1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
<HTML>
<HEAD><TITLE>AB13CD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB13CD">AB13CD</A></H2>
<H3>
H-infinity norm of a continuous-time stable system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the H-infinity norm of the continuous-time stable
system
| A | B |
G(s) = |---|---| .
| C | D |
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
DOUBLE PRECISION FUNCTION AB13CD( N, M, NP, A, LDA, B, LDB, C,
$ LDC, D, LDD, TOL, IWORK, DWORK,
$ LDWORK, CWORK, LCWORK, BWORK,
$ INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LCWORK, LDD, LDWORK, M, N,
$ NP
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK( * )
COMPLEX*16 CWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ D( LDD, * ), DWORK( * )
LOGICAL BWORK( * )
</PRE>
<B><FONT SIZE="+1">Function Value</FONT></B>
<PRE>
AB13CD DOUBLE PRECISION
If INFO = 0, the H-infinity norm of the system, HNORM,
i.e., the peak gain of the frequency response (as measured
by the largest singular value in the MIMO case).
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the system. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
NP (input) INTEGER
The row size of the matrix C. NP >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
system state matrix A.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading NP-by-N part of this array must contain the
system output matrix C.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,NP).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading NP-by-M part of this array must contain the
system input/output matrix D.
LDD INTEGER
The leading dimension of the array D. LDD >= max(1,NP).
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
Tolerance used to set the accuracy in determining the
norm.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal value
of LDWORK, and DWORK(2) contains the frequency where the
gain of the frequency response achieves its peak value
HNORM.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= max(2,4*N*N+2*M*M+3*M*N+M*NP+2*(N+NP)*NP+10*N+
6*max(M,NP)).
For good performance, LDWORK must generally be larger.
CWORK COMPLEX*16 array, dimension (LCWORK)
On exit, if INFO = 0, CWORK(1) contains the optimal value
of LCWORK.
LCWORK INTEGER
The dimension of the array CWORK.
LCWORK >= max(1,(N+M)*(N+NP)+3*max(M,NP)).
For good performance, LCWORK must generally be larger.
BWORK LOGICAL array, dimension (2*N)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the system is unstable;
= 2: the tolerance is too small (the algorithm for
computing the H-infinity norm did not converge);
= 3: errors in computing the eigenvalues of A or of the
Hamiltonian matrix (the QR algorithm did not
converge);
= 4: errors in computing singular values.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine implements the method presented in [1].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Bruinsma, N.A. and Steinbuch, M.
A fast algorithm to compute the Hinfinity-norm of a transfer
function matrix.
Systems & Control Letters, vol. 14, pp. 287-293, 1990.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
If the algorithm does not converge (INFO = 2), the tolerance must
be increased.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB13CD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10 )
INTEGER LDA, LDB, LDC, LDD
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
$ LDD = PMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = NMAX )
INTEGER LCWORK
PARAMETER ( LCWORK = ( NMAX + MMAX )*( NMAX + PMAX ) +
$ 3*MAX( MMAX, PMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = 4*NMAX*NMAX + 2*MMAX*MMAX +
$ 2*PMAX*PMAX + 3*NMAX*MMAX +
$ 2*NMAX*PMAX + MMAX*PMAX + 10*NMAX +
$ 6*MAX( MMAX, PMAX ) )
* .. Local Scalars ..
DOUBLE PRECISION FPEAK, HNORM, TOL
INTEGER I, INFO, J, M, N, NP
* .. Local Arrays ..
LOGICAL BWORK(2*NMAX)
INTEGER IWORK(LIWORK)
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ D(LDD,MMAX), DWORK(LDWORK)
COMPLEX*16 CWORK( LCWORK )
* .. External Functions ..
DOUBLE PRECISION AB13CD
EXTERNAL AB13CD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, NP
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) NP
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
READ ( NIN, FMT = * ) TOL
* Computing the Hinf norm
HNORM = AB13CD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD, TOL,
$ IWORK, DWORK, LDWORK, CWORK, LCWORK, BWORK,
$ INFO )
*
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99997 )
WRITE ( NOUT, FMT = 99991 ) HNORM
FPEAK = DWORK(2)
WRITE ( NOUT, FMT = 99996 )
WRITE ( NOUT, FMT = 99991 ) FPEAK
ELSE
WRITE( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' AB13CD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from AB13CD =',I2)
99997 FORMAT (/' The H_infty norm of the system is'/)
99996 FORMAT (/' The peak frequency is'/)
99992 FORMAT (10(1X,F8.4))
99991 FORMAT (D17.10)
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' NP is out of range.',/' NP = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
AB13CD EXAMPLE PROGRAM DATA
6 1 1
0.0 1.0 0.0 0.0 0.0 0.0
-0.5 -0.0002 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 -1.0 -0.00002 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 -2.0 -0.000002
1.0
0.0
1.0
0.0
1.0
0.0
1.0 0.0 1.0 0.0 1.0 0.0
0.0
0.000000001
</PRE>
<B>Program Results</B>
<PRE>
AB13CD EXAMPLE PROGRAM RESULTS
The H_infty norm of the system is
0.5000000006D+06
The peak frequency is
0.1414213562D+01
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|