File: MA02OD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (105 lines) | stat: -rw-r--r-- 2,874 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
<HTML>
<HEAD><TITLE>MA02OD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MA02OD">MA02OD</A></H2>
<H3>
Compute the number of zero rows (and zero columns) of a real (skew-)Hamiltonian matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the number of zero rows (and zero columns) of a real
  (skew-)Hamiltonian matrix,

        (  A    D   )
    H = (           ).
        (  E  +/-A' )

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      INTEGER FUNCTION MA02OD( SKEW, M, A, LDA, DE, LDDE )
C     .. Scalar Arguments ..
      CHARACTER          SKEW
      INTEGER            LDA, LDDE, M
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), DE( LDDE, * )

</PRE>
<B><FONT SIZE="+1">Function Value</FONT></B>
<PRE>
  MA02OD  INTEGER
          The number of zero rows.

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  SKEW    CHARACTER*1
          Specifies whether the matrix is Hamiltonian or skew-
          Hamiltonian as follows:
          = 'H':  The matrix is Hamiltonian;
          = 'S':  The matrix is skew-Hamiltonian.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The order of the matrices A, D, and E.  M &gt;= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,M)
          The leading M-by-M part of this array must contain the
          matrix A.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1,M).

  DE      (input) DOUBLE PRECISION array, dimension (LDDE,M+1)
          The leading M-by-M lower triangular part of this array
          must contain the lower triangular part of the (skew-)
          symmetric matrix E, and the M-by-M upper triangular
          part of the submatrix in the columns 2 to M+1 of this
          array must contain the upper triangular part of the
          (skew-)symmetric matrix D. If S is skew-Hamiltonian, the
          parts containing the diagonal and the first superdiagonal
          of this array, which should be zero, are not referenced.

  LDDE    INTEGER
          The leading dimension of the array DE.  LDDE &gt;= MAX(1,M).

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>