File: AB13MD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (272 lines) | stat: -rw-r--r-- 9,468 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
<HTML>
<HEAD><TITLE>AB13MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="AB13MD">AB13MD</A></H2>
<H3>
Upper bound on the structured singular value for a square complex matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute an upper bound on the structured singular value for a
  given square complex matrix and a given block structure of the
  uncertainty.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE AB13MD( FACT, N, Z, LDZ, M, NBLOCK, ITYPE, X, BOUND, D,
     $                   G, IWORK, DWORK, LDWORK, ZWORK, LZWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          FACT
      INTEGER            INFO, LDWORK, LDZ, LZWORK, M, N
      DOUBLE PRECISION   BOUND
C     .. Array Arguments ..
      INTEGER            ITYPE( * ), IWORK( * ), NBLOCK( * )
      COMPLEX*16         Z( LDZ, * ), ZWORK( * )
      DOUBLE PRECISION   D( * ), DWORK( * ), G( * ), X( * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  FACT    CHARACTER*1
          Specifies whether or not an information from the
          previous call is supplied in the vector X.
          = 'F':  On entry, X contains information from the
                  previous call.
          = 'N':  On entry, X does not contain an information from
                  the previous call.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix Z.  N &gt;= 0.

  Z       (input) COMPLEX*16 array, dimension (LDZ,N)
          The leading N-by-N part of this array must contain the
          complex matrix Z for which the upper bound on the
          structured singular value is to be computed.

  LDZ     INTEGER
          The leading dimension of the array Z.  LDZ &gt;= max(1,N).

  M       (input) INTEGER
          The number of diagonal blocks in the block structure of
          the uncertainty.  M &gt;= 1.

  NBLOCK  (input) INTEGER array, dimension (M)
          The vector of length M containing the block structure
          of the uncertainty. NBLOCK(I), I = 1:M, is the size of
          each block.

  ITYPE   (input) INTEGER array, dimension (M)
          The vector of length M indicating the type of each block.
          For I = 1:M,
          ITYPE(I) = 1 indicates that the corresponding block is a
                       real block, and
          ITYPE(I) = 2 indicates that the corresponding block is a
                       complex block.
          NBLOCK(I) must be equal to 1 if ITYPE(I) is equal to 1.

  X       (input/output) DOUBLE PRECISION array, dimension
          ( M + MR - 1 ), where MR is the number of the real blocks.
          On entry, if FACT = 'F' and NBLOCK(1) &lt; N, this array
          must contain information from the previous call to AB13MD.
          If NBLOCK(1) = N, this array is not used.
          On exit, if NBLOCK(1) &lt; N, this array contains information
          that can be used in the next call to AB13MD for a matrix
          close to Z.

  BOUND   (output) DOUBLE PRECISION
          The upper bound on the structured singular value.

  D, G    (output) DOUBLE PRECISION arrays, dimension (N)
          The vectors of length N containing the diagonal entries
          of the diagonal N-by-N matrices D and G, respectively,
          such that the matrix
          Z'*D^2*Z + sqrt(-1)*(G*Z-Z'*G) - BOUND^2*D^2
          is negative semidefinite.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (MAX(4*M-2,N))

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) contains the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK &gt;= 2*N*N*M - N*N + 9*M*M + N*M + 11*N + 33*M - 11.
          For best performance
          LDWORK &gt;= 2*N*N*M - N*N + 9*M*M + N*M + 6*N + 33*M - 11 +
                    MAX( 5*N,2*N*NB )
          where NB is the optimal blocksize returned by ILAENV.

  ZWORK   COMPLEX*16 array, dimension (LZWORK)
          On exit, if INFO = 0, ZWORK(1) contains the optimal value
          of LZWORK.

  LZWORK  INTEGER
          The dimension of the array ZWORK.
          LZWORK &gt;= 6*N*N*M + 12*N*N + 6*M + 6*N - 3.
          For best performance
          LZWORK &gt;= 6*N*N*M + 12*N*N + 6*M + 3*N - 3 +
                    MAX( 3*N,N*NB )
          where NB is the optimal blocksize returned by ILAENV.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the block sizes must be positive integers;
          = 2:  the sum of block sizes must be equal to N;
          = 3:  the size of a real block must be equal to 1;
          = 4:  the block type must be either 1 or 2;
          = 5:  errors in solving linear equations or in matrix
                inversion;
          = 6:  errors in computing eigenvalues or singular values.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine computes the upper bound proposed in [1].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Fan, M.K.H., Tits, A.L., and Doyle, J.C.
      Robustness in the presence of mixed parametric uncertainty
      and unmodeled dynamics.
      IEEE Trans. Automatic Control, vol. AC-36, 1991, pp. 25-38.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The accuracy and speed of computation depend on the value of
  the internal threshold TOL.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     AB13MD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX
      PARAMETER        ( NMAX = 10, MMAX = 10 )
      INTEGER          LDZ
      PARAMETER        ( LDZ = NMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = MAX( 4*MMAX-2, NMAX ) )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 2*NMAX*NMAX*MMAX - NMAX*NMAX +
     $                            9*MMAX*MMAX + NMAX*MMAX + 11*NMAX +
     $                            33*MMAX - 11 )
      INTEGER          LZWORK
      PARAMETER        ( LZWORK = 6*NMAX*NMAX*MMAX + 12*NMAX*NMAX +
     $                            6*MMAX + 6*NMAX - 3 )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, M, N
      DOUBLE PRECISION BOUND
*     .. Local Arrays ..
      INTEGER          ITYPE(MMAX), IWORK(LIWORK), NBLOCK(MMAX)
      DOUBLE PRECISION D(NMAX), DWORK(LDWORK), G(NMAX), X(2*MMAX-1)
      COMPLEX*16       Z(LDZ,NMAX), ZWORK(LZWORK)
*     .. External Subroutines ..
      EXTERNAL         AB13MD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99989 ) M
      ELSE
         READ ( NIN, FMT = * ) ( NBLOCK(I), I = 1, M )
         READ ( NIN, FMT = * ) ( ITYPE(I), I = 1, M )
         READ ( NIN, FMT = * ) ( ( Z(I,J), J = 1,N ), I = 1,N )
*        Computing mu.
         CALL AB13MD( 'N', N, Z, LDZ, M, NBLOCK, ITYPE, X, BOUND, D, G,
     $               IWORK, DWORK, LDWORK, ZWORK, LZWORK, INFO )
*
         IF ( INFO.EQ.0 ) THEN
            WRITE ( NOUT, FMT = 99997 )
            WRITE ( NOUT, FMT = 99991 ) BOUND
         ELSE
            WRITE( NOUT, FMT = 99998 ) INFO
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB13MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB13MD =',I2)
99997 FORMAT (' The value of the structured singular value is'/)
99991 FORMAT (D17.10)
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 AB13MD EXAMPLE PROGRAM DATA
   6     5
   1     1     2     1     1
   1     1     2     2     2
   (-1.0D0,6.0D0)  (2.0D0,-3.0D0)  (3.0D0,8.0D0)
   (3.0D0,8.0D0)   (-5.0D0,-9.0D0) (-6.0D0,2.0D0)
   (4.0D0,2.0D0)   (-2.0D0,5.0D0)  (-6.0D0,-7.0D0)
   (-4.0D0,11.0D0) (8.0D0,-7.0D0)  (12.0D0,-1.0D0)
   (5.0D0,-4.0D0)  (-4.0D0,-8.0D0) (1.0D0,-3.0D0)
   (-6.0D0,14.0D0) (2.0D0,-5.0D0)  (4.0D0,16.0D0)
   (-1.0D0,6.0D0)  (2.0D0,-3.0D0)  (3.0D0,8.0D0)
   (3.0D0,8.0D0)   (-5.0D0,-9.0D0) (-6.0D0,2.0D0)
   (4.0D0,2.0D0)   (-2.0D0,5.0D0)  (-6.0D0,-7.0D0)
   (-4.0D0,11.0D0) (8.0D0,-7.0D0)  (12.0D0,-1.0D0)
   (5.0D0,-4.0D0)  (-4.0D0,-8.0D0) (1.0D0,-3.0D0)
   (-6.0D0,14.0D0) (2.0D0,-5.0D0)  (4.0D0,16.0D0)
</PRE>
<B>Program Results</B>
<PRE>
 AB13MD EXAMPLE PROGRAM RESULTS

 The value of the structured singular value is

 0.4174753408D+02
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>