1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
<HTML>
<HEAD><TITLE>BD02AD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="BD02AD">BD02AD</A></H2>
<H3>
Benchmark examples for time-invariant discrete-time dynamical systems
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To generate benchmark examples for time-invariant,
discrete-time dynamical systems
E x_k+1 = A x_k + B u_k
y_k = C x_k + D u_k
E, A are real N-by-N matrices, B is N-by-M, C is P-by-N, and
D is P-by-M. In many examples, E is the identity matrix and D is
the zero matrix.
This routine is an implementation of the benchmark library
DTDSX (Version 1.0) described in [1].
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE BD02AD( DEF, NR, DPAR, IPAR, VEC, N, M, P, E, LDE, A,
1 LDA, B, LDB, C, LDC, D, LDD, NOTE, DWORK,
2 LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER DEF
CHARACTER*70 NOTE
INTEGER INFO, LDA, LDB, LDC, LDD, LDE, LDWORK, M, N, P
C .. Array Arguments ..
LOGICAL VEC(8)
INTEGER IPAR(*), NR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DPAR(*),
1 DWORK(*), E(LDE,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DEF CHARACTER*1
Specifies the kind of values used as parameters when
generating parameter-dependent and scalable examples
(i.e., examples with NR(1) = 2, 3, or 4):
= 'D': Default values defined in [1] are used;
= 'N': Values set in DPAR and IPAR are used.
This parameter is not referenced if NR(1) = 1.
Note that the scaling parameter of examples with
NR(1) = 3 or 4 is considered as a regular parameter in
this context.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
NR (input) INTEGER array, dimension (2)
Specifies the index of the desired example according
to [1].
NR(1) defines the group:
1 : parameter-free problems of fixed size
2 : parameter-dependent problems of fixed size
3 : parameter-free problems of scalable size
4 : parameter-dependent problems of scalable size
NR(2) defines the number of the benchmark example
within a certain group according to [1].
DPAR (input/output) DOUBLE PRECISION array, dimension (7)
On entry, if DEF = 'N' and the desired example depends on
real parameters, then the array DPAR must contain the
values for these parameters.
For an explanation of the parameters see [1].
For Example 2.1, DPAR(1), ..., DPAR(3) define the
parameters 'tau', 'delta', 'K', respectively.
On exit, if DEF = 'D' and the desired example depends on
real parameters, then the array DPAR is overwritten by the
default values given in [1].
IPAR (input/output) INTEGER array, dimension (1)
On entry, if DEF = 'N' and the desired example depends on
integer parameters, then the array IPAR must contain the
values for these parameters.
For an explanation of the parameters see [1].
For Example 3.1, IPAR(1) defines the parameter 'n'.
On exit, if DEF = 'D' and the desired example depends on
integer parameters, then the array IPAR is overwritten by
the default values given in [1].
VEC (output) LOGICAL array, dimension (8)
Flag vector which displays the availabilty of the output
data:
VEC(1), ..., VEC(3) refer to N, M, and P, respectively,
and are always .TRUE..
VEC(4) is .TRUE. iff E is NOT the identity matrix.
VEC(5), ..., VEC(7) refer to A, B, and C, respectively,
and are always .TRUE..
VEC(8) is .TRUE. iff D is NOT the zero matrix.
N (output) INTEGER
The actual state dimension, i.e., the order of the
matrices E and A.
M (output) INTEGER
The number of columns in the matrices B and D.
P (output) INTEGER
The number of rows in the matrices C and D.
E (output) DOUBLE PRECISION array, dimension (LDE,N)
The leading N-by-N part of this array contains the
matrix E.
NOTE that this array is overwritten (by the identity
matrix), if VEC(4) = .FALSE..
LDE INTEGER
The leading dimension of array E. LDE >= N.
A (output) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array contains the
matrix A.
LDA INTEGER
The leading dimension of array A. LDA >= N.
B (output) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array contains the
matrix B.
LDB INTEGER
The leading dimension of array B. LDB >= N.
C (output) DOUBLE PRECISION array, dimension (LDC,N)
The leading P-by-N part of this array contains the
matrix C.
LDC INTEGER
The leading dimension of array C. LDC >= P.
D (output) DOUBLE PRECISION array, dimension (LDD,M)
The leading P-by-M part of this array contains the
matrix D.
NOTE that this array is overwritten (by the zero
matrix), if VEC(8) = .FALSE..
LDD INTEGER
The leading dimension of array D. LDD >= P.
NOTE (output) CHARACTER*70
String containing short information about the chosen
example.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
NOTE that DWORK is not used in the current version
of BD02AD.
LDWORK INTEGER
LDWORK >= 1.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value; in particular, INFO = -3 or -4 indicates
that at least one of the parameters in DPAR or
IPAR, respectively, has an illegal value;
= 1: data file can not be opened or has wrong format.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kressner, D., Mehrmann, V. and Penzl, T.
DTDSX - a Collection of Benchmark Examples for State-Space
Realizations of Discrete-Time Dynamical Systems.
SLICOT Working Note 1998-10. 1998.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
None
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
C BD02AD EXAMPLE PROGRAM TEXT
C
C .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN = 5, NOUT = 6)
INTEGER NMAX, MMAX, PMAX
PARAMETER (NMAX = 421, MMAX = 211, PMAX = 211)
INTEGER LDA, LDB, LDC, LDD, LDE, LDWORK
PARAMETER (LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX,
1 LDE = NMAX, LDWORK = 1)
C .. Local Scalars ..
CHARACTER DEF
INTEGER I, INFO, J, LDPAR, LIPAR, M, N, P
CHARACTER*70 NOTE
C .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
1 D(LDD,MMAX), DPAR(7), DWORK(LDWORK), E(LDE,NMAX)
INTEGER NR(2), IPAR(7)
LOGICAL VEC(8)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL BD02AD
C .. Executable Statements ..
WRITE (NOUT, FMT = 99999)
C Skip the heading in the data file and read the data.
READ (NIN, FMT = '()')
READ (NIN, FMT = *) DEF
READ (NIN, FMT = *) (NR(I), I = 1, 2)
IF (LSAME(DEF,'N')) THEN
READ (NIN, FMT = *) LDPAR
IF (LDPAR .GT. 0) READ (NIN, FMT = *) (DPAR(I), I = 1, LDPAR)
READ (NIN, FMT = *) LIPAR
IF (LIPAR .GT. 0) READ (NIN, FMT = *) (IPAR(I), I = 1, LIPAR)
END IF
C Generate benchmark example
CALL BD02AD(DEF, NR, DPAR, IPAR, VEC, N, M, P, E, LDE, A, LDA,
1 B, LDB, C, LDC, D, LDD, NOTE, DWORK, LDWORK, INFO)
C
IF (INFO .NE. 0) THEN
WRITE (NOUT, FMT = 99998) INFO
ELSE
WRITE (NOUT, FMT = *) NOTE
WRITE (NOUT, FMT = 99997) N
WRITE (NOUT, FMT = 99996) M
WRITE (NOUT, FMT = 99995) P
IF (VEC(4)) THEN
WRITE (NOUT, FMT = 99994)
DO 10 I = 1, N
WRITE (NOUT, FMT = 99987) (E(I,J), J = 1, N)
10 CONTINUE
ELSE
WRITE (NOUT, FMT = 99993)
END IF
WRITE (NOUT,FMT = 99992)
DO 20 I = 1, N
WRITE (NOUT, FMT = 99987) (A(I,J), J = 1, N)
20 CONTINUE
WRITE (NOUT,FMT = 99991)
DO 30 I = 1, N
WRITE (NOUT, FMT = 99987) (B(I,J), J = 1, M)
30 CONTINUE
WRITE (NOUT,FMT = 99990)
DO 40 I = 1, P
WRITE (NOUT, FMT = 99987) (C(I,J), J = 1, N)
40 CONTINUE
IF (VEC(8)) THEN
WRITE (NOUT,FMT = 99989)
DO 50 I = 1, P
WRITE (NOUT, FMT = 99987) (D(I,J), J = 1, M)
50 CONTINUE
ELSE
WRITE (NOUT, FMT = 99988)
END IF
END IF
C
99999 FORMAT (' BD02AD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' INFO on exit from BD02AD = ', I3)
99997 FORMAT (/' Order of matrix A: N = ', I3)
99996 FORMAT (' Number of columns in matrix B: M = ', I3)
99995 FORMAT (' Number of rows in matrix C: P = ', I3)
99994 FORMAT (/' E = ')
99993 FORMAT (/' E is the identity matrix.')
99992 FORMAT (' A = ')
99991 FORMAT (' B = ')
99990 FORMAT (' C = ')
99989 FORMAT (' D = ')
99988 FORMAT (' D is of zeros.')
99987 FORMAT (20(1X,F8.4))
C
END
</PRE>
<B>Program Data</B>
<PRE>
BD02AD EXAMPLE PROGRAM DATA
D
1 1
</PRE>
<B>Program Results</B>
<PRE>
BD02AD EXAMPLE PROGRAM RESULTS
Laub 1979, Ex. 2: uncontrollable-unobservable data
Order of matrix A: N = 2
Number of columns in matrix B: M = 1
Number of rows in matrix C: P = 1
E is the identity matrix.
A =
4.0000 3.0000
-4.5000 -3.5000
B =
1.0000
-1.0000
C =
3.0000 2.0000
D is of zeros.
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|