1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
<HTML>
<HEAD><TITLE>DF01MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="DF01MD">DF01MD</A></H2>
<H3>
Sine transform or cosine transform of a real signal
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the sine transform or cosine transform of a real
signal.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE DF01MD( SICO, N, DT, A, DWORK, INFO )
C .. Scalar Arguments ..
CHARACTER SICO
INTEGER INFO, N
DOUBLE PRECISION DT
C .. Array Arguments ..
DOUBLE PRECISION A(*), DWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
SICO CHARACTER*1
Indicates whether the sine transform or cosine transform
is to be computed as follows:
= 'S': The sine transform is computed;
= 'C': The cosine transform is computed.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The number of samples. N must be a power of 2 plus 1.
N >= 5.
DT (input) DOUBLE PRECISION
The sampling time of the signal.
A (input/output) DOUBLE PRECISION array, dimension (N)
On entry, this array must contain the signal to be
processed.
On exit, this array contains either the sine transform, if
SICO = 'S', or the cosine transform, if SICO = 'C', of the
given signal.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (N+1)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Let A(1), A(2),..., A(N) be a real signal of N samples.
If SICO = 'S', the routine computes the sine transform of A as
follows. First, transform A(i), i = 1,2,...,N, into the complex
signal B(i), i = 1,2,...,(N+1)/2, where
B(1) = -2*A(2),
B(i) = {A(2i-2) - A(2i)} - j*A(2i-1) for i = 2,3,...,(N-1)/2,
B((N+1)/2) = 2*A(N-1) and j**2 = -1.
Next, perform a discrete inverse Fourier transform on B(i) by
calling SLICOT Library Routine DG01ND, to give the complex signal
Z(i), i = 1,2,...,(N-1)/2, from which the real signal C(i) may be
obtained as follows:
C(2i-1) = Re(Z(i)), C(2i) = Im(Z(i)) for i = 1,2,...,(N-1)/2.
Finally, compute the sine transform coefficients S ,S ,...,S
1 2 N
given by
S = 0,
1
{ [C(k) + C(N+1-k)] }
S = DT*{[C(k) - C(N+1-k)] - -----------------------},
k { [2*sin(pi*(k-1)/(N-1))]}
for k = 2,3,...,N-1, and
S = 0.
N
If SICO = 'C', the routine computes the cosine transform of A as
follows. First, transform A(i), i = 1,2,...,N, into the complex
signal B(i), i = 1,2,...,(N+1)/2, where
B(1) = 2*A(1),
B(i) = 2*A(2i-1) + 2*j*{[A(2i-2) - A(2i)]}
for i = 2,3,...,(N-1)/2 and B((N+1)/2) = 2*A(N).
Next, perform a discrete inverse Fourier transform on B(i) by
calling SLICOT Library Routine DG01ND, to give the complex signal
Z(i), i = 1,2,...,(N-1)/2, from which the real signal D(i) may be
obtained as follows:
D(2i-1) = Re(Z(i)), D(2i) = Im(Z(i)) for i = 1,2,...,(N-1)/2.
Finally, compute the cosine transform coefficients S ,S ,...,S
1 2 N
given by
S = 2*DT*[D(1) + A0],
1
{ [D(k) - D(N+1-k)] }
S = DT*{[D(k) + D(N+1-k)] - -----------------------},
k { [2*sin(pi*(k-1)/(N-1))]}
for k = 2,3,...,N-1, and
S = 2*DT*[D(1) - A0],
N
(N-1)/2
where A0 = 2*SUM A(2i).
i=1
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Rabiner, L.R. and Rader, C.M.
Digital Signal Processing.
IEEE Press, 1972.
[2] Oppenheim, A.V. and Schafer, R.W.
Discrete-Time Signal Processing.
Prentice-Hall Signal Processing Series, 1989.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires 0( N*log(N) ) operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* DF01MD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 129 )
* .. Local Scalars ..
DOUBLE PRECISION DT
INTEGER I, INFO, N
CHARACTER*1 SICO
* .. Local Arrays ..
DOUBLE PRECISION A(NMAX), DWORK(NMAX+1)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL DF01MD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, DT, SICO
IF ( N.LE.1 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) N
ELSE
READ ( NIN, FMT = * ) ( A(I), I = 1,N )
* Compute the sine/cosine transform of the given real signal.
CALL DF01MD( SICO, N, DT, A, DWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF ( LSAME( SICO, 'S' ) ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99995 ) I, A(I)
20 CONTINUE
ELSE
WRITE ( NOUT, FMT = 99996 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99995 ) I, A(I)
40 CONTINUE
END IF
END IF
END IF
*
STOP
*
99999 FORMAT (' DF01MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from DF01MD = ',I2)
99997 FORMAT (' Components of sine transform are',//' i',6X,'A(i)',/)
99996 FORMAT (' Components of cosine transform are',//' i',6X,'A(i)',
$ /)
99995 FORMAT (I4,3X,F8.4)
99994 FORMAT (/' N is out of range.',/' N = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
DF01MD EXAMPLE PROGRAM DATA
17 1.0 C
-0.1862
0.1288
0.3948
0.0671
0.6788
-0.2417
0.1861
0.8875
0.7254
0.9380
0.5815
-0.2682
0.4904
0.9312
-0.9599
-0.3116
0.8743
</PRE>
<B>Program Results</B>
<PRE>
DF01MD EXAMPLE PROGRAM RESULTS
Components of cosine transform are
i A(i)
1 28.0536
2 3.3726
3 -20.8158
4 6.0566
5 5.7317
6 -3.9347
7 -12.8074
8 -6.8780
9 16.2892
10 -17.0788
11 21.7836
12 -20.8203
13 -7.3277
14 -2.5325
15 -0.3636
16 7.8792
17 11.0048
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|