1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
<HTML>
<HEAD><TITLE>MB01RY - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB01RY">MB01RY</A></H2>
<H3>
Computation of a triangle of matrix expression alpha R + beta H B or alpha R + beta B H, H upper Hessenberg matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute either the upper or lower triangular part of one of the
matrix formulas
_
R = alpha*R + beta*op( H )*B, (1)
_
R = alpha*R + beta*B*op( H ), (2)
_
where alpha and beta are scalars, H, B, R, and R are m-by-m
matrices, H is an upper Hessenberg matrix, and op( H ) is one of
op( H ) = H or op( H ) = H', the transpose of H.
The result is overwritten on R.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB01RY( SIDE, UPLO, TRANS, M, ALPHA, BETA, R, LDR, H,
$ LDH, B, LDB, DWORK, INFO )
C .. Scalar Arguments ..
CHARACTER SIDE, TRANS, UPLO
INTEGER INFO, LDB, LDH, LDR, M
DOUBLE PRECISION ALPHA, BETA
C .. Array Arguments ..
DOUBLE PRECISION B(LDB,*), DWORK(*), H(LDH,*), R(LDR,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
SIDE CHARACTER*1
Specifies whether the Hessenberg matrix H appears on the
left or right in the matrix product as follows:
_
= 'L': R = alpha*R + beta*op( H )*B;
_
= 'R': R = alpha*R + beta*B*op( H ).
UPLO CHARACTER*1 _
Specifies which triangles of the matrices R and R are
computed and given, respectively, as follows:
= 'U': the upper triangular part;
= 'L': the lower triangular part.
TRANS CHARACTER*1
Specifies the form of op( H ) to be used in the matrix
multiplication as follows:
= 'N': op( H ) = H;
= 'T': op( H ) = H';
= 'C': op( H ) = H'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER _
The order of the matrices R, R, H and B. M >= 0.
ALPHA (input) DOUBLE PRECISION
The scalar alpha. When alpha is zero then R need not be
set before entry.
BETA (input) DOUBLE PRECISION
The scalar beta. When beta is zero then H and B are not
referenced.
R (input/output) DOUBLE PRECISION array, dimension (LDR,M)
On entry with UPLO = 'U', the leading M-by-M upper
triangular part of this array must contain the upper
triangular part of the matrix R; the strictly lower
triangular part of the array is not referenced.
On entry with UPLO = 'L', the leading M-by-M lower
triangular part of this array must contain the lower
triangular part of the matrix R; the strictly upper
triangular part of the array is not referenced.
On exit, the leading M-by-M upper triangular part (if
UPLO = 'U'), or lower triangular part (if UPLO = 'L') of
this array contains the corresponding triangular part of
_
the computed matrix R.
LDR INTEGER
The leading dimension of array R. LDR >= MAX(1,M).
H (input) DOUBLE PRECISION array, dimension (LDH,M)
On entry, the leading M-by-M upper Hessenberg part of
this array must contain the upper Hessenberg part of the
matrix H.
The elements below the subdiagonal are not referenced,
except possibly for those in the first column, which
could be overwritten, but are restored on exit.
LDH INTEGER
The leading dimension of array H. LDH >= MAX(1,M).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading M-by-M part of this array must
contain the matrix B.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,M).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK >= M, if beta <> 0 and SIDE = 'L';
LDWORK >= 0, if beta = 0 or SIDE = 'R'.
This array is not referenced when beta = 0 or SIDE = 'R'.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The matrix expression is efficiently evaluated taking the
Hessenberg/triangular structure into account. BLAS 2 operations
are used. A block algorithm can be constructed; it can use BLAS 3
GEMM operations for most computations, and calls of this BLAS 2
algorithm for computing the triangles.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
The main application of this routine is when the result should
be a symmetric matrix, e.g., when B = X*op( H )', for (1), or
B = op( H )'*X, for (2), where B is already available and X = X'.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|