File: MB01LD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (209 lines) | stat: -rw-r--r-- 7,364 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
<HTML>
<HEAD><TITLE>MB01LD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB01LD">MB01LD</A></H2>
<H3>
Computation of matrix expression alpha*R + beta*A*X*trans(A) with skew-symmetric matrices R and X
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the matrix formula
     _
     R = alpha*R + beta*op( A )*X*op( A )',
                                              _
  where alpha and beta are scalars, R, X, and R are skew-symmetric
  matrices, A is a general matrix, and op( A ) is one of

     op( A ) = A   or   op( A ) = A'.

  The result is overwritten on R.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB01LD( UPLO, TRANS, M, N, ALPHA, BETA, R, LDR, A, LDA,
     $                   X, LDX, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         TRANS, UPLO
      INTEGER           INFO, LDA, LDR, LDWORK, LDX, M, N
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), R(LDR,*), X(LDX,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  UPLO    CHARACTER*1
          Specifies which triangles of the skew-symmetric matrices R
          and X are given, as follows:
          = 'U':  the strictly upper triangular part is given;
          = 'L':  the strictly lower triangular part is given.

  TRANS   CHARACTER*1
          Specifies the form of op( A ) to be used in the matrix
          multiplication, as follows:
          = 'N':  op( A ) = A;
          = 'T':  op( A ) = A';
          = 'C':  op( A ) = A'.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER           _
          The order of the matrices R and R and the number of rows
          of the matrix op( A ).  M &gt;= 0.

  N       (input) INTEGER
          The order of the matrix X and the number of columns of the
          matrix op( A ).  N &gt;= 0.

  ALPHA   (input) DOUBLE PRECISION
          The scalar alpha. When alpha is zero then R need not be
          set before entry, except when R is identified with X in
          the call.

  BETA    (input) DOUBLE PRECISION
          The scalar beta. When beta is zero or N &lt;= 1, or M &lt;= 1,
          then A and X are not referenced.

  R       (input/output) DOUBLE PRECISION array, dimension (LDR,M)
          On entry with UPLO = 'U', the leading M-by-M strictly
          upper triangular part of this array must contain the
          strictly upper triangular part of the skew-symmetric
          matrix R. The lower triangle is not referenced.
          On entry with UPLO = 'L', the leading M-by-M strictly
          lower triangular part of this array must contain the
          strictly lower triangular part of the skew-symmetric
          matrix R. The upper triangle is not referenced.
          On exit, the leading M-by-M strictly upper triangular part
          (if UPLO = 'U'), or strictly lower triangular part
          (if UPLO = 'L'), of this array contains the corresponding
                                                          _
          strictly triangular part of the computed matrix R.

  LDR     INTEGER
          The leading dimension of the array R.  LDR &gt;= MAX(1,M).

  A       (input) DOUBLE PRECISION array, dimension (LDA,k)
          where k is N when TRANS = 'N' and is M when TRANS = 'T' or
          TRANS = 'C'.
          On entry with TRANS = 'N', the leading M-by-N part of this
          array must contain the matrix A.
          On entry with TRANS = 'T' or TRANS = 'C', the leading
          N-by-M part of this array must contain the matrix A.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,k),
          where k is M when TRANS = 'N' and is N when TRANS = 'T' or
          TRANS = 'C'.

  X       (input or input/output) DOUBLE PRECISION array, dimension
          (LDX,K), where K = N, if UPLO = 'U' or  LDWORK &gt;= M*(N-1),
               or K = MAX(N,M), if UPLO = 'L' and LDWORK &lt;  M*(N-1).
          On entry, if UPLO = 'U', the leading N-by-N strictly upper
          triangular part of this array must contain the strictly
          upper triangular part of the skew-symmetric matrix X and
          the lower triangular part of the array is not referenced.
          On entry, if UPLO = 'L', the leading N-by-N strictly lower
          triangular part of this array must contain the strictly
          lower triangular part of the skew-symmetric matrix X and
          the upper triangular part of the array is not referenced.
          If LDWORK &lt; M*(N-1), this array is overwritten with the
          matrix op(A)*X, if UPLO = 'U', or X*op(A)', if UPLO = 'L'.

  LDX     INTEGER
          The leading dimension of the array X.
          LDX &gt;= MAX(1,N),   if UPLO = 'L' or  LDWORK &gt;= M*(N-1);
          LDX &gt;= MAX(1,N,M), if UPLO = 'U' and LDWORK &lt;  M*(N-1).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          This array is not referenced when beta = 0, or M &lt;= 1, or
          N &lt;= 1.

  LDWORK  The length of the array DWORK.
          LDWORK &gt;= N, if  beta &lt;&gt; 0, and M &gt; 0, and N &gt;  1;
          LDWORK &gt;= 0, if  beta =  0, or  M = 0, or  N &lt;= 1.
          For optimum performance, LDWORK &gt;= M*(N-1), if  beta &lt;&gt; 0,
          M &gt; 1, and N &gt; 1.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -k, the k-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The matrix expression is efficiently evaluated taking the skew-
  symmetry into account. If LDWORK &gt;= M*(N-1), a BLAS 3 like
  implementation is used. Specifically, let X = T - T', with T a
  strictly upper or strictly lower triangular matrix, defined by

     T = striu( X ),  if UPLO = 'U',
     T = stril( X ),  if UPLO = 'L',

  where striu and stril denote the strictly upper triangular part
  and strictly lower triangular part of X, respectively. Then,

     A*X*A' = ( A*T )*A' - A*( A*T )',  for TRANS = 'N',
     A'*X*A = A'*( T*A ) - ( T*A )'*A,  for TRANS = 'T', or 'C',

  which involve BLAS 3 operations DTRMM and the skew-symmetric
  correspondent of DSYR2K (with a Fortran implementation available
  in the SLICOT Library routine MB01KD).
  If LDWORK &lt; M*(N-1), a BLAS 2 implementation is used.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm requires approximately

                2         2
     3/2 x M x N + 1/2 x M

  operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>