File: BD02AD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (334 lines) | stat: -rw-r--r-- 10,951 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
<HTML>
<HEAD><TITLE>BD02AD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="BD02AD">BD02AD</A></H2>
<H3>
Benchmark examples for time-invariant discrete-time dynamical systems
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To generate benchmark examples for time-invariant,
  discrete-time dynamical systems

    E x_k+1 = A x_k + B u_k

        y_k = C x_k + D u_k

  E, A are real N-by-N matrices, B is N-by-M, C is P-by-N, and
  D is P-by-M. In many examples, E is the identity matrix and D is
  the zero matrix.

  This routine is an implementation of the benchmark library
  DTDSX (Version 1.0) described in [1].

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE BD02AD( DEF, NR, DPAR, IPAR, VEC, N, M, P, E, LDE, A,
     1                   LDA, B, LDB, C, LDC, D, LDD, NOTE, DWORK,
     2                   LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         DEF
      CHARACTER*70      NOTE
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDE, LDWORK, M, N, P
C     .. Array Arguments ..
      LOGICAL           VEC(8)
      INTEGER           IPAR(*), NR(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DPAR(*),
     1                  DWORK(*), E(LDE,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DEF     CHARACTER*1
          Specifies the kind of values used as parameters when
          generating parameter-dependent and scalable examples
          (i.e., examples with NR(1) = 2, 3, or 4):
          = 'D':  Default values defined in [1] are used;
          = 'N':  Values set in DPAR and IPAR are used.
          This parameter is not referenced if NR(1) = 1.
          Note that the scaling parameter of examples with
          NR(1) = 3 or 4 is considered as a regular parameter in
          this context.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  NR      (input) INTEGER array, dimension (2)
          Specifies the index of the desired example according
          to [1].
          NR(1) defines the group:
                1 : parameter-free problems of fixed size
                2 : parameter-dependent problems of fixed size
                3 : parameter-free problems of scalable size
                4 : parameter-dependent problems of scalable size
          NR(2) defines the number of the benchmark example
          within a certain group according to [1].

  DPAR    (input/output) DOUBLE PRECISION array, dimension (7)
          On entry, if DEF = 'N' and the desired example depends on
          real parameters, then the array DPAR must contain the
          values for these parameters.
          For an explanation of the parameters see [1].
          For Example 2.1, DPAR(1), ..., DPAR(3) define the
          parameters 'tau', 'delta', 'K', respectively.
          On exit, if DEF = 'D' and the desired example depends on
          real parameters, then the array DPAR is overwritten by the
          default values given in [1].

  IPAR    (input/output) INTEGER array, dimension (1)
          On entry, if DEF = 'N' and the desired example depends on
          integer parameters, then the array IPAR must contain the
          values for these parameters.
          For an explanation of the parameters see [1].
          For Example 3.1, IPAR(1) defines the parameter 'n'.
          On exit, if DEF = 'D' and the desired example depends on
          integer parameters, then the array IPAR is overwritten by
          the default values given in [1].

  VEC     (output) LOGICAL array, dimension (8)
          Flag vector which displays the availabilty of the output
          data:
          VEC(1), ..., VEC(3) refer to N, M, and P, respectively,
          and are always .TRUE..
          VEC(4) is .TRUE. iff E is NOT the identity matrix.
          VEC(5), ..., VEC(7) refer to A, B, and C, respectively,
          and are always .TRUE..
          VEC(8) is .TRUE. iff D is NOT the zero matrix.

  N       (output) INTEGER
          The actual state dimension, i.e., the order of the
          matrices E and A.

  M       (output) INTEGER
          The number of columns in the matrices B and D.

  P       (output) INTEGER
          The number of rows in the matrices C and D.

  E       (output) DOUBLE PRECISION array, dimension (LDE,N)
          The leading N-by-N part of this array contains the
          matrix E.
          NOTE that this array is overwritten (by the identity
          matrix), if VEC(4) = .FALSE..

  LDE     INTEGER
          The leading dimension of array E.  LDE &gt;= N.

  A       (output) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array contains the
          matrix A.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= N.

  B       (output) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array contains the
          matrix B.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= N.

  C       (output) DOUBLE PRECISION array, dimension (LDC,N)
          The leading P-by-N part of this array contains the
          matrix C.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= P.

  D       (output) DOUBLE PRECISION array, dimension (LDD,M)
          The leading P-by-M part of this array contains the
          matrix D.
          NOTE that this array is overwritten (by the zero
          matrix), if VEC(8) = .FALSE..

  LDD     INTEGER
          The leading dimension of array D.  LDD &gt;= P.

  NOTE    (output) CHARACTER*70
          String containing short information about the chosen
          example.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          NOTE that DWORK is not used in the current version
          of BD02AD.

  LDWORK  INTEGER
          LDWORK &gt;= 1.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value; in particular, INFO = -3 or -4 indicates
                that at least one of the parameters in DPAR or
                IPAR, respectively, has an illegal value;
          = 1:  data file can not be opened or has wrong format.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1]  Kressner, D., Mehrmann, V. and Penzl, T.
       DTDSX - a Collection of Benchmark Examples for State-Space
       Realizations of Discrete-Time Dynamical Systems.
       SLICOT Working Note 1998-10. 1998.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  None

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
C     BD02AD EXAMPLE PROGRAM TEXT
C
C     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        (NIN = 5, NOUT = 6)
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        (NMAX = 421, MMAX = 211, PMAX = 211)
      INTEGER          LDA, LDB, LDC, LDD, LDE, LDWORK
      PARAMETER        (LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX,
     1                  LDE = NMAX, LDWORK = 1)
C     .. Local Scalars ..
      CHARACTER        DEF
      INTEGER          I, INFO, J, LDPAR, LIPAR, M, N, P
      CHARACTER*70     NOTE
C     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     1                 D(LDD,MMAX), DPAR(7), DWORK(LDWORK), E(LDE,NMAX)
      INTEGER          NR(2), IPAR(7)
      LOGICAL          VEC(8)
C     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
C     .. External Subroutines ..
      EXTERNAL         BD02AD
C     .. Executable Statements ..
      WRITE (NOUT, FMT = 99999)
C     Skip the heading in the data file and read the data.
      READ (NIN, FMT = '()')
      READ (NIN, FMT = *) DEF
      READ (NIN, FMT = *) (NR(I), I = 1, 2)
      IF (LSAME(DEF,'N')) THEN
        READ (NIN, FMT = *) LDPAR
        IF (LDPAR .GT. 0)  READ (NIN, FMT = *) (DPAR(I), I = 1, LDPAR)
        READ (NIN, FMT = *) LIPAR
        IF (LIPAR .GT. 0)  READ (NIN, FMT = *) (IPAR(I), I = 1, LIPAR)
      END IF
C     Generate benchmark example
      CALL BD02AD(DEF, NR, DPAR, IPAR, VEC, N, M, P, E, LDE, A, LDA,
     1            B, LDB, C, LDC, D, LDD, NOTE, DWORK, LDWORK, INFO)
C
      IF (INFO .NE. 0) THEN
        WRITE (NOUT, FMT = 99998) INFO
      ELSE
        WRITE (NOUT, FMT = *) NOTE
        WRITE (NOUT, FMT = 99997) N
        WRITE (NOUT, FMT = 99996) M
        WRITE (NOUT, FMT = 99995) P
        IF (VEC(4)) THEN
          WRITE (NOUT, FMT = 99994)
          DO 10  I = 1, N
            WRITE (NOUT, FMT = 99987) (E(I,J), J = 1, N)
10        CONTINUE
        ELSE
          WRITE (NOUT, FMT = 99993)
        END IF
        WRITE (NOUT,FMT = 99992)
        DO 20  I = 1, N
          WRITE (NOUT, FMT = 99987) (A(I,J), J = 1, N)
20      CONTINUE
        WRITE (NOUT,FMT = 99991)
        DO 30  I = 1, N
          WRITE (NOUT, FMT = 99987) (B(I,J), J = 1, M)
30      CONTINUE
        WRITE (NOUT,FMT = 99990)
        DO 40  I = 1, P
          WRITE (NOUT, FMT = 99987) (C(I,J), J = 1, N)
40      CONTINUE
        IF (VEC(8)) THEN
          WRITE (NOUT,FMT = 99989)
          DO 50  I = 1, P
            WRITE (NOUT, FMT = 99987) (D(I,J), J = 1, M)
50        CONTINUE
        ELSE
          WRITE (NOUT, FMT = 99988)
        END IF
      END IF
C
99999 FORMAT (' BD02AD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' INFO on exit from BD02AD = ', I3)
99997 FORMAT (/' Order of matrix A:               N  = ', I3)
99996 FORMAT (' Number of columns in matrix B:   M  = ', I3)
99995 FORMAT (' Number of rows in matrix C:      P  = ', I3)
99994 FORMAT (/' E  = ')
99993 FORMAT (/' E is the identity matrix.')
99992 FORMAT (' A  = ')
99991 FORMAT (' B  = ')
99990 FORMAT (' C  = ')
99989 FORMAT (' D  = ')
99988 FORMAT (' D is of zeros.')
99987 FORMAT (20(1X,F8.4))
C
      END
</PRE>
<B>Program Data</B>
<PRE>
BD02AD EXAMPLE PROGRAM DATA
D
1 1
</PRE>
<B>Program Results</B>
<PRE>
 BD02AD EXAMPLE PROGRAM RESULTS

 Laub 1979, Ex. 2: uncontrollable-unobservable data                    

 Order of matrix A:               N  =   2
 Number of columns in matrix B:   M  =   1
 Number of rows in matrix C:      P  =   1

 E is the identity matrix.
 A  = 
   4.0000   3.0000
  -4.5000  -3.5000
 B  = 
   1.0000
  -1.0000
 C  = 
   3.0000   2.0000
 D is of zeros.
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>