File: AB13CD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (294 lines) | stat: -rw-r--r-- 9,237 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
<HTML>
<HEAD><TITLE>AB13CD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="AB13CD">AB13CD</A></H2>
<H3>
H-infinity norm of a continuous-time stable system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the H-infinity norm of the continuous-time stable
  system

                       | A | B |
                G(s) = |---|---| .
                       | C | D |

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      DOUBLE PRECISION FUNCTION AB13CD( N, M, NP, A, LDA, B, LDB, C,
     $                                  LDC, D, LDD, TOL, IWORK, DWORK,
     $                                  LDWORK, CWORK, LCWORK, BWORK,
     $                                  INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDC, LCWORK, LDD, LDWORK, M, N,
     $                   NP
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      COMPLEX*16         CWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), DWORK( * )
      LOGICAL            BWORK( * )

</PRE>
<B><FONT SIZE="+1">Function Value</FONT></B>
<PRE>
  AB13CD  DOUBLE PRECISION
          If INFO = 0, the H-infinity norm of the system, HNORM,
          i.e., the peak gain of the frequency response (as measured
          by the largest singular value in the MIMO case).

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the system.  N &gt;= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M &gt;= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP &gt;= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          system state matrix A.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          system input matrix B.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= max(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading NP-by-N part of this array must contain the
          system output matrix C.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= max(1,NP).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          The leading NP-by-M part of this array must contain the
          system input/output matrix D.

  LDD     INTEGER
          The leading dimension of the array D.  LDD &gt;= max(1,NP).

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          Tolerance used to set the accuracy in determining the
          norm.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) contains the optimal value
          of LDWORK, and DWORK(2) contains the frequency where the
          gain of the frequency response achieves its peak value
          HNORM.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK &gt;= max(2,4*N*N+2*M*M+3*M*N+M*NP+2*(N+NP)*NP+10*N+
                          6*max(M,NP)).
          For good performance, LDWORK must generally be larger.

  CWORK   COMPLEX*16 array, dimension (LCWORK)
          On exit, if INFO = 0, CWORK(1) contains the optimal value
          of LCWORK.

  LCWORK  INTEGER
          The dimension of the array CWORK.
          LCWORK &gt;= max(1,(N+M)*(N+NP)+3*max(M,NP)).
          For good performance, LCWORK must generally be larger.

  BWORK   LOGICAL array, dimension (2*N)

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the system is unstable;
          = 2:  the tolerance is too small (the algorithm for
                computing the H-infinity norm did not converge);
          = 3:  errors in computing the eigenvalues of A or of the
                Hamiltonian matrix (the QR algorithm did not
                converge);
          = 4:  errors in computing singular values.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine implements the method presented in [1].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Bruinsma, N.A. and Steinbuch, M.
      A fast algorithm to compute the Hinfinity-norm of a transfer
      function matrix.
      Systems & Control Letters, vol. 14, pp. 287-293, 1990.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  If the algorithm does not converge (INFO = 2), the tolerance must
  be increased.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     AB13CD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 10, MMAX = 10, PMAX = 10 )
      INTEGER          LDA, LDB, LDC, LDD
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDD = PMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = NMAX )
      INTEGER          LCWORK
      PARAMETER        ( LCWORK = ( NMAX + MMAX )*( NMAX + PMAX ) +
     $                              3*MAX( MMAX, PMAX ) )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 4*NMAX*NMAX + 2*MMAX*MMAX +
     $                            2*PMAX*PMAX + 3*NMAX*MMAX +
     $                            2*NMAX*PMAX + MMAX*PMAX + 10*NMAX +
     $                            6*MAX( MMAX, PMAX ) )
*     .. Local Scalars ..
      DOUBLE PRECISION FPEAK, HNORM, TOL
      INTEGER          I, INFO, J, M, N, NP
*     .. Local Arrays ..
      LOGICAL          BWORK(2*NMAX)
      INTEGER          IWORK(LIWORK)
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 D(LDD,MMAX), DWORK(LDWORK)
      COMPLEX*16       CWORK( LCWORK )
*     .. External Functions ..
      DOUBLE PRECISION AB13CD
      EXTERNAL         AB13CD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, NP
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99989 ) M
      ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) NP
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
         READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
         READ ( NIN, FMT = * ) TOL
*        Computing the Hinf norm
         HNORM = AB13CD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD, TOL,
     $                   IWORK, DWORK, LDWORK, CWORK, LCWORK, BWORK,
     $                   INFO )
*
         IF ( INFO.EQ.0 ) THEN
            WRITE ( NOUT, FMT = 99997 )
            WRITE ( NOUT, FMT = 99991 ) HNORM
            FPEAK = DWORK(2)
            WRITE ( NOUT, FMT = 99996 )
            WRITE ( NOUT, FMT = 99991 ) FPEAK
         ELSE
            WRITE( NOUT, FMT = 99998 ) INFO
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB13CD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from AB13CD =',I2)
99997 FORMAT (/' The H_infty norm of the system is'/)
99996 FORMAT (/' The peak frequency is'/)
99992 FORMAT (10(1X,F8.4))
99991 FORMAT (D17.10)
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' NP is out of range.',/' NP = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 AB13CD EXAMPLE PROGRAM DATA
   6     1     1   
   0.0  1.0     0.0   0.0      0.0  0.0
  -0.5 -0.0002  0.0   0.0      0.0  0.0
   0.0  0.0     0.0   1.0      0.0  0.0
   0.0  0.0    -1.0  -0.00002  0.0  0.0
   0.0  0.0     0.0   0.0      0.0  1.0
   0.0  0.0     0.0   0.0     -2.0 -0.000002
   1.0 
   0.0  
   1.0 
   0.0 
   1.0 
   0.0
   1.0  0.0  1.0  0.0  1.0  0.0
   0.0
 0.000000001
</PRE>
<B>Program Results</B>
<PRE>
 AB13CD EXAMPLE PROGRAM RESULTS


 The H_infty norm of the system is

 0.5000000006D+06

 The peak frequency is

 0.1414213562D+01
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>