cr is
-0.4466 0.0143 -0.4780 -0.2013
The reduced input/output matrix Dr is
0.0219
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|