1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
<HTML>
<HEAD><TITLE>AB13FD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB13FD">AB13FD</A></H2>
<H3>
Computing the distance from a real matrix to the nearest complex matrix with an eigenvalue on the imaginary axis, using SVD
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute beta(A), the 2-norm distance from a real matrix A to
the nearest complex matrix with an eigenvalue on the imaginary
axis. If A is stable in the sense that all eigenvalues of A lie
in the open left half complex plane, then beta(A) is the complex
stability radius, i.e., the distance to the nearest unstable
complex matrix. The value of beta(A) is the minimum of the
smallest singular value of (A - jwI), taken over all real w.
The value of w corresponding to the minimum is also computed.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB13FD( N, A, LDA, BETA, OMEGA, TOL, DWORK, LDWORK,
$ CWORK, LCWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LCWORK, LDA, LDWORK, N
DOUBLE PRECISION BETA, OMEGA, TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*)
COMPLEX*16 CWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
matrix A.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
BETA (output) DOUBLE PRECISION
The computed value of beta(A), which actually is an upper
bound.
OMEGA (output) DOUBLE PRECISION
The value of w such that the smallest singular value of
(A - jwI) equals beta(A).
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
Specifies the accuracy with which beta(A) is to be
calculated. (See the Numerical Aspects section below.)
If the user sets TOL to be less than EPS, where EPS is the
machine precision (see LAPACK Library Routine DLAMCH),
then the tolerance is taken to be EPS.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
If DWORK(1) is not needed, the first 2*N*N entries of
DWORK may overlay CWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX( 1, 3*N*(N+2) ).
For optimum performance LDWORK should be larger.
CWORK COMPLEX*16 array, dimension (LCWORK)
On exit, if INFO = 0, CWORK(1) returns the optimal value
of LCWORK.
If CWORK(1) is not needed, the first N*N entries of
CWORK may overlay DWORK.
LCWORK INTEGER
The length of the array CWORK.
LCWORK >= MAX( 1, N*(N+3) ).
For optimum performance LCWORK should be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the routine fails to compute beta(A) within the
specified tolerance. Nevertheless, the returned
value is an upper bound on beta(A);
= 2: either the QR or SVD algorithm (LAPACK Library
routines DHSEQR, DGESVD or ZGESVD) fails to
converge; this error is very rare.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
AB13FD combines the methods of [1] and [2] into a provably
reliable, quadratically convergent algorithm. It uses the simple
bisection strategy of [1] to find an interval which contains
beta(A), and then switches to the modified bisection strategy of
[2] which converges quadratically to a minimizer. Note that the
efficiency of the strategy degrades if there are several local
minima that are near or equal the global minimum.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Byers, R.
A bisection method for measuring the distance of a stable
matrix to the unstable matrices.
SIAM J. Sci. Stat. Comput., Vol. 9, No. 5, pp. 875-880, 1988.
[2] Boyd, S. and Balakrishnan, K.
A regularity result for the singular values of a transfer
matrix and a quadratically convergent algorithm for computing
its L-infinity norm.
Systems and Control Letters, Vol. 15, pp. 1-7, 1990.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
In the presence of rounding errors, the computed function value
BETA satisfies
beta(A) <= BETA + epsilon,
BETA/(1+TOL) - delta <= MAX(beta(A), SQRT(2*N*EPS)*norm(A)),
where norm(A) is the Frobenius norm of A,
epsilon = p(N) * EPS * norm(A),
and
delta = p(N) * SQRT(EPS) * norm(A),
and p(N) is a low degree polynomial. It is recommended to choose
TOL greater than SQRT(EPS). Although rounding errors can cause
AB13FD to fail for smaller values of TOL, nevertheless, it usually
succeeds. Regardless of success or failure, the first inequality
holds.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB13FD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 20 )
INTEGER LDA
PARAMETER ( LDA = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = 3*NMAX*( NMAX + 2 ) )
INTEGER LCWORK
PARAMETER ( LCWORK = NMAX*( NMAX + 3 ) )
* .. Local Scalars ..
INTEGER I, INFO, J, N
DOUBLE PRECISION BETA, OMEGA, TOL
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK)
COMPLEX*16 CWORK(LCWORK)
* .. External Subroutines ..
EXTERNAL AB13FD, UD01MD
* ..
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
* Read N, TOL and next A (row wise).
READ ( NIN, FMT = * ) N, TOL
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) N
ELSE
DO 10 I = 1, N
READ ( NIN, FMT = * ) ( A(I,J), J = 1, N )
10 CONTINUE
*
WRITE ( NOUT, FMT = 99998 ) N, TOL
CALL UD01MD( N, N, 5, NOUT, A, LDA, 'A', INFO )
*
CALL AB13FD( N, A, LDA, BETA, OMEGA, TOL, DWORK, LDWORK, CWORK,
$ LCWORK, INFO )
*
IF ( INFO.NE.0 )
$ WRITE ( NOUT, FMT = 99996 ) INFO
WRITE ( NOUT, FMT = 99997 ) BETA, OMEGA
END IF
*
99999 FORMAT (' AB13FD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' N =', I2, 3X, 'TOL =', D10.3)
99997 FORMAT (' Stability radius :', D18.11, /
* ' Minimizing omega :', D18.11)
99996 FORMAT (' INFO on exit from AB13FD = ', I2)
99995 FORMAT (/' N is out of range.',/' N = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
AB13FD EXAMPLE PROGRAM DATA
4 0.0D-00 0.0D-00
246.500 242.500 202.500 -197.500
-252.500 -248.500 -207.500 202.500
-302.500 -297.500 -248.500 242.500
-307.500 -302.500 -252.500 246.500
</PRE>
<B>Program Results</B>
<PRE>
AB13FD EXAMPLE PROGRAM RESULTS
N = 4 TOL = 0.000D+00
A ( 4X 4)
1 2 3 4
1 0.2465000D+03 0.2425000D+03 0.2025000D+03 -0.1975000D+03
2 -0.2525000D+03 -0.2485000D+03 -0.2075000D+03 0.2025000D+03
3 -0.3025000D+03 -0.2975000D+03 -0.2485000D+03 0.2425000D+03
4 -0.3075000D+03 -0.3025000D+03 -0.2525000D+03 0.2465000D+03
Stability radius : 0.39196472317D-02
Minimizing omega : 0.98966520430D+00
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|