File: MA02ID.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (129 lines) | stat: -rw-r--r-- 3,590 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
<HTML>
<HEAD><TITLE>MA02ID - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MA02ID">MA02ID</A></H2>
<H3>
Matrix 1-, Frobenius, or infinity norms of a skew-Hamiltonian matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the value of the one norm, or the Frobenius norm, or
  the infinity norm, or the element of largest absolute value
  of a real skew-Hamiltonian matrix

                [  A   G  ]          T         T
          X  =  [       T ],   G = -G,   Q = -Q,
                [  Q   A  ]

  or of a real Hamiltonian matrix

                [  A   G  ]          T         T
          X  =  [       T ],   G =  G,   Q =  Q,
                [  Q  -A  ]

  where A, G and Q are real n-by-n matrices.

  Note that for this kind of matrices the infinity norm is equal
  to the one norm.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      DOUBLE PRECISION FUNCTION MA02ID( TYP, NORM, N, A, LDA, QG,
     $                                  LDQG, DWORK )
C     .. Scalar Arguments ..
      CHARACTER          NORM, TYP
      INTEGER            LDA, LDQG, N
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), DWORK(*), QG(LDQG,*)

</PRE>
<B><FONT SIZE="+1">Function Value</FONT></B>
<PRE>
  MA02ID  DOUBLE PRECISION
          The computed norm.

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  TYP     CHARACTER*1
          Specifies the type of the input matrix X:
          = 'S':         X is skew-Hamiltonian;
          = 'H':         X is Hamiltonian.

  NORM    CHARACTER*1
          Specifies the value to be returned in MA02ID:
          = '1' or 'O':  one norm of X;
          = 'F' or 'E':  Frobenius norm of X;
          = 'I':         infinity norm of X;
          = 'M':         max(abs(X(i,j)).

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A.  N &gt;= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix A.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,N).

  QG      (input) DOUBLE PRECISION array, dimension (LDQG,N+1)
          On entry, the leading N-by-N+1 part of this array must
          contain in columns 1:N the lower triangular part of the
          matrix Q and in columns 2:N+1 the upper triangular part
          of the matrix G. If TYP = 'S', the parts containing the
          diagonal and the first supdiagonal of this array are not
          referenced.

  LDQG    INTEGER
          The leading dimension of the array QG.  LDQG &gt;= MAX(1,N).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          where LDWORK &gt;= 2*N when NORM = '1', NORM = 'I' or
          NORM = 'O'; otherwise, DWORK is not referenced.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>