1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
<HTML>
<HEAD><TITLE>MB01LD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB01LD">MB01LD</A></H2>
<H3>
Computation of matrix expression alpha*R + beta*A*X*trans(A) with skew-symmetric matrices R and X
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the matrix formula
_
R = alpha*R + beta*op( A )*X*op( A )',
_
where alpha and beta are scalars, R, X, and R are skew-symmetric
matrices, A is a general matrix, and op( A ) is one of
op( A ) = A or op( A ) = A'.
The result is overwritten on R.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB01LD( UPLO, TRANS, M, N, ALPHA, BETA, R, LDR, A, LDA,
$ X, LDX, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER TRANS, UPLO
INTEGER INFO, LDA, LDR, LDWORK, LDX, M, N
DOUBLE PRECISION ALPHA, BETA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), R(LDR,*), X(LDX,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
UPLO CHARACTER*1
Specifies which triangles of the skew-symmetric matrices R
and X are given, as follows:
= 'U': the strictly upper triangular part is given;
= 'L': the strictly lower triangular part is given.
TRANS CHARACTER*1
Specifies the form of op( A ) to be used in the matrix
multiplication, as follows:
= 'N': op( A ) = A;
= 'T': op( A ) = A';
= 'C': op( A ) = A'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER _
The order of the matrices R and R and the number of rows
of the matrix op( A ). M >= 0.
N (input) INTEGER
The order of the matrix X and the number of columns of the
matrix op( A ). N >= 0.
ALPHA (input) DOUBLE PRECISION
The scalar alpha. When alpha is zero then R need not be
set before entry, except when R is identified with X in
the call.
BETA (input) DOUBLE PRECISION
The scalar beta. When beta is zero or N <= 1, or M <= 1,
then A and X are not referenced.
R (input/output) DOUBLE PRECISION array, dimension (LDR,M)
On entry with UPLO = 'U', the leading M-by-M strictly
upper triangular part of this array must contain the
strictly upper triangular part of the skew-symmetric
matrix R. The lower triangle is not referenced.
On entry with UPLO = 'L', the leading M-by-M strictly
lower triangular part of this array must contain the
strictly lower triangular part of the skew-symmetric
matrix R. The upper triangle is not referenced.
On exit, the leading M-by-M strictly upper triangular part
(if UPLO = 'U'), or strictly lower triangular part
(if UPLO = 'L'), of this array contains the corresponding
_
strictly triangular part of the computed matrix R.
LDR INTEGER
The leading dimension of the array R. LDR >= MAX(1,M).
A (input) DOUBLE PRECISION array, dimension (LDA,k)
where k is N when TRANS = 'N' and is M when TRANS = 'T' or
TRANS = 'C'.
On entry with TRANS = 'N', the leading M-by-N part of this
array must contain the matrix A.
On entry with TRANS = 'T' or TRANS = 'C', the leading
N-by-M part of this array must contain the matrix A.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1,k),
where k is M when TRANS = 'N' and is N when TRANS = 'T' or
TRANS = 'C'.
X (input or input/output) DOUBLE PRECISION array, dimension
(LDX,K), where K = N, if UPLO = 'U' or LDWORK >= M*(N-1),
or K = MAX(N,M), if UPLO = 'L' and LDWORK < M*(N-1).
On entry, if UPLO = 'U', the leading N-by-N strictly upper
triangular part of this array must contain the strictly
upper triangular part of the skew-symmetric matrix X and
the lower triangular part of the array is not referenced.
On entry, if UPLO = 'L', the leading N-by-N strictly lower
triangular part of this array must contain the strictly
lower triangular part of the skew-symmetric matrix X and
the upper triangular part of the array is not referenced.
If LDWORK < M*(N-1), this array is overwritten with the
matrix op(A)*X, if UPLO = 'U', or X*op(A)', if UPLO = 'L'.
LDX INTEGER
The leading dimension of the array X.
LDX >= MAX(1,N), if UPLO = 'L' or LDWORK >= M*(N-1);
LDX >= MAX(1,N,M), if UPLO = 'U' and LDWORK < M*(N-1).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
This array is not referenced when beta = 0, or M <= 1, or
N <= 1.
LDWORK The length of the array DWORK.
LDWORK >= N, if beta <> 0, and M > 0, and N > 1;
LDWORK >= 0, if beta = 0, or M = 0, or N <= 1.
For optimum performance, LDWORK >= M*(N-1), if beta <> 0,
M > 1, and N > 1.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -k, the k-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The matrix expression is efficiently evaluated taking the skew-
symmetry into account. If LDWORK >= M*(N-1), a BLAS 3 like
implementation is used. Specifically, let X = T - T', with T a
strictly upper or strictly lower triangular matrix, defined by
T = striu( X ), if UPLO = 'U',
T = stril( X ), if UPLO = 'L',
where striu and stril denote the strictly upper triangular part
and strictly lower triangular part of X, respectively. Then,
A*X*A' = ( A*T )*A' - A*( A*T )', for TRANS = 'N',
A'*X*A = A'*( T*A ) - ( T*A )'*A, for TRANS = 'T', or 'C',
which involve BLAS 3 operations DTRMM and the skew-symmetric
correspondent of DSYR2K (with a Fortran implementation available
in the SLICOT Library routine MB01KD).
If LDWORK < M*(N-1), a BLAS 2 implementation is used.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires approximately
2 2
3/2 x M x N + 1/2 x M
operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|