1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
|
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.72 [en] (Windows NT 5.0; I) [Netscape]">
<title>DAESolver - SLICOT Library Routine Documentation</title>
</head>
<body>
<h2>
<a NAME="DAESolver"></a>DAESolver</h2>
<h3>
Solver for Algebraic Differential Equations (driver)</h3>
<b><a href="#Specification">[Specification]</a><a href="#Arguments">[Arguments]</a><a href="#Method">[Method]</a><a href="#References">[References]</a><a href="#Comments">[Comments]</a><a href="#Example">[Example]</a></b>
<p><b><font size=+1>Purpose</font></b>
<pre> Interface for using a common entry point, DSblock compatible for
defining Differential Algebraic Equations using several packages.</pre>
<pre> The equations follow the form (CASE A):
F(dx(t)/dt, x(t), u(t), p, t) = 0
y(t) = g(dx(t)/dx, x(t), u(t), p, t)
for the most general model which can only be solved by DASSL and
DASSPK.
A restricted case can be solved with RADAU5, LSODI, LSOIBT, if
the system is expressed as (CASE B):
F(x(t), u(t), p, t)*dx(t)/dt = A(x(t), u(t), p, t)
y(t) = g(dx(t)/dx, x(t), u(t), p, t)
And finally, the GELDA package is able to solve DAEs with the
expression (CASE C):
F(u(t), p, t)*dx(t)/dt = A(u(t), p, t)*x(t) + E(u(t), p, t)
The user must define the subroutines:
DAEDF: F(dx(t)/dt, x(t), u(t), p, t) for CASES: A, B and C
DAEDA: A(x(t), u(t), p, t) for CASES: B and C
DAEDE: E(u(t), p, t) for CASES: C
DAEOUT: g(dx(t)/dx, x(t), u(t), p, t)
and the Jacobians (JACFX, JACFU, JACFP) if used. The interface
adapts the structure to fit all the codes</pre>
<a NAME="Specification"></a><b><font size=+1>Specification</font></b>
<pre> SUBROUTINE DAESolver(ISOLVER,CDAEDF_,CDAEDA_,CDAEDE_,CDAEOUT_,
$ CJACFX_,CJACFU_,CJACFP_,CJACFXDOT_,
$ NX, NY, NU, NP, TINI, TOUT,
$ X, XDOTI, Y, U, P,
$ IPAR, RPAR, RTOL, ATOL,
$ IWORK, LIWORK, DWORK, LDWORK,
$ IWARN, INFO)
.. Scalar Arguments ..
DOUBLE PRECISION TINI, TOUT
INTEGER ISOLVER, IWARN, INFO,
$ NX, NY, NU, NP,
$ LDWORK, LIWORK
CHARACTER*9 CDAEDF_, CDAEDA_,CDAEDE_, CDAEOUT_,
$ CJACFX_, CJACFU_, CJACFP_, CJACFXDOT_,
$ CDAEDF, CDAEDA,CDAEDE, CDAEOUT,
$ CJACFX, CJACFU, CJACFP, CJACFXDOT
.. Array Arguments ..
DOUBLE PRECISION DWORK(LDWORK), RPAR(*), ATOL(*), RTOL(*)
$ X(NX), XDOTI(NX), Y(NY), U(NU), P(NP)
INTEGER IWORK(LIWORK), IPAR(*)</pre>
<a NAME="Arguments"></a><b><font size=+1>Arguments</font></b>
<p><b>Mode Parameters</b>
<pre> ISOLVER INTEGER
Indicates the nonlinear solver packages to be used
= 1: LSODI,
= 2: LSOIBT,
= 3: RADAU5,
= 4: DASSL,
= 5: DASPK,
= 6: DGELDA.</pre>
<b>Input/Output Parameters</b>
<br>
<pre><tt> DAEDF (input) EXTERNAL
Evaluates the F(dx(t)/dt, x(t), u(t), p, t).
DAEDA (input) EXTERNAL
Evaluates the A(x(t), u(t), p, t).
DAEDE (input) EXTERNAL
Evaluates the E(u(t), p, t).
DAEOUT (input) EXTERNAL
Evaluates the output signals function g.
JACFX (input) EXTERNAL
Evaluates the jacobian matrix with respect to X.
JACFU (input) EXTERNAL
Evaluates the jacobian matrix with respect to U.
JACFP (input) EXTERNAL
Evaluates the jacobian matrix with respect to P.
NX (input) INTEGER
Dimension of the state vector.
NY (input) INTEGER
Dimension of the output vector.
NU (input) INTEGER
Dimension of the input vector.
NP (input) INTEGER
Dimension of the parameter vector.
TINI (input) DOUBLE PRECISION
Initial value of time.
TOUT (input) DOUBLE PRECISION
Final value of time.
X (input/output) DOUBLE PRECISION array, dimension (NX)
On entry, array containing the initial state variables.
On exit, it has the last value of the state variables.
XDOTI (input) DOUBLE PRECISION array, dimension (NX)
Array containing dx(t)/dt at initial point.
Y (input/output) DOUBLE PRECISION array, dimension (NY)
On entry, array containing the initial values of Y.
On exit, it has the results of the system.
U (input) DOUBLE PRECISION array, dimension (NU)
Array containing the input initial values.
P (input) DOUBLE PRECISION array, dimension (NP)
Array containing the parameter variables.
IPAR (input/output) INTEGER array, dimension (201)
INPUT:
1..15 General
16..25 ODEPACK
26..35 RADAU5
36..50 DASSL/PK
51..60 GELDA
61..100 Reserved
OUTPUT:
101..110 General
111..125 ODEPACK
126..135 RADAU5
136..145 DASSL/PK
146..155 GELDA
156..200 Reserved
Any Mode:
201.. User Available
Common integer parameters for SOLVERS:
IPAR(1), Tolerance mode
0 : both rtol and atol are scalars
1 : rtol is a scalar and atol is a vector
2 : both rtol and atol are vectors
IPAR(2), Compute Output Values only at TOUT (and not
at the intermediate step). (1:Yes, 0:No)
IPAR(3), mfjac, Method flag for jacobian
0 : No jacobian used (non-stiff method).
1 : User supplied full jacobian (stiff).
2 : User supplied banded jacobian (stiff).
3 : User supplied sparse jacobian (stiff).
10 : internally generated full jacobian (stiff).
11 : internally generated banded jacobian (stiff).
12 : internally generated sparse jacobian (stiff).
IPAR(6), ml, lower half-bandwithds of the banded
jacobian, excluding tne main diagonal.
IPAR(7), mu, upper half-bandwithds of the banded
jacobian, excluding the main diagonal.
(Note: IPAR(6) and IPAR(7) are obligatories only if the
jacobian matrix is banded)
IPAR(101) = Number of steps taken for the problem.
IPAR(102) = Number of residual evaluations.
IPAR(103) = Number of jacobian evaluations.
Common parameters for RADAU5, ODEPACK and DGELDA:
IPAR(9), mfmass, Method flag for mass-matrix
0 : No mass-matrix used (non-stiff method).
1 : User supplied full mass-matrix (stiff).
2 : User supplied banded mass-matrix (stiff).
10 : Identity mass-matrix is used (stiff).
IPAR(10), mlmass, lower half-bandwithds of the banded
mass matrix, excluding the main diagonal.
IPAR(11), mumass, upper half-bandwithds of the banded
mass matrix, excluding the main diagonal.
IPAR(12), Maximum number of steps allowed during one
call to the solver.
Common parameters for ODEPACK, DASSL, DASPK and DGELDA:
IPAR(13), Maximum order to be allowed.
default values : 12 if meth = 1
5 if meth = 2
If exceds the default value, it will be reduced
to the default value.
In DASSL, DASPK and DGELDA : (1 .LE. MAXORD .LE. 5)
IPAR(111) = The method order last used(successfully).
IPAR(112) = The order to be attempted on the next step.
Common parameters for ODEPACK package:
IPAR(16), Status Flag
IPAR(17), Optional inputs, must be 0
IPAR(18), Maximum number of messages printed,
default value is 10.
IPAR(113) = Index of the component of largest in the
weighted local error vector ( e(i)/ewt(i) ).
IPAR(114) = Length of rwork actually required.
IPAR(115) = Length of iwork actually required.
- LSOIBIT
IPAR(24), mb, block size.
(mb .GE. 1) and mb*IPAR(28) = NX
IPAR(25), nb, number of blocks in the main diagonal.
(nb .ge. 4) and nb*IPAR(27) = NX
- RADAU5
IPAR(26) Transforms the Jacobian matrix to Hessenberg
form.(Only if IPAR(9)=1 and IPAR(3)=1 or 10)
IPAR(27) Maximum number of Newton iterations in
each step.
IPAR(28) Starting values for Newton's method
.EQ. 0 -> is taken the extrapolated collocation
solution
.NE. 0 -> zero values are used.
IPAR(29) Dimension of the index 1 variables( >0 ).
IPAR(30) Dimension of the index 2 variables.
IPAR(31) Dimension of the index 3 variables.
IPAR(32) Switch for step size strategy
0,1 Mod. Predictive controller(Gustafsson)
2 Classical step size control
IPAR(33) Value of M1 (default 0).
IPAR(34) Value of M2 (default(M2=M1).
IPAR(126), Number of accepted steps.
IPAR(127), Number of rejected steps.
IPAR(128), Number of LU-Decompositions of both
matrices
IPAR(129), Number of forward-backward substitutions,
of both systems.
Common parameters for DASSL, DASPK and DGELDA solvers:
IPAR(36), this parameter enables the code to
initialize itself. Must set to 0 to indicate the
start of every new problem.
0: Yes. (On each new problem)
1: No. (Allows 500 new steps)
IPAR(38), Solver try to compute the initial T, X
and XPRIME:
0: The initial T, X and XPRIME are
consistent.
1: Given X_d calculate X_a and X'_d
2: Given X' calculate X.
( X_d differential variables in X
X_a algebrac variables in X )
IPAR(136), Total number of error test failures so far.
Common parameters for DASSL and DASPK solvers:
IPAR(37), code solve the problem without invoking
any special non negativity constraints:
0: Yes
1: To have constraint checking only in the
initial condition calculation.
2: To enforze nonnegativity in X during the
integration.
3: To enforce both options 1 and 2.
IPAR(137), Total number of convergence test failures.
- DASPK
IPAR(39), DASPK use:
0: direct methods (dense or band)
1: Krylov method (iterative)
2: Krylov method + Jac (iterative)
IPAR(41), Proceed to the integration after the initial
condition calculation is done. Used when
IPAR(38) > 0: 0: Yes
1: No
IPAR(42), Errors are controled localy on all the
variables: 0:Yes
1: No
IPAR(8), Extra printing
0, no printing
1, for minimal printing
2, for full printing
IPAR(44), maximum number of iterations in the SPIGMR
algorithm. (.LE. NX)
IPAR(45), number of vectors on which orthogonalization
is done in the SPIGMR algorithm. (.LE. IPAR(44))
IPAR(46), maximum number of restarts of the SPIGMR
algorithm per nonlinear iteration. (.GE. 0)
IPAR(47), maximum number of Newton iterations per
Jacobian or preconditioner evaluation. (> 0)
IPAR(48), maximum number of Jacobian or preconditioner
evaluations. (> 0)
IPAR(49), maximum number of values of the artificial
stepsize parameter H to be tried if IPAR(38) = 1.
(> 0).
IPAR(50), flag to turn off the linesearch algorithm.
0 : ON
1 : OFF (default)
IPAR(138), number of convergence failures of the linear
iteration
IPAR(139), length of IWORK actually required.
IPAR(140), length of RWORK actually required.
IPAR(141), total number of nonlinear iterations.
IPAR(142), total number of linear (Krylov) iterations
IPAR(143), number of PSOL calls.
- DGELDA
IPAR(51), contains the strangeness index.
IPAR(52), number of differential components
IPAR(53), number of algebraic components
IPAR(54), number of undetermined components
IPAR(55), method used:
if 1 then uses the BDF solver
2 then uses the Runge-Kutta solver
IPAR(56), E(t) and A(t) are: 1 time dependent
0 constants
IPAR(57), Maximum index of the problem. ( .GE. 0 )
IPAR(58), Step size strategy:
0, Mod. predictive controlled of Gustafsson(safer)
1, classical step size control(faster)
RPAR (input/output) DOUBLE PRECISION array, dimension (201)
INPUT:
1..15 General
16..25 ODEPACK
26..35 RADAU5
36..50 DASSL/PK
51..60 GELDA
61..100 Reserved
OUTPUT:
101..110 General
111..125 ODEPACK
126..135 RADAU5
136..145 DASSL/PK
146..155 GELDA
156..200 Reserved
Any Mode:
201.. User Available
Common parameters for solvers:
RPAR(1), Initial step size guess.Obligatory in RADAU5.
RPAR(2), Maximum absolute step size allowed.
Common parameters for ODEPACK, DASSL, DASPK and DGELDA:
RPAR(111), Step size in t last used (successfully).
RPAR(112), Step size to be attempted on the next step.
RPAR(113), Current value of the independent variable
which the solver has actually reached
Common parameters for ODEPACK solver:
RPAR(16), Critical value of t which the solver is not
overshoot.
RPAR(17), Minimum absolute step size allowed.
RPAR(18), Tolerance scale factor, greater than 1.0.
Parameters for RADAU5 solver:
RPAR(26), The rounding unit, default 1E-16.
RPAR(27), The safety factor in step size prediction,
default 0.9D0.
RPAR(28), Decides whether the jacobian should be
recomputed, default 0.001D0.
Increase when jacobian evaluations are costly
For small systems should be smaller.
RPAR(29), Stopping criterion for Newton's method,
default MIN(0.03D0, RTOL(1)**0.5D0).
RPAR(30), RPAR(31): This saves, together with a
large RPAR(28), LU-decompositions and computing
time for large systems.
Small systems: RPAR(30)=1.D0, RPAR(31)=1.2D0
Large full systems: RPAR(30)=0.99D0, RPAR(31)=2.D0
might be good.
RPAR(32), RPAR(33), Parameters for step size
selection.Condition: RPAR(32)<=HNEW/HOLD<=RPAR(33)
Parameters for DASSL, DASPK and DGELDA solvers:
RPAR(36), Stopping point (Tstop)
- DASPK
RPAR(37), convergence test constant in SPIGMR
algorithm. (0 .LT. RPAR(37) .LT. 1.0)
RPAR(38), minimum scaled step in linesearch algorithm.
The default is = (unit roundoff)**(2/3). (> 0)
RPAR(39), swing factor in the Newton iteration
convergence test. (default 0.1) (> 0)
- DASPK
RPAR(40), safety factor used in step size prediction.
RPAR(41) and RPAR(42) restric the relation between the
new and old stepsize in step size selection.
1/RPAR(41) .LE. Hnew/Hold .LE. 1/RPAR(42)
RPAR(43), RPAR(44) QUOT1 and QUOT2 repectively.
If QUOT1 < Hnew/Hold < QUOT2 and A and E are
constants, the work can be saved by setting
Hnew=Hold and using the system matrix of the
previous step.</tt></pre>
<b>Tolerances</b>
<pre> RTOL DOUBLE PRECISION
Relative Tolerance.
ATOL DOUBLE PRECISION
Absolute Tolerance.</pre>
<b>Workspace</b>
<pre> IWORK INTEGER array, dimension (LIWORK)
LIWORK INTEGER
Minimum size of DWORK, depending on solver:
- LSODI, LSOIBT, DASSL
20 + NX
- RADAU5
3*N+20
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
Size of DWORK, depending on solver:
- LSODI
22 + 9*NX + NX**2 , IPAR(3) = 1 or 10
22 + 10*NX + (2*ML + MU)*NX , IPAR(3) = 2 or 11
- LSOIBT
20 + nyh*(maxord + 1) + 3*NX + lenw where
nyh = Initial value of NX
maxord = Maximum order allowed(default or IPAR(13)
lenw = 3*mb*mb*nb + 2
- RADAU5
N*(LJAC+LMAS+3*LE+12)+20
where LJAC=N if (full jacobian)
LJAC=MLJAC+MUJAC+1 if (banded jacobian)
and LMAS=0 if (IPAR(9) = 10 or 11)
LMAS=N if (IPAR(9) = 1)
LMAS=MLMAS+MUMAS+1 if (IPAR(9) = 2)
and LE=N if (IPAR(9) = 1 or 10)
LE=2*MLJAC+MUJAC+1 if (IPAR(9) = 2 or 11)
- DASSL
>= 40 LRW .GE. 40+(MAXORD+4)*NEQ+NEQ**2, IPAR(3) = 1 or 10
>= 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ, IPAR(3) = 2
>= 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ
+2*(NEQ/(ML+MU+1)+1), IPAR(3) = 11</pre>
<b>Warning Indicator</b>
<pre> IWARN INTEGER
= 0: no warning;
= 1: LSODI/LSOIBT/RADAU5 do not use the input vector as argument;
= 2: LSODI/LSOIBT do not use the param vector as argument;
= 3: RTOL and ATOL are used as scalars;</pre>
<b>Error Indicator</b>
<pre> INFO INTEGER
= 0: Successful exit;
< 0: If INFO = -i, the i-th argument had an illegal
value;
= 1: Wrong tolerance mode;
= 2: Method (IPAR(9)) is not allowed for ODEPACK/RADAU5;
= 3: Method (IPAR(3)) is not allowed for LSODE/RADAU5/DASSL;
= 4: Option not allowed for IPAR(37);
= 5: Option not allowed for IPAR(38);
= 100+ERROR: RADAU5 returned -ERROR;
= 200+ERROR: DASSL returned -ERROR;
= 300+ERROR: DASPK returned -ERROR;
= 400+ERROR: DGELDA returned -ERROR.</pre>
<a NAME="Method"></a><b><font size=+1>Method</font></b>
<pre><tt><font color="#000000">Since the package integrates 8 different solvers, it is possible to solve differential
equations by means of Backward Differential Formulas, Runge-Kutta, using direct or
iterative methods (including preconditioning) for the linear system associated, differential
equations with time-varying coefficients or of order higher than one. The interface facilitates
the user the work of changing the integrator and testing the results, thus leading a more robust
and efficient integrated package.</font></tt></pre>
<a NAME="References"></a><b><font size=+1>References</font></b>
<pre> [1] A.C. Hindmarsh, Brief Description of ODEPACK: A Systematized Collection
of ODE Solvers, http://www.netlib.org/odepack/doc
[2] L.R. Petzold DASSL Library Documentation, http://www.netlib.org/ode/
[3] P.N. Brown, A.C. Hindmarsh, L.R. Petzold, DASPK Package 1995 Revision
[4] R.S. Maier, Using DASPK on the TMC CM5. Experiences with Two Programming
Models, Minesota Supercomputer Center, Technical Report.
[5] E. Hairer, G. Wanner, Solving Ordinary Dirential Equations II. Stiánd
Dirential- Algebraic Problems., Springer Seried in Computational
Mathermatics 14, Springer-Verlag 1991, Second Edition 1996.
[6] P. Kunkel, V. Mehrmann, W. Rath und J. Weickert, `GELDA: A Software
Package for the Solution of General Linear Dirential Algebraic
equations', SIAM Journal Scienti^Lc Computing, Vol. 18, 1997, pp.
115 - 138.
[7] M. Otter, DSblock: A neutral description of dynamic systems.
Version 3.3, http://www.netlib.org/odepack/doc
[8] M. Otter, H. Elmqvist, The DSblock model interface for exchanging model
components, Proceedings of EUROSIM 95, ed. F.Brenenecker, Vienna, Sep.
11-15, 1995
[9] M. Otter, The DSblock model interface, version 4.0, Incomplete Draft,
http://dv.op.dlr.de/~otter7dsblock/dsblock4.0a.html
[10] Ch. Lubich, U. Novak, U. Pohle, Ch. Engstler, MEXX - Numerical
Software for the Integration of Constrained Mechanical Multibody
Systems, http://www.netlib.org/odepack/doc
[11] Working Group on Software (WGS), SLICOT Implementation and Documentation
Standards (version 1.0), WGS-Report 90-1, Eindhoven University of
Technology, May 1990.
[12] P. Kunkel and V. Mehrmann, Canonical forms for linear differential-
algebraic equations with variable coeÆcients., J. Comput. Appl.
Math., 56:225{259, 1994.
[13] Working Group on Software (WGS), SLICOT Implementation and Documentation
Standards, WGS-Report 96-1, Eindhoven University of Technology, updated:
Feb. 1998, ../../REPORTS/rep96-1.ps.Z.
[14] A. Varga, Standarization of Interface for Nonlinear Systems Software
in SLICOT, Deutsches Zentrum ur Luft un Raumfahrt, DLR. SLICOT-Working
Note 1998-4, 1998, Available at
../../REPORTS/SLWN1998-4.ps.Z.
[15] D. Kirk, Optimal Control Theory: An Introduction, Prentice-Hall.
Englewood Cli, NJ, 1970.
[16] F.L. Lewis and V.L. Syrmos, Optimal Control, Addison-Wesley.
New York, 1995.
[17] W.M.Lioen, J.J.B de Swart, Test Set for Initial Value Problem Solvers,
Technical Report NM-R9615, CWI, Amsterdam, 1996.
http://www.cwi.nl/cwi/projects/IVPTestset/.
[18] V.Hernandez, I.Blanquer, E.Arias, and P.Ruiz,
Definition and Implementation of a SLICOT Standard Interface and the
associated MATLAB Gateway for the Solution of Nonlinear Control Systems
by using ODE and DAE Packages}, Universidad Politecnica de Valencia,
DSIC. SLICOT Working Note 2000-3: July 2000. Available at
../../REPORTS/SLWN2000-3.ps.Z.
[19] J.J.B. de Swart, W.M. Lioen, W.A. van der Veen, SIDE, November 25,
1998. Available at http://www.cwi.nl/cwi/projects/PSIDE/.
[20] Kim, H.Young, F.L.Lewis, D.M.Dawson, Intelligent optimal control of
robotic manipulators using neural networks.
[21] J.C.Fernandez, E.Arias, V.Hernandez, L.Penalver, High Performance
Algorithm for Tracking Trajectories of Robot Manipulators,
Preprints of the Proceedings of the 6th IFAC International Workshop on
Algorithms and Architectures for Real-Time Control (AARTC-2000),
pages 127-134.</pre>
<a NAME="Numerical Aspects"></a><b><font size=+1>Numerical Aspects</font></b>
<pre> The numerical aspects of the routine lie on the features of the
different packages integrated. Several packages are more robust
than others, and other packages simply cannot deal with problems
that others do. For a detailed description of the numerical aspects
of each method is recommended to check the references above.</pre>
<a NAME="Comments"></a><b><font size=+1>Further Comments</font></b>
<pre> Several packages (LSODES, LSOIBT) deal only with sparse matrices.
The interface checks the suitability of the methods to the
parameters and show a warning message if problems could arise.</pre>
<a NAME="Example"></a><b><font size=+1>Example</font></b>
<p><b>Program Text</b>
<br>
<p><tt>* DAESOLVER EXAMPLE PROGRAM TEXT FOR LSODIX
PROBLEM</tt>
<br><tt>*</tt>
<br><tt>* .. Parameters ..</tt>
<br><tt> INTEGER
NIN, NOUT</tt>
<br><tt> PARAMETER
( NIN = 5, NOUT = 6 )</tt>
<br><tt> INTEGER LSODI_, LSOIBT_, RADAU5_,
DASSL_, DASPK_, GELDA_</tt>
<br><tt> PARAMETER (LSODI_ = 1, LSOIBT_
= 2)</tt>
<br><tt> PARAMETER (RADAU5_ = 3, DASSL_
= 4, DASPK_ = 5)</tt>
<br><tt> PARAMETER (GELDA_ = 6)</tt>
<br><tt>* .. Executable Statements ..</tt>
<br><tt>*</tt>
<br><tt> EXTERNAL IARGC_</tt>
<br><tt> INTEGER IARGC_</tt>
<br><tt> INTEGER NUMARGS</tt>
<br><tt> CHARACTER*80 NAME</tt>
<br><tt> CHARACTER*80 SOLVER</tt>
<br><tt>*</tt>
<br><tt>* .. Executable Statements ..</tt>
<br><tt>*</tt>
<br><tt> WRITE ( NOUT, FMT = 99999 )</tt>
<br><tt>*</tt>
<br><tt> NUMARGS = IARGC_()</tt>
<br><tt>*</tt>
<br><tt> CALL GETARG_(0, NAME)</tt>
<br><tt> IF (NUMARGS .NE. 1) THEN</tt>
<br><tt> WRITE (*,*) 'Syntax
Error: ',NAME(1:8),' <solver>'</tt>
<br><tt> WRITE (*,*) 'Solvers
: LSODI, LSOIBT, RADAU5, DASSL, DASPK, GELD</tt>
<br><tt> &A'</tt>
<br><tt> ELSE</tt>
<br><tt>*</tt>
<br><tt> CALL GETARG_(1, SOLVER)</tt>
<br><tt>*</tt>
<br><tt> WRITE (*,*) 'Problem:
LSODIX Solver: ',SOLVER(1:7)</tt>
<br><tt>*</tt>
<br><tt> IF (SOLVER(1:5) .EQ.
'LSODI') THEN</tt>
<br><tt> CALL TEST(LSODI_)</tt>
<br><tt> ELSEIF (SOLVER(1:6)
.EQ. 'LSOIBT') THEN</tt>
<br><tt> CALL TEST(LSOIBT_)</tt>
<br><tt> ELSEIF (SOLVER(1:6)
.EQ. 'RADAU5') THEN</tt>
<br><tt> CALL TEST(RADAU5_)</tt>
<br><tt> ELSEIF (SOLVER(1:5)
.EQ. 'GELDA') THEN</tt>
<br><tt> CALL TEST(GELDA_)</tt>
<br><tt> ELSEIF (SOLVER(1:5)
.EQ. 'DASSL') THEN</tt>
<br><tt> CALL TEST(DASSL_)</tt>
<br><tt> ELSEIF (SOLVER(1:5)
.EQ. 'DASPK') THEN</tt>
<br><tt> CALL TEST(DASPK_)</tt>
<br><tt> ELSE</tt>
<br><tt> WRITE (*,*)
'Error: Solver: ', SOLVER,' unknown'</tt>
<br><tt> ENDIF</tt>
<br><tt> ENDIF</tt>
<br><tt>*</tt>
<br><tt>99999 FORMAT (' DAESOLVER EXAMPLE PROGRAM RESULTS FOR LSODIX PROBLEM'</tt>
<br><tt> .
,/1X)</tt>
<br><tt> END</tt>
<br>
<br>
<br>
<p><tt> SUBROUTINE TEST( ISOLVER )</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* PURPOSE</tt>
<br><tt>*</tt>
<br><tt>* Testing subroutine DAESolver</tt>
<br><tt>*</tt>
<br><tt>* ARGUMENTS</tt>
<br><tt>*</tt>
<br><tt>* Input/Output Parameters</tt>
<br><tt>*</tt>
<br><tt>* ISOLVER (input) INTEGER</tt>
<br><tt>*
Indicates the nonlinear solver package to be used:</tt>
<br><tt>*
= 1: LSODI,</tt>
<br><tt>*
= 2: LSOIBT,</tt>
<br><tt>*
= 3: RADAU5,</tt>
<br><tt>*
= 4: DASSL,</tt>
<br><tt>*
= 5: DASPK,</tt>
<br><tt>*
= 6: DGELDA.</tt>
<br><tt>*</tt>
<br><tt>* METHOD</tt>
<br><tt>*</tt>
<br><tt>* REFERENCES</tt>
<br><tt>*</tt>
<br><tt>* CONTRIBUTORS</tt>
<br><tt>*</tt>
<br><tt>* REVISIONS</tt>
<br><tt>*</tt>
<br><tt>* -</tt>
<br><tt>*</tt>
<br><tt>* KEYWORDS</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* ******************************************************************</tt>
<br><tt>* .. Parameters ..</tt>
<br><tt> INTEGER LSODI_, LSOIBT_, RADAU5_,
DASSL_, DASPK_, GELDA_</tt>
<br><tt> PARAMETER (LSODI_ = 1, LSOIBT_
= 2)</tt>
<br><tt> PARAMETER (RADAU5_ = 3, DASSL_
= 4, DASPK_ = 5)</tt>
<br><tt> PARAMETER (GELDA_ = 6)</tt>
<br><tt> INTEGER
NIN, NOUT</tt>
<br><tt> PARAMETER
( NIN = 5, NOUT = 6 )</tt>
<br><tt> INTEGER
MD, ND, LPAR, LWORK</tt>
<br><tt> PARAMETER
( MD = 400, ND = 100, LPAR = 201,</tt>
<br><tt> $
LWORK = 10000 )</tt>
<br><tt>* .. Common variables ..</tt>
<br><tt> COMMON /TESTING/ ISOLVER2</tt>
<br><tt> INTEGER ISOLVER2</tt>
<br><tt>* .. Scalar Arguments ..</tt>
<br><tt> INTEGER ISOLVER</tt>
<br><tt>* .. Local Scalars ..</tt>
<br><tt> INTEGER
NEQN, NDISC, MLJAC, MUJAC, MLMAS, MUMAS</tt>
<br><tt> INTEGER
IWARN, INFO</tt>
<br><tt> DOUBLE PRECISION ATOL, RTOL, NORM</tt>
<br><tt> LOGICAL
NUMJAC, NUMMAS, CONSIS</tt>
<br><tt>* .. Local Arrays ..</tt>
<br><tt> CHARACTER FULLNM*40, PROBLM*8, TYPE*3</tt>
<br><tt> CHARACTER*9 CDAEDF,CDAEDA,CDAEDE,CDAEOUT,</tt>
<br><tt> $
CJACFX,CJACFU,CJACFP,CJACFXDOT</tt>
<br><tt> INTEGER
IND(MD), IPAR(LPAR), IWORK(LWORK)</tt>
<br><tt> DOUBLE PRECISION T(0:ND), RPAR(LPAR),
DWORK(LWORK)</tt>
<br><tt> DOUBLE PRECISION X(MD), XPRIME(MD),
Y(MD), U(MD), P(MD), SOLU(MD)</tt>
<br><tt>* .. External Functions ..</tt>
<br><tt> DOUBLE PRECISION DNRM2</tt>
<br><tt> EXTERNAL
DNRM2</tt>
<br><tt>* .. External Subroutines ..</tt>
<br><tt> EXTERNAL
PLSODIX, ILSODIX, SLSODIX</tt>
<br><tt> EXTERNAL
DAXPY</tt>
<br><tt>* .. Executable Statements ..</tt>
<br><tt>*</tt>
<br><tt> ISOLVER2 = ISOLVER</tt>
<br><tt> DO 20 I=1,NEQN</tt>
<br><tt> Y(I)=0D0</tt>
<br><tt> U(I)=0D0</tt>
<br><tt> P(I)=0D0</tt>
<br><tt> 20 CONTINUE</tt>
<br><tt> DO 40 I=1,LPAR</tt>
<br><tt> IPAR(I)=0</tt>
<br><tt> RPAR(I)=0D0</tt>
<br><tt> 40 CONTINUE</tt>
<br><tt> DO 60 I=1,LWORK</tt>
<br><tt> IWORK(I)=0</tt>
<br><tt> DWORK(I)=0D0</tt>
<br><tt> 60 CONTINUE</tt>
<br><tt>* Get the problem dependent parameters.</tt>
<br><tt> RTOL=1D-4</tt>
<br><tt> ATOL=1D-6</tt>
<br><tt> IPAR(1)=0</tt>
<br><tt> IPAR(2)=1</tt>
<br><tt> IPAR(3)=1</tt>
<br><tt> IPAR(12)= 10000</tt>
<br><tt> IF (ISOLVER .EQ. LSODI_ .OR. ISOLVER
.EQ. RADAU5_) THEN</tt>
<br><tt> IPAR(9)=1</tt>
<br><tt> IPAR(16)=1</tt>
<br><tt>C IPAR(17)=0</tt>
<br><tt> RPAR(1)=1D-3</tt>
<br><tt> ELSE</tt>
<br><tt>C (ISOLVER
.EQ. DASSL_ .OR. ISOLVER .EQ. DASPK_)</tt>
<br><tt>C IPAR(36)=0</tt>
<br><tt>C IPAR(37)=0</tt>
<br><tt>C IPAR(38)=0</tt>
<br><tt> IPAR(39)=1</tt>
<br><tt> END IF</tt>
<br><tt> CALL PLSODIX(FULLNM,PROBLM,TYPE,NEQN,NDISC,T,NUMJAC,MLJAC,</tt>
<br><tt> $
MUJAC,NUMMAS,MLMAS,MUMAS,IND)</tt>
<br><tt> CALL ILSODIX(NEQN,T(0),X,XPRIME,CONSIS)</tt>
<br><tt> x(1) = 1.0d0</tt>
<br><tt> x(2) = 0.0d0</tt>
<br><tt> x(3) = 0.0d0</tt>
<br><tt> xprime(1) = -0.04D0</tt>
<br><tt> xprime(2) = 0.04D0</tt>
<br><tt> xprime(3) = 0.0D0</tt>
<br><tt> CALL SLSODIX(NEQN,T(1),SOLU)</tt>
<p><tt> IF ( TYPE.NE.'DAE' ) THEN</tt>
<br><tt> WRITE ( NOUT,
FMT = 99998 )</tt>
<br><tt> ELSE</tt>
<br><tt> WRITE ( NOUT,
FMT = 99997 ) FULLNM, PROBLM, TYPE, ISOLVER</tt>
<br><tt> CDAEDF=''</tt>
<br><tt> CDAEDA=''</tt>
<br><tt> CDAEDE=''</tt>
<br><tt> CDAEOUT=''</tt>
<br><tt> CJACFX=''</tt>
<br><tt> CJACFU=''</tt>
<br><tt> CJACFP=''</tt>
<br><tt> CJACFXDOT=''</tt>
<p><tt> CALL DAESolver(
ISOLVER, CDAEDF, CDAEDA, CDAEDE, CDAEOUT,</tt>
<br><tt> $
CJACFX, CJACFU, CJACFP, CJACFXDOT,</tt>
<br><tt> $
NEQN, NEQN, NEQN, NEQN, T(0), T(1),</tt>
<br><tt> $
X, XPRIME, Y, U, P,</tt>
<br><tt> $
IPAR, RPAR, RTOL, ATOL,</tt>
<br><tt> $
IWORK, LWORK, DWORK, LWORK, IWARN, INFO )</tt>
<br><tt> IF ( INFO.NE.0
) THEN</tt>
<br><tt>
WRITE ( NOUT, FMT = 99996 ) INFO</tt>
<br><tt> ELSE</tt>
<br><tt>
IF ( IWARN.NE.0 ) THEN</tt>
<br><tt>
WRITE ( NOUT, FMT = 99995 ) IWARN</tt>
<br><tt>
ENDIF</tt>
<br><tt>
IF ( NEQN .LE. 30 ) THEN</tt>
<br><tt>
WRITE ( NOUT, FMT = 99994 )</tt>
<br><tt>
DO 80 I=1,NEQN</tt>
<br><tt>
WRITE ( NOUT, FMT = 99993 ) I, X(I), SOLU(I)</tt>
<br><tt> 80
CONTINUE</tt>
<br><tt>
END IF</tt>
<br><tt>
NORM=DNRM2(NEQN,SOLU,1)</tt>
<br><tt>
IF ( NORM.EQ.0D0 ) THEN</tt>
<br><tt>
NORM=1D0</tt>
<br><tt>
END IF</tt>
<br><tt>
CALL DAXPY(NEQN,-1D0,X,1,SOLU,1)</tt>
<br><tt>
NORM=DNRM2(NEQN,SOLU,1)/NORM</tt>
<br><tt>
WRITE ( NOUT, FMT = 99992 ) NORM</tt>
<br><tt> END IF</tt>
<br><tt> END IF</tt>
<br><tt>*</tt>
<br><tt>99998 FORMAT (' ERROR: This test is only intended for DAE problems')</tt>
<br><tt>99997 FORMAT (' ',A,' (',A,' , ',A,') with SOLVER ',I2)</tt>
<br><tt>99996 FORMAT (' INFO on exit from DAESolver = ',I3)</tt>
<br><tt>99995 FORMAT (' IWARN on exit from DAESolver = ',I3)</tt>
<br><tt>99994 FORMAT (' Solution: (calculated) (reference)')</tt>
<br><tt>99993 FORMAT (I,F,F)</tt>
<br><tt>99992 FORMAT (' Relative error comparing with the reference solution:'</tt>
<br><tt> $
,E,/1X)</tt>
<br><tt>* *** Last line of TEST ***</tt>
<br><tt> END</tt>
<br>
<br>
<br>
<p><tt> SUBROUTINE DAEDA_( RPAR, NRP, IPAR,
NIP, X, NX, U, NU, P, NP,</tt>
<br><tt> $
F, LDF, T, INFO )</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* PURPOSE</tt>
<br><tt>*</tt>
<br><tt>* Interface routine between DAESolver and
the problem function FEVAL</tt>
<br><tt>*</tt>
<br><tt>* ARGUMENTS</tt>
<br><tt>*</tt>
<br><tt>* Input/Output Parameters</tt>
<br><tt>*</tt>
<br><tt>* RPAR (input/output)
DOUBLE PRECISION array, dimension (NRP)</tt>
<br><tt>*
Array for communication between the driver and FEVAL.</tt>
<br><tt>*</tt>
<br><tt>* NRP (input)
INTEGER</tt>
<br><tt>*
Dimension of RPAR array.</tt>
<br><tt>*</tt>
<br><tt>* IPAR (input/output)
INTEGER array, dimension (NIP)</tt>
<br><tt>*
Array for communication between the driver and FEVAL.</tt>
<br><tt>*</tt>
<br><tt>* NIP (input)
INTEGER</tt>
<br><tt>*
Dimension of IPAR array.</tt>
<br><tt>*</tt>
<br><tt>* X
(input) DOUBLE PRECISION array, dimension (NX)</tt>
<br><tt>*
Array containing the state variables.</tt>
<br><tt>*</tt>
<br><tt>* NX
(input) INTEGER</tt>
<br><tt>*
Dimension of the state vector.</tt>
<br><tt>*</tt>
<br><tt>* U
(input) DOUBLE PRECISION array, dimension (NU)</tt>
<br><tt>*
Array containing the input values.</tt>
<br><tt>*</tt>
<br><tt>* NU
(input) INTEGER</tt>
<br><tt>*
Dimension of the input vector.</tt>
<br><tt>*</tt>
<br><tt>* P
(input) DOUBLE PRECISION array, dimension (NP)</tt>
<br><tt>*
Array containing the parameter values.</tt>
<br><tt>*</tt>
<br><tt>* NP
(input) INTEGER</tt>
<br><tt>*
Dimension of the parameter vector.</tt>
<br><tt>*</tt>
<br><tt>* F
(output) DOUBLE PRECISION array, dimension (LDF,NX)</tt>
<br><tt>*
The resulting function value f(T,X).</tt>
<br><tt>*</tt>
<br><tt>* LDF (input)
INTEGER</tt>
<br><tt>*
The leading dimension of F.</tt>
<br><tt>*</tt>
<br><tt>* T
(input) INTEGER</tt>
<br><tt>*
The time point where the function is evaluated.</tt>
<br><tt>*</tt>
<br><tt>* Error Indicator</tt>
<br><tt>*</tt>
<br><tt>* INFO INTEGER</tt>
<br><tt>*
Returns values of error from FEVAL or 100 in case</tt>
<br><tt>*
a bad problem was choosen.</tt>
<br><tt>*</tt>
<br><tt>* METHOD</tt>
<br><tt>*</tt>
<br><tt>* REFERENCES</tt>
<br><tt>*</tt>
<br><tt>* CONTRIBUTORS</tt>
<br><tt>*</tt>
<br><tt>* REVISIONS</tt>
<br><tt>*</tt>
<br><tt>* -</tt>
<br><tt>*</tt>
<br><tt>* KEYWORDS</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* ******************************************************************</tt>
<br><tt>*</tt>
<br><tt>* .. Common variables ..</tt>
<br><tt> COMMON /TESTING/ ISOLVER</tt>
<br><tt> INTEGER LSODI_, LSOIBT_, RADAU5_,
DASSL_, DASPK_, GELDA_</tt>
<br><tt> PARAMETER (LSODI_ = 1, LSOIBT_
= 2)</tt>
<br><tt> PARAMETER (RADAU5_ = 3, DASSL_
= 4, DASPK_ = 5)</tt>
<br><tt> PARAMETER (GELDA_ = 6)</tt>
<br><tt>* .. Scalar Arguments ..</tt>
<br><tt> INTEGER
NRP, NIP, NX, NU, NP, LDF, INFO</tt>
<br><tt> DOUBLE PRECISION T</tt>
<br><tt>* .. Array Arguments ..</tt>
<br><tt> INTEGER
IPAR(NIP)</tt>
<br><tt> DOUBLE PRECISION RPAR(NRP), X(NX),
U(NU), P(NP),</tt>
<br><tt> $ F(LDF,NX)</tt>
<br><tt>* .. External Subroutines ..</tt>
<br><tt> EXTERNAL
FLSODIX</tt>
<br><tt>* .. Executable Statements ..</tt>
<br><tt> CALL FLSODIX(NX,T,X,X,F,INFO,RPAR,IPAR)</tt>
<br><tt>* *** Last line of DAEDA_ ***</tt>
<br><tt> END</tt>
<br>
<br>
<br>
<p><tt> SUBROUTINE DAEDF_( RPAR, NRP, IPAR,
NIP, X, XPRIME, NX,</tt>
<br><tt> $
U, NU, P, NP, T, F, LDF, INFO )</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* PURPOSE</tt>
<br><tt>*</tt>
<br><tt>* Interface routine between DAESolver and
the problem function MEVAL</tt>
<br><tt>*</tt>
<br><tt>* ARGUMENTS</tt>
<br><tt>*</tt>
<br><tt>* Input/Output Parameters</tt>
<br><tt>*</tt>
<br><tt>* RPAR (input/output)
DOUBLE PRECISION array, dimension (NRP)</tt>
<br><tt>*
Array for communication between the driver and MEVAL.</tt>
<br><tt>*</tt>
<br><tt>* NRP (input)
INTEGER</tt>
<br><tt>*
Dimension of RPAR array.</tt>
<br><tt>*</tt>
<br><tt>* IPAR (input/output)
INTEGER array, dimension (NIP)</tt>
<br><tt>*
Array for communication between the driver and MEVAL.</tt>
<br><tt>*</tt>
<br><tt>* NIP (input)
INTEGER</tt>
<br><tt>*
Dimension of IPAR array.</tt>
<br><tt>*</tt>
<br><tt>* X
(input) DOUBLE PRECISION array, dimension (NX)</tt>
<br><tt>*
Array containing the state variables.</tt>
<br><tt>*</tt>
<br><tt>* XPRIME (input) DOUBLE PRECISION
array, dimension (NX)</tt>
<br><tt>*
Array containing the state variables derivative.</tt>
<br><tt>*</tt>
<br><tt>* NX
(input) INTEGER</tt>
<br><tt>*
Dimension of the state vector.</tt>
<br><tt>*</tt>
<br><tt>* U
(input) DOUBLE PRECISION array, dimension (NU)</tt>
<br><tt>*
Array containing the input values.</tt>
<br><tt>*</tt>
<br><tt>* NU
(input) INTEGER</tt>
<br><tt>*
Dimension of the input vector.</tt>
<br><tt>*</tt>
<br><tt>* P
(input) DOUBLE PRECISION array, dimension (NP)</tt>
<br><tt>*
Array containing the parameter values.</tt>
<br><tt>*</tt>
<br><tt>* NP
(input) INTEGER</tt>
<br><tt>*
Dimension of the parameter vector.</tt>
<br><tt>*</tt>
<br><tt>* T
(input) INTEGER</tt>
<br><tt>*
The time point where the function is evaluated.</tt>
<br><tt>*</tt>
<br><tt>* F
(output) DOUBLE PRECISION array, dimension (LDF,NX)</tt>
<br><tt>*
The resulting function value f(T,X).</tt>
<br><tt>*</tt>
<br><tt>* LDF (input)
INTEGER</tt>
<br><tt>*
The leading dimension of F.</tt>
<br><tt>*</tt>
<br><tt>* Error Indicator</tt>
<br><tt>*</tt>
<br><tt>* INFO INTEGER</tt>
<br><tt>*
Returns values of error from MEVAL or 100 in case</tt>
<br><tt>*
a bad problem was choosen.</tt>
<br><tt>*</tt>
<br><tt>* METHOD</tt>
<br><tt>*</tt>
<br><tt>* REFERENCES</tt>
<br><tt>*</tt>
<br><tt>* CONTRIBUTORS</tt>
<br><tt>*</tt>
<br><tt>* REVISIONS</tt>
<br><tt>*</tt>
<br><tt>* -</tt>
<br><tt>*</tt>
<br><tt>* KEYWORDS</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* ******************************************************************</tt>
<br><tt>*</tt>
<br><tt>* .. Common variables ..</tt>
<br><tt> COMMON /TESTING/ ISOLVER</tt>
<br><tt> INTEGER ISOLVER</tt>
<br><tt> INTEGER LSODI_, LSOIBT_, RADAU5_,
DASSL_, DASPK_, GELDA_</tt>
<br><tt> PARAMETER (LSODI_ = 1, LSOIBT_
= 2)</tt>
<br><tt> PARAMETER (RADAU5_ = 3, DASSL_
= 4, DASPK_ = 5)</tt>
<br><tt> PARAMETER (GELDA_ = 6)</tt>
<br><tt>* .. Scalar Arguments ..</tt>
<br><tt> INTEGER
NRP, NIP, NX, NU, NP, LDF, INFO</tt>
<br><tt> DOUBLE PRECISION T</tt>
<br><tt>* .. Array Arguments ..</tt>
<br><tt> INTEGER
IPAR(NIP)</tt>
<br><tt> DOUBLE PRECISION RPAR(NRP), X(NX),
XPRIME(NX), U(NU), P(NP),</tt>
<br><tt> $ F(LDF,NX)</tt>
<br><tt>* .. Local Scalars ..</tt>
<br><tt> INTEGER
I</tt>
<br><tt>* .. External Subroutines ..</tt>
<br><tt> EXTERNAL
MLSODIX, RLSODIX</tt>
<br><tt>* .. Executable Statements ..</tt>
<br><tt> IF (ISOLVER .EQ. DASSL_ .OR. ISOLVER
.EQ. DASPK_) THEN</tt>
<br><tt> CALL RLSODIX(LDF,NX,T,X,XPRIME,F,INFO,RPAR,IPAR)</tt>
<br><tt> ELSE</tt>
<br><tt> CALL MLSODIX(LDF,NX,T,X,XPRIME,F,INFO,RPAR,IPAR)</tt>
<br><tt> ENDIF</tt>
<br><tt>* *** Last line of DAEDF_ ***</tt>
<br><tt> END</tt>
<br>
<br>
<br>
<p><tt> SUBROUTINE JACFX_( NRP, NIP,
RPAR, IPAR, NX, NU,</tt>
<br><tt> $
NP, X, U, P, T, FX, LDFX,</tt>
<br><tt> $
INFO )</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* PURPOSE</tt>
<br><tt>*</tt>
<br><tt>* Interface routine between DAESolver and
the problem function JEVAL</tt>
<br><tt>*</tt>
<br><tt>* ARGUMENTS</tt>
<br><tt>*</tt>
<br><tt>* Input/Output Parameters</tt>
<br><tt>*</tt>
<br><tt>* NRP (input)
INTEGER</tt>
<br><tt>*
Dimension of RPAR array.</tt>
<br><tt>*</tt>
<br><tt>* NIP (input)
INTEGER</tt>
<br><tt>*
Dimension of IPAR array.</tt>
<br><tt>*</tt>
<br><tt>* RPAR (input/output)
DOUBLE PRECISION array</tt>
<br><tt>*
Array for communication between the driver and JEVAL.</tt>
<br><tt>*</tt>
<br><tt>* IPAR (input/output)
INTEGER array</tt>
<br><tt>*
Array for communication between the driver and JEVAL.</tt>
<br><tt>*</tt>
<br><tt>* NX
(input) INTEGER</tt>
<br><tt>*
Dimension of the state vector.</tt>
<br><tt>*</tt>
<br><tt>* NU
(input) INTEGER</tt>
<br><tt>*
Dimension of the input vector.</tt>
<br><tt>*</tt>
<br><tt>* NP
(input) INTEGER</tt>
<br><tt>*
Dimension of the parameter vector.</tt>
<br><tt>*</tt>
<br><tt>* X
(input) DOUBLE PRECISION array, dimension (NX)</tt>
<br><tt>*
Array containing the state variables.</tt>
<br><tt>*</tt>
<br><tt>* U
(input) DOUBLE PRECISION array, dimension (NU)</tt>
<br><tt>*
Array containing the input values.</tt>
<br><tt>*</tt>
<br><tt>* P
(input) DOUBLE PRECISION array, dimension (NP)</tt>
<br><tt>*
Array containing the parameter values.</tt>
<br><tt>*</tt>
<br><tt>* T
(input) INTEGER</tt>
<br><tt>*
The time point where the derivative is evaluated.</tt>
<br><tt>*</tt>
<br><tt>* FX
(output) DOUBLE PRECISION array, dimension (LDFX,NX)</tt>
<br><tt>*
The array with the resulting Jacobian matrix.</tt>
<br><tt>*</tt>
<br><tt>* LDFX (input)
INTEGER</tt>
<br><tt>*
The leading dimension of the array FX.</tt>
<br><tt>*</tt>
<br><tt>* Error Indicator</tt>
<br><tt>*</tt>
<br><tt>* INFO INTEGER</tt>
<br><tt>*
Returns values of error from JEVAL or 100 in case</tt>
<br><tt>*
a bad problem was choosen.</tt>
<br><tt>*</tt>
<br><tt>* METHOD</tt>
<br><tt>*</tt>
<br><tt>* REFERENCES</tt>
<br><tt>*</tt>
<br><tt>* CONTRIBUTORS</tt>
<br><tt>*</tt>
<br><tt>* REVISIONS</tt>
<br><tt>*</tt>
<br><tt>* -</tt>
<br><tt>*</tt>
<br><tt>* KEYWORDS</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* ******************************************************************</tt>
<br><tt>*</tt>
<br><tt>* .. Common variables ..</tt>
<br><tt> COMMON /TESTING/ ISOLVER</tt>
<br><tt> INTEGER LSODI_, LSOIBT_, RADAU5_,
DASSL_, DASPK_, GELDA_</tt>
<br><tt> PARAMETER (LSODI_ = 1, LSOIBT_
= 2)</tt>
<br><tt> PARAMETER (RADAU5_ = 3, DASSL_
= 4, DASPK_ = 5)</tt>
<br><tt> PARAMETER (GELDA_ = 6)</tt>
<br><tt>* .. Scalar Arguments ..</tt>
<br><tt> INTEGER
NRP, NIP, NX, NU, NP, LDFX, INFO</tt>
<br><tt> DOUBLE PRECISION T</tt>
<br><tt>* .. Array Arguments ..</tt>
<br><tt> INTEGER
IPAR(NIP)</tt>
<br><tt> DOUBLE PRECISION X(NX), U(NU), P(NP),
RPAR(NRP), FX(LDFX,NX)</tt>
<br><tt>* .. External Subroutines ..</tt>
<br><tt> EXTERNAL
JLSODIX</tt>
<br><tt>* .. Executable Statements ..</tt>
<br><tt> CALL JLSODIX(LDFX,NX,T,X,X,FX,INFO,RPAR,IPAR)</tt>
<br><tt>* *** Last line of JACFX_ ***</tt>
<br><tt> END</tt>
<br>
<br>
<p><tt> SUBROUTINE JACFXDOT_( NRP, NIP, RPAR,
IPAR,</tt>
<br><tt> $
NX, NU, NP, XPRIME, U, P, T, J, LDJ, INFO )</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* PURPOSE</tt>
<br><tt>*</tt>
<br><tt>* MATJACFXDOT routine for TRANSAMP problem</tt>
<br><tt>*</tt>
<br><tt>* ARGUMENTS</tt>
<br><tt>*</tt>
<br><tt>* Input/Output Parameters</tt>
<br><tt>*</tt>
<br><tt>* NRP (input)
INTEGER</tt>
<br><tt>*
Dimension of RPAR array.</tt>
<br><tt>*</tt>
<br><tt>* NIP (input)
INTEGER</tt>
<br><tt>*
Dimension of IPAR array.</tt>
<br><tt>*</tt>
<br><tt>* RPAR (input/output)
DOUBLE PRECISION array</tt>
<br><tt>*
Array for communication with the driver.</tt>
<br><tt>*</tt>
<br><tt>* IPAR (input/output)
INTEGER array</tt>
<br><tt>*
Array for communication with the driver.</tt>
<br><tt>*</tt>
<br><tt>* NX
(input) INTEGER</tt>
<br><tt>*
Dimension of the state vector.</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* NU
(input) INTEGER</tt>
<br><tt>*
Dimension of the input vector.</tt>
<br><tt>*</tt>
<br><tt>* NP
(input) INTEGER</tt>
<br><tt>*
Dimension of the parameter vector.</tt>
<br><tt>*</tt>
<br><tt>* XPRIME (input) DOUBLE PRECISION
array, dimension (NX)</tt>
<br><tt>*
Array containing the derivative of the state variables.</tt>
<br><tt>*</tt>
<br><tt>* U
(input) DOUBLE PRECISION array, dimension (NU)</tt>
<br><tt>*
Array containing the input values.</tt>
<br><tt>*</tt>
<br><tt>* P
(input) DOUBLE PRECISION array, dimension (NP)</tt>
<br><tt>*
Array containing the parameter values.</tt>
<br><tt>*</tt>
<br><tt>* T
(input) INTEGER</tt>
<br><tt>*
The time point where the derivative is evaluated.</tt>
<br><tt>*</tt>
<br><tt>* J
(output) DOUBLE PRECISION array, dimension (LDJ,NX)</tt>
<br><tt>*
The array with the resulting derivative matrix.</tt>
<br><tt>*</tt>
<br><tt>* LDJ (input)
INTEGER</tt>
<br><tt>*
The leading dimension of the array J.</tt>
<br><tt>*</tt>
<br><tt>* Error Indicator</tt>
<br><tt>*</tt>
<br><tt>* INFO INTEGER</tt>
<br><tt>*
Returns 1 in case a bad problem was choosen.</tt>
<br><tt>*</tt>
<br><tt>* METHOD</tt>
<br><tt>*</tt>
<br><tt>* REFERENCES</tt>
<br><tt>*</tt>
<br><tt>* CONTRIBUTORS</tt>
<br><tt>*</tt>
<br><tt>* REVISIONS</tt>
<br><tt>*</tt>
<br><tt>* -</tt>
<br><tt>*</tt>
<br><tt>* KEYWORDS</tt>
<br><tt>*</tt>
<br><tt>*</tt>
<br><tt>* ******************************************************************</tt>
<br><tt>*</tt>
<br><tt>* .. Common variables ..</tt>
<br><tt> COMMON /TESTING/ ISOLVER</tt>
<br><tt> INTEGER LSODI_, LSOIBT_, RADAU5_,
DASSL_, DASPK_, GELDA_</tt>
<br><tt> PARAMETER (LSODI_ = 1, LSOIBT_
= 2)</tt>
<br><tt> PARAMETER (RADAU5_ = 3, DASSL_
= 4, DASPK_ = 5)</tt>
<br><tt> PARAMETER (GELDA_ = 6)</tt>
<br><tt>* .. Scalar Arguments ..</tt>
<br><tt> INTEGER
NRP, NIP, NX, NU, NP, LDJ, INFO</tt>
<br><tt> DOUBLE PRECISION T</tt>
<br><tt>* .. Array Arguments ..</tt>
<br><tt> INTEGER
IPAR(NIP)</tt>
<br><tt> DOUBLE PRECISION XPRIME(NX), U(NU),
P(NP), RPAR(NRP), J(LDJ,NX)</tt>
<br><tt>* .. Executable Statements ..</tt>
<br><tt>*</tt>
<br><tt> CALL JDOTLSODIX(LDJ,NX,T,XPRIME,XPRIME,J,INFO,RPAR,IPAR)</tt>
<br><tt> ENDIF</tt>
<br><tt>* *** Last line of JACFXDOT_ ***</tt>
<br><tt> END</tt>
<br><tt></tt>
<p><b>Program Data</b>
<pre>No data required</pre>
<b>Program Results</b>
<pre> DAESOLVER EXAMPLE PROGRAM RESULTS
Problem: LSODIX Solver: LSODI
lsodix (lsodix , DAE) with SOLVER 1
IWARN on exit from DAESolver = 2
Solution: (calculated) (reference)
6.462112224297606E-07
1.255974374648338E-10
6.117680951077711E-07
Relative error comparing with the reference solution: .8898590685949503E-06</pre>
<hr>
<p><!--Click <b><a href="../../SLICOT/arc/DAESolver.tgz">here</a></b> to get a compressed (gzip)
tar file containing the source code of the routine, the example program,
data, documentation, and related files.-->
<br><b><a href="..\libindex.html">Return to index</a></b>
</body>
</html>
|