File: MB01RX.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (192 lines) | stat: -rw-r--r-- 6,760 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
<HTML>
<HEAD><TITLE>MB01RX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB01RX">MB01RX</A></H2>
<H3>
Computation of a triangle of matrix expression alpha R + beta A B or alpha R + beta B A
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute either the upper or lower triangular part of one of the
  matrix formulas
     _
     R = alpha*R + beta*op( A )*B,                               (1)
     _
     R = alpha*R + beta*B*op( A ),                               (2)
                                          _
  where alpha and beta are scalars, R and R are m-by-m matrices,
  op( A ) and B are m-by-n and n-by-m matrices for (1), or n-by-m
  and m-by-n matrices for (2), respectively, and op( A ) is one of

     op( A ) = A   or   op( A ) = A',  the transpose of A.

  The result is overwritten on R.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB01RX( SIDE, UPLO, TRANS, M, N, ALPHA, BETA, R, LDR,
     $                   A, LDA, B, LDB, INFO )
C     .. Scalar Arguments ..
      CHARACTER         SIDE, TRANS, UPLO
      INTEGER           INFO, LDA, LDB, LDR, M, N
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), R(LDR,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  SIDE    CHARACTER*1
          Specifies whether the matrix A appears on the left or
          right in the matrix product as follows:
                  _
          = 'L':  R = alpha*R + beta*op( A )*B;
                  _
          = 'R':  R = alpha*R + beta*B*op( A ).

  UPLO    CHARACTER*1                               _
          Specifies which triangles of the matrices R and R are
          computed and given, respectively, as follows:
          = 'U':  the upper triangular part;
          = 'L':  the lower triangular part.

  TRANS   CHARACTER*1
          Specifies the form of op( A ) to be used in the matrix
          multiplication as follows:
          = 'N':  op( A ) = A;
          = 'T':  op( A ) = A';
          = 'C':  op( A ) = A'.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER           _
          The order of the matrices R and R, the number of rows of
          the matrix op( A ) and the number of columns of the
          matrix B, for SIDE = 'L', or the number of rows of the
          matrix B and the number of columns of the matrix op( A ),
          for SIDE = 'R'.  M &gt;= 0.

  N       (input) INTEGER
          The number of rows of the matrix B and the number of
          columns of the matrix op( A ), for SIDE = 'L', or the
          number of rows of the matrix op( A ) and the number of
          columns of the matrix B, for SIDE = 'R'.  N &gt;= 0.

  ALPHA   (input) DOUBLE PRECISION
          The scalar alpha. When alpha is zero then R need not be
          set before entry.

  BETA    (input) DOUBLE PRECISION
          The scalar beta. When beta is zero then A and B are not
          referenced.

  R       (input/output) DOUBLE PRECISION array, dimension (LDR,M)
          On entry with UPLO = 'U', the leading M-by-M upper
          triangular part of this array must contain the upper
          triangular part of the matrix R; the strictly lower
          triangular part of the array is not referenced.
          On entry with UPLO = 'L', the leading M-by-M lower
          triangular part of this array must contain the lower
          triangular part of the matrix R; the strictly upper
          triangular part of the array is not referenced.
          On exit, the leading M-by-M upper triangular part (if
          UPLO = 'U'), or lower triangular part (if UPLO = 'L') of
          this array contains the corresponding triangular part of
                              _
          the computed matrix R.

  LDR     INTEGER
          The leading dimension of array R.  LDR &gt;= MAX(1,M).

  A       (input) DOUBLE PRECISION array, dimension (LDA,k), where
          k = N  when  SIDE = 'L', and TRANS = 'N', or
                       SIDE = 'R', and TRANS = 'T';
          k = M  when  SIDE = 'R', and TRANS = 'N', or
                       SIDE = 'L', and TRANS = 'T'.
          On entry, if SIDE = 'L', and TRANS = 'N', or
                       SIDE = 'R', and TRANS = 'T',
          the leading M-by-N part of this array must contain the
          matrix A.
          On entry, if SIDE = 'R', and TRANS = 'N', or
                       SIDE = 'L', and TRANS = 'T',
          the leading N-by-M part of this array must contain the
          matrix A.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,l), where
          l = M  when  SIDE = 'L', and TRANS = 'N', or
                       SIDE = 'R', and TRANS = 'T';
          l = N  when  SIDE = 'R', and TRANS = 'N', or
                       SIDE = 'L', and TRANS = 'T'.

  B       (input) DOUBLE PRECISION array, dimension (LDB,p), where
          p = M  when  SIDE = 'L';
          p = N  when  SIDE = 'R'.
          On entry, the leading N-by-M part, if SIDE = 'L', or
          M-by-N part, if SIDE = 'R', of this array must contain the
          matrix B.

  LDB     INTEGER
          The leading dimension of array B.
          LDB &gt;= MAX(1,N), if SIDE = 'L';
          LDB &gt;= MAX(1,M), if SIDE = 'R'.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The matrix expression is evaluated taking the triangular
  structure into account. BLAS 2 operations are used. A block
  algorithm can be easily constructed; it can use BLAS 3 GEMM
  operations for most computations, and calls of this BLAS 2
  algorithm for computing the triangles.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  The main application of this routine is when the result should
  be a symmetric matrix, e.g., when B = X*op( A )', for (1), or
  B = op( A )'*X, for (2), where B is already available and X = X'.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>