File: MA02MD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (114 lines) | stat: -rw-r--r-- 3,244 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<HTML>
<HEAD><TITLE>MA02MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MA02MD">MA02MD</A></H2>
<H3>
Compute norms of a real skew-symmetric matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the value of the one norm, or the Frobenius norm, or
  the infinity norm, or the element of largest absolute value
  of a real skew-symmetric matrix.

  Note that for this kind of matrices the infinity norm is equal
  to the one norm.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      DOUBLE PRECISION FUNCTION MA02MD( NORM, UPLO, N, A, LDA, DWORK )
C     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            LDA, N
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), DWORK( * )

</PRE>
<B><FONT SIZE="+1">Function Value</FONT></B>
<PRE>
  MA02MD  DOUBLE PRECISION
          The computed norm.

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  NORM    CHARACTER*1
          Specifies the value to be returned in MA02MD:
          = '1' or 'O':  one norm of A;
          = 'F' or 'E':  Frobenius norm of A;
          = 'I':         infinity norm of A;
          = 'M':         max(abs(A(i,j)).

  UPLO    CHARACTER*1
          Specifies whether the upper or lower triangular part of
          the skew-symmetric matrix A is to be referenced.
          = 'U':  Upper triangular part of A is referenced;
          = 'L':  Lower triangular part of A is referenced.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A.  N &gt;= 0.  When N = 0, MA02MD is
          set to zero.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The skew-symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N strictly upper triangular part of A contains the
          strictly upper triangular part of the matrix A, and the
          lower triangular part of A is not referenced.
          If UPLO = 'L', the leading N-by-N strictly lower
          triangular part of A contains the strictly lower
          triangular part of the matrix A, and the upper triangular
          part of A is not referenced.
          The diagonal of A need not be set to zero.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1,N).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (MAX(1,LDWORK)),
          where LDWORK &gt;= N when NORM = 'I' or '1' or 'O';
          otherwise, DWORK is not referenced.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>