File: MA02JD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (119 lines) | stat: -rw-r--r-- 3,100 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
<HTML>
<HEAD><TITLE>MA02JD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MA02JD">MA02JD</A></H2>
<H3>
Test if a matrix is an orthogonal symplectic matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute || Q^T Q - I ||_F for a matrix of the form

                    [  op( Q1 )  op( Q2 ) ]
               Q =  [                     ],
                    [ -op( Q2 )  op( Q1 ) ]

  where Q1 and Q2 are N-by-N matrices. This residual can be used to
  test wether Q is numerically an orthogonal symplectic matrix.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      DOUBLE PRECISION FUNCTION MA02JD( LTRAN1, LTRAN2, N, Q1, LDQ1, Q2,
     $                                  LDQ2, RES, LDRES )
C     .. Scalar Arguments ..
      LOGICAL           LTRAN1, LTRAN2
      INTEGER           LDQ1, LDQ2, LDRES, N
C     .. Array Arguments ..
      DOUBLE PRECISION  Q1(LDQ1,*), Q2(LDQ2,*), RES(LDRES,*)

</PRE>
<B><FONT SIZE="+1">Function Value</FONT></B>
<PRE>
  MA02JD  DOUBLE PRECISION
          The computed residual.

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  LTRAN1  LOGICAL
          Specifies the form of op( Q1 ) as follows:
          = .FALSE.:  op( Q1 ) = Q1;
          = .TRUE. :  op( Q1 ) = Q1'.

  LTRAN2  LOGICAL
          Specifies the form of op( Q2 ) as follows:
          = .FALSE.:  op( Q2 ) = Q2;
          = .TRUE. :  op( Q2 ) = Q2'.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrices Q1 and Q2.  N &gt;= 0.

  Q1      (input) DOUBLE PRECISION array, dimension (LDQ1,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix op( Q1 ).

  LDQ1    INTEGER
          The leading dimension of the array Q1.  LDQ1 &gt;= MAX(1,N).

  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix op( Q2 ).

  LDQ2    INTEGER
          The leading dimension of the array Q2.  LDQ2 &gt;= MAX(1,N).

</PRE>
<B>Workspace</B>
<PRE>
  RES     DOUBLE PRECISION array, dimension (LDRES,N)

  LDRES   INTEGER
          The leading dimension of the array RES.  LDRES &gt;= MAX(1,N).

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine computes the residual by simple elementary operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>