File: AB13AX.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (170 lines) | stat: -rw-r--r-- 5,121 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
<HTML>
<HEAD><TITLE>AB13AX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="AB13AX">AB13AX</A></H2>
<H3>
Hankel-norm of a stable system with the state dynamics matrix in real Schur form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the Hankel-norm of the transfer-function matrix G of
  a stable state-space system (A,B,C). The state dynamics matrix A
  of the given system is an upper quasi-triangular matrix in
  real Schur form.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      DOUBLE PRECISION FUNCTION AB13AX( DICO, N, M, P, A, LDA, B, LDB,
     $                                  C, LDC, HSV, DWORK, LDWORK,
     $                                  INFO )
C     .. Scalar Arguments ..
      CHARACTER         DICO
      INTEGER           INFO, LDA, LDB, LDC, LDWORK, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*)

</PRE>
<B><FONT SIZE="+1">Function Value</FONT></B>
<PRE>
  AB13AX  DOUBLE PRECISION
          The Hankel-norm of G (if INFO = 0).

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DICO    CHARACTER*1
          Specifies the type of the system as follows:
          = 'C':  continuous-time system;
          = 'D':  discrete-time system.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the state-space representation, i.e. the
          order of the matrix A.  N &gt;= 0.

  M       (input) INTEGER
          The number of system inputs.  M &gt;= 0.

  P       (input) INTEGER
          The number of system outputs.  P &gt;= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          state dynamics matrix A in a real Schur canonical form.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          input/state matrix B.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading P-by-N part of this array must contain the
          state/output matrix C.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,P).

  HSV     (output) DOUBLE PRECISION array, dimension (N)
          If INFO = 0, this array contains the Hankel singular
          values of the given system ordered decreasingly.
          HSV(1) is the Hankel norm of the given system.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= MAX(1,N*(MAX(N,M,P)+5)+N*(N+1)/2).
          For optimum performance LDWORK should be larger.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the state matrix A is not stable (if DICO = 'C')
                or not convergent (if DICO = 'D');
          = 2:  the computation of Hankel singular values failed.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Let be the stable linear system

       d[x(t)] = Ax(t) + Bu(t)
       y(t)    = Cx(t)                               (1)

  where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
  for a discrete-time system, and let G be the corresponding
  transfer-function matrix. The Hankel-norm of G is computed as the
  the maximum Hankel singular value of the system (A,B,C).
  The computation of the Hankel singular values is performed
  by using the square-root method of [1].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Tombs M.S. and Postlethwaite I.
      Truncated balanced realization of stable, non-minimal
      state-space systems.
      Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The implemented method relies on a square-root technique.
                                  3
  The algorithms require about 17N  floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>