1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
<HTML>
<HEAD><TITLE>AB13MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="AB13MD">AB13MD</A></H2>
<H3>
Upper bound on the structured singular value for a square complex matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute an upper bound on the structured singular value for a
given square complex matrix and a given block structure of the
uncertainty.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE AB13MD( FACT, N, Z, LDZ, M, NBLOCK, ITYPE, X, BOUND, D,
$ G, IWORK, DWORK, LDWORK, ZWORK, LZWORK, INFO )
C .. Scalar Arguments ..
CHARACTER FACT
INTEGER INFO, LDWORK, LDZ, LZWORK, M, N
DOUBLE PRECISION BOUND
C .. Array Arguments ..
INTEGER ITYPE( * ), IWORK( * ), NBLOCK( * )
COMPLEX*16 Z( LDZ, * ), ZWORK( * )
DOUBLE PRECISION D( * ), DWORK( * ), G( * ), X( * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
FACT CHARACTER*1
Specifies whether or not an information from the
previous call is supplied in the vector X.
= 'F': On entry, X contains information from the
previous call.
= 'N': On entry, X does not contain an information from
the previous call.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix Z. N >= 0.
Z (input) COMPLEX*16 array, dimension (LDZ,N)
The leading N-by-N part of this array must contain the
complex matrix Z for which the upper bound on the
structured singular value is to be computed.
LDZ INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
M (input) INTEGER
The number of diagonal blocks in the block structure of
the uncertainty. M >= 1.
NBLOCK (input) INTEGER array, dimension (M)
The vector of length M containing the block structure
of the uncertainty. NBLOCK(I), I = 1:M, is the size of
each block.
ITYPE (input) INTEGER array, dimension (M)
The vector of length M indicating the type of each block.
For I = 1:M,
ITYPE(I) = 1 indicates that the corresponding block is a
real block, and
ITYPE(I) = 2 indicates that the corresponding block is a
complex block.
NBLOCK(I) must be equal to 1 if ITYPE(I) is equal to 1.
X (input/output) DOUBLE PRECISION array, dimension
( M + MR - 1 ), where MR is the number of the real blocks.
On entry, if FACT = 'F' and NBLOCK(1) < N, this array
must contain information from the previous call to AB13MD.
If NBLOCK(1) = N, this array is not used.
On exit, if NBLOCK(1) < N, this array contains information
that can be used in the next call to AB13MD for a matrix
close to Z.
BOUND (output) DOUBLE PRECISION
The upper bound on the structured singular value.
D, G (output) DOUBLE PRECISION arrays, dimension (N)
The vectors of length N containing the diagonal entries
of the diagonal N-by-N matrices D and G, respectively,
such that the matrix
Z'*D^2*Z + sqrt(-1)*(G*Z-Z'*G) - BOUND^2*D^2
is negative semidefinite.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (MAX(4*M-2,N))
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal value
of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= 2*N*N*M - N*N + 9*M*M + N*M + 11*N + 33*M - 11.
For best performance
LDWORK >= 2*N*N*M - N*N + 9*M*M + N*M + 6*N + 33*M - 11 +
MAX( 5*N,2*N*NB )
where NB is the optimal blocksize returned by ILAENV.
ZWORK COMPLEX*16 array, dimension (LZWORK)
On exit, if INFO = 0, ZWORK(1) contains the optimal value
of LZWORK.
LZWORK INTEGER
The dimension of the array ZWORK.
LZWORK >= 6*N*N*M + 12*N*N + 6*M + 6*N - 3.
For best performance
LZWORK >= 6*N*N*M + 12*N*N + 6*M + 3*N - 3 +
MAX( 3*N,N*NB )
where NB is the optimal blocksize returned by ILAENV.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the block sizes must be positive integers;
= 2: the sum of block sizes must be equal to N;
= 3: the size of a real block must be equal to 1;
= 4: the block type must be either 1 or 2;
= 5: errors in solving linear equations or in matrix
inversion;
= 6: errors in computing eigenvalues or singular values.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine computes the upper bound proposed in [1].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Fan, M.K.H., Tits, A.L., and Doyle, J.C.
Robustness in the presence of mixed parametric uncertainty
and unmodeled dynamics.
IEEE Trans. Automatic Control, vol. AC-36, 1991, pp. 25-38.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The accuracy and speed of computation depend on the value of
the internal threshold TOL.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* AB13MD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX
PARAMETER ( NMAX = 10, MMAX = 10 )
INTEGER LDZ
PARAMETER ( LDZ = NMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = MAX( 4*MMAX-2, NMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = 2*NMAX*NMAX*MMAX - NMAX*NMAX +
$ 9*MMAX*MMAX + NMAX*MMAX + 11*NMAX +
$ 33*MMAX - 11 )
INTEGER LZWORK
PARAMETER ( LZWORK = 6*NMAX*NMAX*MMAX + 12*NMAX*NMAX +
$ 6*MMAX + 6*NMAX - 3 )
* .. Local Scalars ..
INTEGER I, INFO, J, M, N
DOUBLE PRECISION BOUND
* .. Local Arrays ..
INTEGER ITYPE(MMAX), IWORK(LIWORK), NBLOCK(MMAX)
DOUBLE PRECISION D(NMAX), DWORK(LDWORK), G(NMAX), X(2*MMAX-1)
COMPLEX*16 Z(LDZ,NMAX), ZWORK(LZWORK)
* .. External Subroutines ..
EXTERNAL AB13MD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE
READ ( NIN, FMT = * ) ( NBLOCK(I), I = 1, M )
READ ( NIN, FMT = * ) ( ITYPE(I), I = 1, M )
READ ( NIN, FMT = * ) ( ( Z(I,J), J = 1,N ), I = 1,N )
* Computing mu.
CALL AB13MD( 'N', N, Z, LDZ, M, NBLOCK, ITYPE, X, BOUND, D, G,
$ IWORK, DWORK, LDWORK, ZWORK, LZWORK, INFO )
*
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99997 )
WRITE ( NOUT, FMT = 99991 ) BOUND
ELSE
WRITE( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' AB13MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB13MD =',I2)
99997 FORMAT (' The value of the structured singular value is'/)
99991 FORMAT (D17.10)
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
AB13MD EXAMPLE PROGRAM DATA
6 5
1 1 2 1 1
1 1 2 2 2
(-1.0D0,6.0D0) (2.0D0,-3.0D0) (3.0D0,8.0D0)
(3.0D0,8.0D0) (-5.0D0,-9.0D0) (-6.0D0,2.0D0)
(4.0D0,2.0D0) (-2.0D0,5.0D0) (-6.0D0,-7.0D0)
(-4.0D0,11.0D0) (8.0D0,-7.0D0) (12.0D0,-1.0D0)
(5.0D0,-4.0D0) (-4.0D0,-8.0D0) (1.0D0,-3.0D0)
(-6.0D0,14.0D0) (2.0D0,-5.0D0) (4.0D0,16.0D0)
(-1.0D0,6.0D0) (2.0D0,-3.0D0) (3.0D0,8.0D0)
(3.0D0,8.0D0) (-5.0D0,-9.0D0) (-6.0D0,2.0D0)
(4.0D0,2.0D0) (-2.0D0,5.0D0) (-6.0D0,-7.0D0)
(-4.0D0,11.0D0) (8.0D0,-7.0D0) (12.0D0,-1.0D0)
(5.0D0,-4.0D0) (-4.0D0,-8.0D0) (1.0D0,-3.0D0)
(-6.0D0,14.0D0) (2.0D0,-5.0D0) (4.0D0,16.0D0)
</PRE>
<B>Program Results</B>
<PRE>
AB13MD EXAMPLE PROGRAM RESULTS
The value of the structured singular value is
0.4174753408D+02
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|