1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
<HTML>
<HEAD><TITLE>MA02JD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MA02JD">MA02JD</A></H2>
<H3>
Test if a matrix is an orthogonal symplectic matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute || Q^T Q - I ||_F for a matrix of the form
[ op( Q1 ) op( Q2 ) ]
Q = [ ],
[ -op( Q2 ) op( Q1 ) ]
where Q1 and Q2 are N-by-N matrices. This residual can be used to
test wether Q is numerically an orthogonal symplectic matrix.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
DOUBLE PRECISION FUNCTION MA02JD( LTRAN1, LTRAN2, N, Q1, LDQ1, Q2,
$ LDQ2, RES, LDRES )
C .. Scalar Arguments ..
LOGICAL LTRAN1, LTRAN2
INTEGER LDQ1, LDQ2, LDRES, N
C .. Array Arguments ..
DOUBLE PRECISION Q1(LDQ1,*), Q2(LDQ2,*), RES(LDRES,*)
</PRE>
<B><FONT SIZE="+1">Function Value</FONT></B>
<PRE>
MA02JD DOUBLE PRECISION
The computed residual.
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
LTRAN1 LOGICAL
Specifies the form of op( Q1 ) as follows:
= .FALSE.: op( Q1 ) = Q1;
= .TRUE. : op( Q1 ) = Q1'.
LTRAN2 LOGICAL
Specifies the form of op( Q2 ) as follows:
= .FALSE.: op( Q2 ) = Q2;
= .TRUE. : op( Q2 ) = Q2'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrices Q1 and Q2. N >= 0.
Q1 (input) DOUBLE PRECISION array, dimension (LDQ1,N)
On entry, the leading N-by-N part of this array must
contain the matrix op( Q1 ).
LDQ1 INTEGER
The leading dimension of the array Q1. LDQ1 >= MAX(1,N).
Q2 (input) DOUBLE PRECISION array, dimension (LDQ2,N)
On entry, the leading N-by-N part of this array must
contain the matrix op( Q2 ).
LDQ2 INTEGER
The leading dimension of the array Q2. LDQ2 >= MAX(1,N).
</PRE>
<B>Workspace</B>
<PRE>
RES DOUBLE PRECISION array, dimension (LDRES,N)
LDRES INTEGER
The leading dimension of the array RES. LDRES >= MAX(1,N).
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine computes the residual by simple elementary operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|